NAMD TUTORIAL

NAMD Developer: James Phillips

Timothy Isgro James Phillips Marcos Sotomayor Elizabeth Villa

Files needed:

structure mypsf.psf coordinates mypdb.pdb

Define temperature

set temperature 310
;# target temperature used several times below

Starting simulation with random velocities

starting from scratch
temperature \$temperature
;# initialize velocities randomly

Continuing a simulation with positions and velocities from previous run

```
# continuing a run
set inputname my
binCoordinates $i
binVelocities $i
extendedSystem $in
firsttimestep 50
numsteps 10
```

myinput \$inputname.coor \$inputname.vel \$inputname.xsc 50000 100000

```
;# only need to edit this in one place!
;# coordinates from last run (binary)
;# velocities from last run (binary)
;# cell dimensions from last run
;# last step of previous run
;# run stops when this step is reached
```

Organizing output

outputName	myoutp	put	
;# ba	ase name for	output from this run	
restartfreq	500	;# 500 steps = every 1ps	5
dcdfreq	500		
xstFreq	500		
outputEnergies	100	;# 100 steps = every 0.2 pa	S
outputTiming	1000		
;# sł	nows time per	r step and time to completio	on

Force-Field Parameters paraTypeCharmm on parameters par_all27_prot_lipid.inp 12A cutoff is official standard for # These are specified by CHARMM exclude scaled1-4 CHARMM forcefield but smaller is 1-4scaling 1.0 OK when using full electrostatics switching on. # You have some freedom choosing the cutoff 12. ;# may use smaller, maybe 10., with PME cutoff 10. ;# cutoff - 2. switchdist # Promise that atom won't move more than 2A in a cycle pairlistdist 14. :# cutoff + 2. stepspercycle ;# redo pairlists every ten steps 10 Energy drifts if too large, but # Integrator Parameters smaller requires more steps per ns. 2.0 :# 2fs/step timestep rigidBonds all ;# needed for 2fs steps nonbondedFreq ;# nonbonded forces every step 1 fullElectFrequency 2 ;# PME only every other step

Underlying Langevin equation for all atoms

$$m_i \frac{d^2 x_i(t)}{dt^2} = F_{i,\text{ff}} - \gamma m_i \frac{d x_i(t)}{dt} + R_i(t)$$
$$\langle R_i(t) R_i(t') \rangle = 2k_B T_{\text{target}} \gamma_i \delta(t - t')$$

Using periodic boundary conditions (avoids surface effects; permits Particle-Mesh-Ewald (PME) electrostatics; permits pressure control)

# Periodic Boundary	condit	cions			
cellBasisVector1	31.2	0.	0.	;#	vector to the next image
cellBasisVector2	Ο.	44.8	0.		
cellBasisVector3	Ο.	0	51.3		
cellOrigin	0.	0.	0.	;#	the *center* of the cell
wrapWater	on			;#	wrap water to central cell
wrapAll	on			;#	wrap other molecules too
wrapNearest	off			;#	use for non-rectangular cells

Particle-Mesh-Ewald electrostatics (avoids cut-off of long-range Coulomb forces)

#PME (for full-system periodic electrostatics)
PME yes
PMEGridSizeX 32 ;# 2^5, close to 31.2
PMEGridSizeY 45 ;# 3^2 * 5, close to 44.8
PMEGridSizeZ 54 ;# 2 * 3^3, close to 51.3

Pressure Control

Constant Pressure Control (variable volume) useGroupPressure yes ;# needed for rigid bonds useFlexibleCell ;# no for water box, yes for membrane no useConstantArea ;# no for water box, maybe for membrane no langevinPiston on langevinPistonTarget 1.01325 ;# pressure in bar -> 1 atm ;# oscillation period around 100 fs langevinPistonPeriod 100. langevinPistonDecay 50. ;# oscillation decay time of 50 fs langevinPistonTemp \$temperature ;# coupled to heat bath

Underlying Langevin-Hoover barostat equation for all atoms

$$\frac{d^2 V(t)}{dt^2} = -\frac{1}{W_{bs}} \left[P(t) - P_{\text{target}} \right] - \frac{1}{\tau_{\text{bs}}} \frac{dV(t)}{dt} + R_{\text{bs}}(t)$$
$$P = \rho k_B T + \frac{1}{Vd} \sum_{i < j} \langle r_{ij} \frac{dU_{tot}(r_{ij})}{dr_{ij}} \rangle \qquad d = \text{dimension}$$

