MULTISEQ in VMD -
 Revealing How Nature Designs Proteins and RNAs

Luthey-Schulten Group

Department of Chemistry, Biophysics, and Beckman Institute University of Illinois at Urbana-Champaign

Universal Phylogenetic Tree three domains of life

Based on 16S rRNA

Leucyl-tRNA synthetase displays the
full canonical phylogenetic distribution.

After W. Doolittle, modified by G. Olsen

Phylogenetic Distributions

Full Canonical

Basal Canonical

Non-canonical

increasing inter-domain of life Horizontal Gene Transfer
"HGT erodes the historical trace, but does not completely erase it...." G. Olsen

Protein Structure Similarity Measure

Q_{H} Structural Homology

fraction of native contacts for aligned residues + presence and perturbation of gaps

$$
Q_{H}=\aleph\left[q_{a l n}+q_{g a p}\right]
$$

$$
q_{a l n}=\sum_{i<j-2} \exp \left[-\frac{\left(r_{i j}-r_{i^{\prime} j^{\prime}}\right)^{2}}{2 \sigma_{i j}^{2}}\right]
$$

O'Donoghue \& Luthey-Schulten MMBR 2003.

Structural Similarity Measure the effect of insertions

"Gaps should count as a character but not dominate" C. Woese

$\mathrm{Q}_{\mathrm{H}}=\quad 0.82$

0.70

$$
\begin{aligned}
q_{g a p}= & \sum_{g_{a}} \sum_{j}^{N_{a l n}} \max \left\{\exp \left[-\frac{\left(r_{g_{a} j}-r_{g_{a}^{\prime} j^{\prime}}\right)^{2}}{2 \sigma_{g_{a} j}^{2}}\right], \exp \left[-\frac{\left(r_{g_{a} j}-r_{g_{a}^{\prime \prime} j^{\prime}}\right)^{2}}{2 \sigma_{g_{a} j}^{2}}\right]\right\} \\
& +\sum_{g_{b}} \sum_{j}^{N_{a l n}} \max \left\{\exp \left[-\frac{\left(r_{g_{b} j}-r_{g_{b}^{\prime} j^{\prime}}\right)^{2}}{2 \sigma_{g_{b} j}^{2}}\right], \exp \left[-\frac{\left(r_{g_{b} j}-r_{g_{b}^{\prime \prime} j^{\prime}}\right)^{2}}{2 \sigma_{g_{b} j}^{2}}\right]\right\}
\end{aligned}
$$

Protein structure encodes evolutionary information

sequence-based phylogeny

structure-based phylogeny

Db - AspRS bacterial genre

Protein structure reveals distant evolutionary events

Class I AARSs
sequence-structure
overlap

Class I Lysyl-tRNA Synthetase

Class II AARSs

Class II Lysyl-tRNA Synthetase

Sequences define more recent evolutionary events

Conformational changes
in the same protein.

Structures for two different species.

ProRS
M. jannaschii, 2.55 A.
M. thermoautotrophicus, 3.20 A.
$\mathrm{Q}_{\mathrm{H}}=0.89$
Sequence identity $=0.69$

Non-redundant Representative Sets

Numerical Encoding of Proteins in a Multiple Alignment

Encoding Structure

```
Rotated Cartesian + Gap = 4-space
```

Aligned position $\quad\left(x_{C_{\alpha}}, y_{C_{\alpha}}, z_{C_{\alpha}}, 0\right)$

Gapped position $\quad(0,0,0, g)$

Sequence Space
Orthogonal Encoding $=24$-space
23 amino acids ($20+\mathrm{B}, \mathrm{X}, \mathrm{Z}$) + gap
$\mathrm{A}=(1,0)$
$B=(0,1,0)$
$\mathrm{C}=(0,0,1,0)$

