Marco Nonella, Andreas Windemuth, and Klaus Schulten.
Structure of bacteriorhodopsin and in situ isomerization of
retinal: A molecular dynamics study.
Journal Photochemistry Photobiology, 54:937-948, 1991.
NONE91A
Henderson's model of the structure of bacteriorhodopsin has been completed by adding the missing loop regions and by subsequent energy minimization and equilibration (for about 100 ps) at 300 K. Analysis of the structure during a later 20 ps molecular dynamics run showed no significant deviations from the Henderson model. In situ isomerization reactions of the retinal chromophore in bacteriorhodopsin have then been simulated to investigate the chromophore protein interaction for the three isomerization reactions: (i) all-trans 13-cis; (ii) all-trans 13,14-dicis; and (iii) all-trans 13,15-dicis. We find that reaction (iii) which accompanies dark-adaptation of bacteriorhodopsin can proceed in the binding site without any sterical hinderance and involves negligible motions of the covalently bound Lys-216 and other side groups. Reaction (ii) exhibits a somewhat larger but still small energy barrier and involves little rearrangement of Lys-216 and the protein backbone. Reaction (i) experiences a sterical impediment amounting to more than 10 kT at physiological temperatures and also induces significant structural changes at the binding site. Our simulations also reveal that reaction (ii) as a photo-isomerization process can be completed within about 400 fs, whereas reaction (i) requires longer times for completion. Reaction (i) is also accompanied by a co-rotation of the 14-15 bond by (even when a torsional barrier of 20 kcal/mol is imposed to impede rotation of the 14-15 bond) such that photoreactions (i) and (ii), in effect, lead to very similar final geometries. Isomerization (ii) can readily explain the pump mechanism of bacteriorhodopsin: the sequential, thermal back-reaction 13,14-dicis 13-cis all-trans can be acid-base catalyzed, i.e., coupled to deprotonation and reprotonation of retinal's Schiff base nitrogen. The orientation of retinal is such that Asp-85 can act as the acceptor and Asp-96 as the (indirect) donor. The thermal back-reaction 13,14-dicis all-trans can be coupled to vectorial ion transport as well.
Download Full Text
The manuscripts available on our site are provided for your personal
use only and may not be retransmitted or redistributed without written
permissions from the paper's publisher and author. You may not upload any
of this site's material to any public server, on-line service, network, or
bulletin board without prior written permission from the publisher and
author. You may not make copies for any commercial purpose. Reproduction
or storage of materials retrieved from this web site is subject to the
U.S. Copyright Act of 1976, Title 17 U.S.C.