4. Kohonen’s Network Model

This chapter describes Kohonen’s network model. We will dis-
cuss how the cells of a neuron layer coordinate their sensitivity
to sensory signals in such a way that their response properties
to signal features vary in a regular fashion with their position
in the layer, an organization observed in many parts of the
brain. After some neurophysiological background information,
a mathematical formulation of the model will be presented.
Simulations will give a first impression of the main features
of the model.

4.1. Neurophysiological Background

The model employs a neuron layer A, usually assumed to be
a two-dimensional sheet. This layer is innervated by d input
fibers (axons), which carry the input signal and excite or inhibit
the neurons of the layer via synaptic connections, as illustrated
schematically in Fig. 4.1. In the following, we consider condi-
tions under which the excitation of the neurons is restricted to
a spatially localized region in the layer. The location of this
region is then determined by those neurons that respond most
intensively to the given stimulus. The neuron layer acts as a to-
pographic feature map, if the location of the most strongly excited
neurons is correlated in a regular and continuous fashion with
a restricted number of signal features of interest. Neighboring
excited locations in the layer then correspond to stimuli with
similar features. Of course, a single layer can only make a few
important features visible in this way. In the simplest case,
we may be dealing with the stimulus position on a sensory
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Figure 4.1 Schematic representation of the neuron layer in Kohonen’s model.
The nerve fibers running horizontally provide the input signal (“stimulus”)
and excite the layer neurons via synaptic connections. Lateral interactions
between the neurons constrain the reaction to a spatially bounded “excitation
zone.” The layer acts as a “topographical feature map” if the position s of
the excitation zone varies in a continuous way with the presence of stimulus
features of interest.

surface, such as the retina or the body’s outer surface; simple
examples of more abstract features are pitch and intensity of
sound signals.

We now describe the principles which enable the formation
of such topographic feature maps in Kohonen’s model by means
of a self-organizing process. An incoming signal v is given
by the average activities v; of the individual incoming fibers
I =1,2,... . We identify the neurons of the layer by their
two-dimensional position vectors r € A, with A being a two-
dimensional grid. Every neuron r forms in its dendritic tree
a weighted sum };wyv of the incoming activities v;, where
wy expresses the “strength” of the synapse between axon ! and
neuron r. Here, wy is positive for an excitatory synapse and
negative for an inhibitory synapse. The resulting excitation of
an isolated neuron r is described by its average spike frequency
£2. Usually, a relation

fev) =0 | X wr -6 (56)
l

is assumed for f. Here, o(z) is a “sigmoid” function, increasing
monotonically with z, with a qualitative behavior as shown
in Fig. 3.10. In particular, o(x) tends asymptotically to the
saturation values 0 or 1 for z — +oo. The quantity 6 acts as an
excitation threshold, below which the neuron responds weakly.



In addition to the coupling to the input fibers, the neurons
are connected to each other via synapses. Thus, the layer has
internal feedback. If one designates by g, the coupling strength
from neuron r’ to neuron r, any excitation f. of neuron r'
provides a contribution g, f,+ to the total input signal of neuron
r. The contributions of all neurons r' in the layer are additively
superimposed onto the external input signal Y;w,;v;. In the
stationary case, the neuron activities f; are thus the solution of
the nonlinear system of equations

fr=o (Z WpiV] + Y Gyt i — 0) . (57)
{ r

Frequently, the feedback accounted for by g,.s is due to excita-
tory synapses (g,,» > 0) at small distances |r —r'|| and inhibitory
synapses (g, < 0) at larger distances ||r — r'||. It can be shown
that the effect of such “center-surround” organisation of synap-
tic interactions on the solutions of (57) consists in the formation
of excitatory responses that are confined to a neighborhood
around the neuron receiving maximal external excitation. In
the following, we will not prove this in general, but we would
like to demonstrate it using a simplified version of (57).

To this end, we consider the limiting case when the “sigmoid
function” o(z) approximates a step function 6(z) (as defined in
Section 3.1). Further, we restrict ourselves to a one-dimensional
system without an external input signal (i.e.,, v; = 0) and with
thresholds § = 0. We assume for g,» the function

1 iflr=r|<a,
Gppt = { lT i I - (58)
—g else.

