Asthana, Shailendra; Shukla, Saumya; Ruggerone, Paolo; Vargiu, Attilio V.
Molecular Mechanism of Viral Resistance to a Potent Non-nucleoside Inhibitor Unveiled by Molecular Simulations
BIOCHEMISTRY, 53:6941-6953, NOV 11 2014

Recently, we reported on a potent benzimidazole derivative (227G) that inhibits the growth of the bovine viral diarrhea virus (BVDV) in cell-based and enzyme assays at nanomolar concentrations. The target of 227G is the viral RNA-dependent RNA polymerase (RdRp), and the I261M mutation located in motif I of the RdRp finger domain was found to induce drug resistance. Here we propose a molecular mechanism for the retained functionality of the enzyme in the presence of the inhibitor, on the basis of a thorough computational study of the apo and holo forms of the BVDV RdRp either in the wild type (wt) or in the form carrying the I261M mutation. Our study shows that although the mutation affects to some extent the structure of the apoenzyme, the functional dynamics of the protein appear to be largely maintained, which is consistent with the retained functionality of this natural mutant. Despite the binding site of 227G not collapsing or undergoing drastic structural changes upon introduction of the I261M substitution, these alterations reflect crucially on the binding mode of 227G, which is significantly different from that found in wt RdRp. In particular, while in the wt system the four loops lining the template entrance site embrace 227G and close the template passageway, in the I261M variant the template entrance is only marginally occluded, allowing in principle the translocation of the template to the interior of the enzyme. In addition, the mutated enzyme in the presence of 227G retains several characteristics of the wt apoprotein. Our work provides an original molecular picture of a resistance mechanism that is consistent with published experimental data.


Find full text with Google Scholar.