Jörg A. Walter and Klaus Schulten.
Implementation of self-organizing neural networks for visuo-motor
control of an industrial robot.
IEEE Transactions on Neural Networks, 4:86-95, 1993.
WALT93
We report on the implementation of two neural network algorithms for visuo-motor control of an industrial robot (Puma 562). The first algorithm uses a vector quantization technique, the "neural-gas" network, together with an error correction scheme based on a Widrow-Hoff-type learning rule. The second algorithm employs an extended self-organizing feature map algorithm. Based on visual information provided by two cameras, the robot learns to position its end effector without an external teacher. Within only 3000 training steps, the robot-camera system is capable of reducing the positioning error of the robot's end effector to approximately 0.1% of the linear dimension of the work space. By employing adaptive feedback the robot succeeds in compensating not only slow calibration drifts, but also sudden changes in its geometry. Hardware aspects of the robot-camera system are discussed.
Download Full Text
The manuscripts available on our site are provided for your personal
use only and may not be retransmitted or redistributed without written
permissions from the paper's publisher and author. You may not upload any
of this site's material to any public server, on-line service, network, or
bulletin board without prior written permission from the publisher and
author. You may not make copies for any commercial purpose. Reproduction
or storage of materials retrieved from this web site is subject to the
U.S. Copyright Act of 1976, Title 17 U.S.C.