Here, we assume g > 2a + 1, i.e., neurons at distances exceeding
a act inhibitory, while neurons closer than a act excitatory; the
strength of the inhibition is given by the value of g. Defining
the quantities

M=} fr, (59)
s+a ’
ms= Yy fr, ~ (60)
we see that (57) becomes
r4a
fr=0(+g X fr—92fw), 61)

r'=r—a r!
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or, by using the property 6(gz) = 6(z) which holds for g > 0,
fr=0(11 + g7 m, — M). (62)

Because of the §-function, every neuron can be in only one of the
two states fr = 0 or f, = 1. Equation (62), together with (59) and
(60) represents a system of equations for the neuron activities f;.
We now show that, as a consequence of the “center-surround”
organization of the lateral interactions, (62) only has solutions
in which the total excitation is concentrated within a single,
connected “cluster” of a + 1 consecutive neurons with f, = 1.
All of the neurons outside of this cluster are in the quiescent
state (f, = 0). To this end, we first prove the following lemma:

Lemma: If the quantities fr constitute a solution of (62), and if
g > 2a+ 1, then f. =1 always implies fs =0 forall s >r+a
and all s < r —a.

Proof: From (62) it follows because of f. =1 that the inequality
mr+g ~lm, > M is satisfied. From the definitions (59) and (60)
one also has m, < M, and together ‘

2a 41

mr§M<mr+%§mr+ <mp+1.
Since M and all the m, are integers, one has M = m, and, thus,
the lemma is proven.

The lemma implies that two active neurons r, s can never be
located more than a positions apart (jr — s| < a). From this, it
follows that M < a+1, i.e., at most ¢ + 1 neurons can be excited
at the same time. If s is the leftmost of these neurons, then it
follows for each of the a neurons r € [s,s + q] ad]acent to s on
the right

r+a
L+g me~M=[1+g7" > fu-M

r'=r—a
=[1+¢71] i fo—M
r

r'=s—a

=14 ¢ YYms — M > 0. (63)

Here, the shift of the limits of summation in the next to last step
is based on the vanishing of all the f,» for ' < s and r' > s +a.
For each of the a+1 neurons r = s,s+1,...,s+a, (63) yields then
fr =1, and since M < a+1 all the remaining neurons satisfy



fr = 0. Every solution of (62) therefore consists of a cluster of
a + 1 adjacent excited neurons.

Similarly, in higher dimension, a sufficiently strong lateral
inhibition also leads to the production of a spatially localized
excitatory response. In the case of a continuous sigmoid func-
tion o(.), the spatial behavior of the excitation is no longer that
of a step function, but rather takes a maximum at a position r'
and from there decreases to zero in all directions. The location
r' of the excitatory center is dependent on the input signal v,
(not taken into account in the above derivation). We pay special
attention to this position r/, since by mapping every input signal
to a position r/, the layer provides the desired map of the space
of input signals. One could obtain r’ by solving the nonlinear
system of equations (57). Instead of this tedious step, Kohonen
suggests an approximation for r’, replacing it with the position
of maximum excitation on the basis of the external signal v; alone,
ie., r' is determined from

> wpup = max > weuy. (64)
{ l

Under the two assumptions that the “total synaptic strength”
per neuron /3, wzl, is constant and the same for every neuron,
and that all of the input signals v have the same “intensity”
|lv|| = 1, the condition

”Wr’ - v|| = mlin ”Wl‘ - v, (65)

which often is more convenient from a mathematical point of

view, yields the same result for r'. Here, ||x| indicates the

Euclidean vector norm /Y 27, and vector wy = (wyi, ..., weg)T
is a compact notation for the synaptic strengths of neuron r.
Thus, we now see how the map is related to the synaptic
strengths w,;. An input signal v is mapped to the position r’
implicitly defined by (65). For fixed synaptic strengths, (65)
defines a nonlinear projection of the space of input signals onto
the two-dimensional layer. In the following, we will use the

notation
bw Vo1 = dw(V) (66)

N

to refer to this mapping. The index w shall remind us of the
mapping’s dependence on the synaptic strengths of all neurons.

This leads to the second important issue, the determination
of synaptic strengths w providing “useful” maps. In the nervous
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systems of higher animals, a detailed genetic specification of
all synaptic strengths is not possible. This specification would
require an exact knowledge of the way input signals are coded,
a condition which even for technical applications, for example
due to tolerances, is difficult to satisfy. Moreover, a system with
fixed values wy; could not respond to subsequent changes of
the coding, e.g., due to drift or aging processes; this obviously
would contradict the high capacity for adaptation of biological

- systems. Apparently, such flexibility requires that the neurons

be able to find suitable synaptic strengths, starting from arbi-
trary or only roughly correct initial settings.