Gap Scaling

$$
g=k X X\left\|_{F_{4}}+\right\| Y\left\|_{F_{4}}+\right\| Z \|_{F_{4}}
$$

$$
\underset{\text { GAP }}{ }=(0,1)
$$

adjustable
parameter

Alignment is a Matrix with Linearly Dependent Columns

Class I AARSs evolutionary events

5 Subclasses

Specificity - 11 Amino acids

Domain of life A,B,E

Profile of the ILMV Subclass

Evolutionary Profiles for Homology Recognition AARS Subclass ILMV

Pfam profile composition Le $\times 0$

La $\times 0$
Lb $\times 3$
Ib $\times 4$
Ia $\times 1$
Ie $\times 4$
$\mathrm{Vb} \times 7$
Va $\times 0$
Max 1
$\mathrm{Mb} \times 0$

The composition of the profile matters. Choosing the right 10 sequence makes all the difference.
A. Sethi, P. O’Donoghue, Z. Luthey-Schulten (2005) JMB, PNAS

Genome Annotation

M.jannaschii genome was completely sequenced in 1996. Genome had four missing AARSs:

```
AsnRS
LysRS Class I AARS
CysRS ?
```

Cysteinyl-tRNA(Cys) formation in Methanocaldococcus jannaschii: the mechanism is still unknown. J. Bacteriology, Jan. 2004, 186:8-14.
Ruan B, Nakano H, Tanaka M, Mills JA, DeVito JA, Min B, Low KB, Battista JR, and Söll D.

Cysteine Biosynthesis in Methanocaldococcus jannaschii

Sauerwald et al. Science 2005

Evolutionary profile for HisA-HisF family

EP outperforms popular profile methods with an economy of information.

Economy of Information

How many sequences are needed for profiles?

Fold versus Superfamily hits

A. Sethi, P. O'Donoghue, ZLS, PNAS 102, 2005

Phylogenetic relationship between TIM barrels

Found in database search with HisA-HisF profile

Evolution of Structure and Function in AspRS

Unifying the Worlds of Sequence and Structure

Chicago 2005

Multiseq in VMD : Merging the sequence and structure worlds

Version 1.83

2006 MultiSeq: New Features

Analyze the Evolution of Sequence and Structure

List of New Features in Multiseq

1. INPUT: Sequences and structures of proteins and nucleic acids from file or Blast searches of specialized databases:

Structural (PDB, SCOP, ASTRAL, NDB, VIPER..) Sequence (NCBI, ASTRAL, modified tRNA, Viral) Sequence Editor and Electronic Notebook
2. TOOLS:

Alignments (STAMP, CLUSTAL, TCoffee)
Database Searches - BLAST and VMD/Multiple DB searches
QR reduction, Phylogenetic tree - UPGMA, NJ
Conservation Mappings, RMSD plots
Covariance and Coordination Analysis

Acknowledgements

Patrick O'Donoghue

Anurag Sethi

Rommie Amaro
Felix Autenrieth
Alexis Black
John Eargle
Corey Hardin
Taras Pogorelov

Elijah Roberts

Dan Wright

Graphics Programmers VMD
Elijah Roberts, Dan Wright, John Eargle
John Stone
Collaborators
Evolutionary Studies
Gary Olsen, Carl Woese (UIUC)
QR Algorithms
Mike Heath (UIUC)
Protein Structure Prediction
Peter Wolynes, Jose Onuchic (UCSD)
Ken Suslick (UIUC)

Funding
NSF, NIH

Demonstration of New Multiseq Features

1. AspRS structures: STAMP multiple structure alignment. Color by structure (Qpair) and and sequence conservation. Tcl script - seq ID and Sec. Str. Information in beta field.
2. Sequence Editor and Electronic Notebook
3. AspRS Sequences (from BLAST database search): Automated grouping by domains of life. Sequence conservation by domain of life. Mapping of sequence and structure information onto structures. CLUSTAL alignment to structural profile.
4. Phylogenetic trees of structure and sequences: HGT and QR algorithm for sequences. Evolutionary profiles

5. Show distance matrix for NJ/UPGMA for small number 3-4 sequences.Give algebraic equations needed for NJ .
6. MP/ML trees: Animate through several tree topologies generated by paup to describe the search through tree space.

Maximum Parsimony
 Fitch optimization

Assign characters to the ancestral nodes and calculate the number of steps (sequence changes) required by a data set on a given tree.
"Downpass" algorithm traces back through the tree from leaves to root.
If decendent characters intersect
add 0 to total length.
If descendent characters do not intersect,
their union set is assigned to the