 $\langle R_{\rm bs}(t) R_{\rm bs}(t') \rangle = \frac{2 \, k_{\rm B} \, T_{\rm target} \, \delta(t - t')}{W_{\rm bs} \, \tau_{\rm bs}} \qquad W_{\rm bs} = d \, N_{\rm atoms} \, k_{\rm B} T_{\rm target} \, \tau_{period}^2$

Pressure Control

Constant Pressure Control (variable volume) useGroupPressure yes ;# needed for rigid bonds useFlexibleCell ;# no for water box, yes for membrane no useConstantArea ;# no for water box, maybe for membrane no langevinPiston on langevinPistonTarget 1.01325 ;# pressure in bar -> 1 atm langevinPistonPeriod 100. ;# oscillation period around 100 fs langevinPistonDecay 50. ;# oscillation decay time of 50 fs langevinPistonTemp \$temperature ;# coupled to heat bath

Underlying Langevin-Hoover barostat equation for all atoms: Equations solved numerically in NAMD

$$\dot{\mathbf{r}}_{i} = \mathbf{v}_{i} + s\mathbf{r}_{i} \qquad \dot{\mathbf{v}}_{i} = \mathbf{F}_{i} / m_{i} - s\mathbf{v}_{i}$$
$$\dot{V} = dVs \qquad \dot{s} = dV(P - P_{\text{target}}) / W - s / \tau_{\text{bs}} + R(t)$$
$$d - \text{dimension}$$

Fix atoms

fixedAtoms	on	
fixedAtomsFile	myfixedatoms.pdb	;# flags are in this file
fixedAtomsCol	В	;# set beta non-zero to fix an atom

Energy-minimize structure (T=0), reset temperature T, run:

minimize 1000 ;# lower potential energy for 1000 steps
reinitvels \$temperature ;# since minimization zeros velocities
run 50000 ;# 100ps

The NAMD Output File / 1

Preamble

Info: NAMD 2.5b2ss03 for Linux-i686-Clustermatic Info: Info: Please visit http://www.ks.uiuc.edu/Research/namd/ Info: and send feedback or bug reports to namd@ks.uiuc.edu Info: Info: Please cite Kale et al., J. Comp. Phys. 151:283-312 (1999) Info: in all publications reporting results obtained with NAMD. Info: Info: Built Fri May 30 13:09:06 CDT 2003 by jim on umbriel Info: Sending usage information to NAMD developers via UDP. Info: Sent data is: 1 NAMD 2.5b2ss03 Linux-i686-Clustermatic 47 umbriel jim Info: Running on 47 processors.

The NAMD Output File / 2

Energies

ETITLE:	TS	BOND	ANGLE	DIHED	IMPRP
	ELECT	VDW	BOUNDARY	MISC	KINETIC
	TOTAL	TEMP	TOTAL2	TOTAL3	TEMPAVG
1	PRESSURE	GPRESSURE	VOLUME	PRESSAVG	GPRESSAVG
ENERGY:	1000	0.0000	0.0000	0.0000	0.0000
-970	022.1848	9595.3175	0.0000	0.0000	14319.5268
-73:	107.3405	300.2464	-73076.6148	-73084.1411	297.7598
-6	626.5205	-636.6638	240716.1374	-616.5673	-616.6619

The NAMD Output File / 1

Writing out trajectories

OPENING COORDINATE DCD FILE WRITING COORDINATES TO DCD FILE AT STEP 1000

Performance information

Info: Benchmark time: 47 CPUs 0.0475851 s/step 0.275377 days/ns 13540 kB memory

TIMING: 1000 CPU: 18.35, 0.01831/step Wall: 50.1581, 0.0499508/step, 6.92374 hours remaining, 14244 kB of memory in use.

Warnings

Warning: Pairlistdist is too small for 1 patches during timestep 17. Warning: Pairlists partially disabled; reduced performance likely. Warning: 20 pairlist warnings since previous energy output.

The NAMD Experience / 1

You will first simulate ubiquitin in a water sphere and water box:

Generating a Protein Structure File (PSF)

- Go to 1-1-build directory
- Open VMD, choose extension TkCon
- Make from 1UBQ.pdb a structure without hydrogens, ubqp.pdb
- Create psf file for ubqp.pdb: ubq.pdb and ubq.psf
- Check if files exist

Solvate the protein in a water sphere (from VMD)

Solvate the protein in a water box (from VMD)

The NAMD Experience / 2

- RMSD value for equilibration
- Atomic RMSD values of equilibrated protein
- Velocity distribution
- Temperature distribution
- Specific heat
- Diffusion of whole protein
- Heat diffusion
- Temperature Echoes