In the present model, the only source of information for
this process is assumed to be a sequence of input stimuli enter-
ing the layer, occurring randomly according to some statistical
probability distribution. Each stimulus causes at synapse wyy
the coincidence of a presynaptic activity v; and the resulting
postsynaptic activity of neuron r. The postsynaptic activity of
neuron r is just the value of the excitatory response of the layer
at the position r. Its magnitude includes all interaction effects
within the layer and should be computed from (57). Kohonen'’s
model now makes the simplifying assumption that this response
can be written as a function A, of two position variables r
and r/, whose “shape” (with respect to variation of r) is fixed,
but whose position (denoted by the second variable r') depends
on the stimulus. Specifically, the position r’ is taken to be the
position of the excitation maximum, i.e., v’ is defined by (64) or
(65), and r is the location of the neurons whose response is to
be described by h,,s. The model then prescribes for the change
of synaptic strengths w,; the expression

Awyp = €(hppv) — hprwyy). (67)

The first term corresponds to the “Hebbian learning rule” men-
tioned earlier, according to which a synapse is strengthened
in the case of correlated pre- and postsynaptic activity. The
second term is a decay term for the synaptic strengths, which
is proportional to the postsynaptic activity. The relative scaling
between the first term and the second (decay) term is normal-
ized to unity by appropriate scaling of v. Here, ¢ determines
the size of a single adaptation step (0 < € < 1). If ¢ is chosen
to be a function ¢(t), decreasing gradually with the number ¢ of
learning steps from large initial values to small final values, then
at the beginning the system is rapidly able to learn coarsely the



correct synaptic strengths. However, for large ¢, the fluctuation
of the map caused by each learning step is also large. Hence,
if the map is to stabilize asymptotically in an equilibrium state,
one must let e decrease to zero. On the other hand, a permanent
“residual plasticity” can be realized with low fluctuations of the
map by means of a small, nonvanishing final value for e.

Based on (67), every synaptic change is limited to a neigh-
borhood zone about the excitation center. In this zone, the
synaptic connections are changed such that a subsequent re-
occurrence of the same or a similar stimulus will lead to an
increased excitation. The shape of the function %, controls
the size of the neighborhood zone and, thus, of the number of
neurons affected by a single adaptation step.

4.2. Simplification and Mathematical
Definition

The precise form of the excitatory response h . appears not
to be critical for the qualitative behavior of the system under
the learning rule (67) and could only be obtained by numerical
solution of (57). Hence, in the present model, the exact solution
is only approximated qualitatively by means of a given choice
of hp. To this end, for kv > 0 a unimodal function depending
only on the distance r — r’ with its maximum at r = r’ and ap-
proaching zero for large distances is assumed. An appropriate
choice is given by the Gaussian

hyp = exp(—(r —1')?/20%). (68)

The radius o of this excitatory function determines the length
scale on which the input stimuli cause corrections to the map.
As a rule, it is better if the coarse structure of the map is
allowed to form first, before the fine structure is incorporated
into the map. This is made possible by choosing o to be a
function o(t) starting with a rather large initial value ¢(0) and
decreasing slowly with the number of learning steps toward a
small final value. This can be interpreted as gradually increasing
the “selectivity” of the individual neurons in the course of the
learning process.

Each learning step requires the arrival of an input stimulus
v. For the model, these input stimuli are treated as independent
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random variables from a vector space V, and their occurrence
is determined by a probability density P(v).

A final simplification is that the neuron positions r are taken
to be the points of a discrete periodic lattice A.

Thus, Kohonen’s model can be described by the following
algorithm (Kohonen 1982a, 1984a):

0. Initialization: Start with appropriate initial values for the
synaptic strengths w,;. In the absence of any a priori
information, the w,; can be chosen at random.

1. Choice of Stimulus: Choose, according to the probability
density P(v), a random vector v representing a “sensory
signal.”

2. Response: Determine the corresponding “excitation center”
r’ from the condition

v — Wy < ||v—we|]| forallre A (69)

3. Adaptation Step: Carry out a “learning step” by changing
the synaptic strengths according to

wieW = wold 4 eh (v — wild) (70)

and continue with step 1.

The mapping
dw:V i A VEV - dw(v) €4, 71)
where ¢ (v) is defined through the condition
W) = VIl = min [we — v]| 72

which constitutes the neural map of the input signal space V
onto the lattice A which is formed as a consequence of iterating
steps 1.-3.

To illustrate this algorithm, the relationships are schemati-
cally shown again in Fig. 4.2. The ensemble of all possible input
values forms the shaded manifold V, from which a point v is
chosen as “stimulus” for the network in step 1. This leads to
a selection (step 2) of an excitation center s among the neurons
(lattice A). All neurons in the neighborhood of this center (high-
lighted) participate in the subsequent adaptation (step 3). It
consists in a “shift” of the vectors wy towards v. The magnitude



Figure 4.2 The adaptation step in Kohonen’s model. The input value v
selects a center s in whose neighborhood all neurons shift their weight vectors
wg towards the input v. The magnitude of the shift decreases as the distance
of a unit from the center s increases. In the figure, this magnitude is indicated
by different sizes and gray values. The shift of weights is only depicted, though,
for unit s.

of this shift is fixed by the learning step size ¢ and by the
function Aps.

Mathematically, the algorithm represents a so-called Markov
process. A Markov process is defined by a set of states and a
set of transition probabilities between states. These transition
probabilities determine a stochastic process that, given some
initial state, produces a sequence of states. This sequence is
obtained by using the transition probabilities from the current
state to choose a successor, which then becomes the current state
for the next step (for a thorough discussion of Markov processes
see for example Gardiner 1985 or van Kampen 1981).

In the present model, each possible state is given by a set
of values for all the synaptic strengths w = (Wr;, Wiy, ..., Wry)
in the system (/V denotes the number of neurons). The function
éw associates with each such state a mapping that, as we have
discussed, has the interpretation of a “neural map” of some
feature space. The update of a state w is obtained as a result of
applying (70), i.e., the decision for the update is caused by the



72 Kohonen’s Network Model

input stimulus v € V. Each update represents a “learning step”
and can be thought of as a local “distortion” of the associated
“neural map.” Beginning with an initial state that corresponds
to a completely disordered map, the goal of the algorithm is
to arrive at a state (more precisely, the system shall enter a
subset of its state space comprising states differing only by small
“statistical fluctuations”, see Chapter 14) that corresponds to
an ordered, “topology-conserving map” of the stimulus space
V, in which some relevant features of input stimuli are two-
dimensionally (in the case of a neural sheet) represented. In
order to reach such state and make it stationary asymptotically,
the learning step length ¢ must slowly tend to zero.

The training process is qualitatively in good agreement with
observed features of the formation of certain neural projections
in the brain. The resulting maps predominantly represent those
directions of the stimulus space V along which the input stim-
uli change most strongly. These directions, which often cor-
respond to stimulus features of particular interest, may vary
locally within V. Therefore, a good projection requires a non-
linear mapping. Usually, the map tries to maintain the neighbor-
hood relationships between the input stimuli under this map-
ping process. Therefore, Kohonen named the resulting maps
“topology-conserving feature maps.” Furthermore, the map
automatically takes into account the statistical weight P(v) of
the input stimuli. Regions of V from which many input stimuli
occur become “magnified” and are thus projected with better
resolution than regions of less frequently occurring signals. An
appropriate choice for the rate of decrease of ¢ and o with the
number of learning steps is important for good results and rapid
convergence. If the decrease is too rapid, the synaptic strengths
“freeze” before the map has reached an equilibrium state. If the
decrease is too slow, the process takes longer than necessary.

To illustrate the basic properties of this approach, we now
consider a few simulation examples of the process.

4.3. Simulation Examples

In the first example, a neural network creates a map or image
of an unknown region G' with curved boundary. Only indirect -
sensory signals are available to the network. These come from



Figure 4.3 Region G containing the sound
source. The two microphone positions are
marked at the lower boundary of G. The mi-
crophone signals are fed into two logarithmic
amplifiers, whose output signals vy, vy serve
as input for the network.

Figure 4.4 Initial relation between neurons
and points in G. Initially, each neuron is
assigned to a point of G chosen randomly from
the filled quadrant. This assignment ignores
any neighborhood relations. This is evident
from the completely irregular “embedding” of
the lattice in the quadrant.
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Figure 4.5 After 100 learning steps, an as-
signment has already formed which roughly
reproduces the neighborhood relations of
points of G in the lattice. However, the
distribution of “responsibilities” of neurons for
the region G is still very inhomogeneous.

Figure 4.6 After 40,000 learning steps, a
good correspondence between lattice neurons
and points of G has formed. This corresponds
to the choice of curvilinear coordinates, map-
ping the region G onto the square neuron
lattice.
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a source of sound moving around in G. From time to time,
the sound source emits a sound signal (of constant intensity),
and the position in G of each sound emission is random. The
sound signal is received by two microphones, each connected
to an amplifier with logarithmic characteristics (Fig. 4.3). The
two amplifier output signals v;, vy are the “sensory signals,”
and they are fed via two “axons” to the 1600 “neurons” of
a model network.! The “neurons” are arranged in a planar
40x40 lattice. Every single model neuron r is characterized
by a two-component vector wy = (wy1,wr2) € G of “synaptic
strengths.” Each neuron is to adjust its vector w, gradually
in such a way as to become sensitive for a small subset of
input signals v = (vy, vz)T. This subset corresponds to a small
subarea of G within which the moving source may be located.
This subarea constitutes the “receptive field” of the particular
neuron in the “environment” G. The neurons are to coordinate
the formation of their receptive fields in such a way that —
in the manner of a topographic map — the arrangement of
neurons in the lattice reflects the arrangement of their respective
receptive fields in the environment. This is achieved if each
point of the region G corresponds to a point in the neural lattice
such that the neighborhood relation between points is preserved
under the correspondence, i.e., the network becomes associated
with a “continuous” image of G. This correspondence gives
a simple example of a sensory map or sensory image of an
environment, here the region in front of the two microphones.
Similar “auditive maps” occur in the brain. However, this simu-
lation example is only intended to serve as an illustration of the
algorithm and makes no claim of corresponding to any brain
map.

In Figs. 4.4-4.6, the evolution of the assignment of neurons to
positions is shown in detail. For each neuron r € A, the location
(z,y) of its receptive field in G has been marked, as assigned by
the map. Marked locations are connected by a line if their cor-
responding neurons are adjacent on the lattice. (Thus, in place
of the image itself, the embedding of the lattice A in G is shown,

t In the computer simulation, sound source, microphone, and amplifier are represented as
follows: if the sound source is at the position (z,y), the output signals v; and vz of the two

amplifiers are given by
v= (1) _ (—log[(x—a)2+y21
v ~logl(z +a)? +4°] )

where 2a is the separation of the microphones.



from which the map can be obtained as its inverse.) Initially, the
assignment is completely random, and there is no agreement
between the arrangement of neurons and the corresponding
locations (Fig. 4.4). After only a few signals, the coarse structure
of the assignment has been found (Fig. 4.5), until finally after
40,000 sound signals a good assignment is achieved (Fig. 4.6).
In this case, the algorithm has automatically found a nonlinear
coordinate transformation mapping the region G' with curved
boundary onto a square lattice A. The resulting coordinate
transformation takes the frequency distribution of the arriv-
ing signals into account, as illustrated in the simulation result
shown in Fig. 4.7. Instead of a homogeneous distribution of
source locations, the signals from the indicated circular region in
G were now emitted with a three times higher probability than
in the remaining part of G. Within both regions the probability
density was constant. In all other respects the simulation was
identical to that presented in Fig. 44-4.6. As a consequence
of the inhomogeneous stimulus distribution, substantially more
neurons are assigned to positions in the circular region. This
corresponds to a higher resolution of the map for this part of G,
which is a desirable result, since a concentration of assignments
within regions where signals frequently occur leads to a more
efficient use of the network.

However, the frequency with which a signal occurs is not
always an indication of its importance. Varying importance of
signals can also be taken into account by regulating the plasticity
of the network. For example, one can adjust the size of a
learning step according to an a priori importance attributed to
the signals. This increases the “attentiveness” of the network
for signals deemed more important and has the same effect as
correspondingly more frequent occurrence. This is illustrated in
Fig. 4.8, which shows the result of a simulation with sound emis-
sion probability again uniform throughout all of G. However,
in contrast to Fig. 4.4-4.6, the network reacted to every sound
event from within the circle with an adaptation step that was
three times larger than for a sound event from the remaining
part of G. The result thus obtained is practically identical to
that of Fig. 4.7.

In the example presented, the space of stimuli G is mapped
onto a lattice A of the same dimensionality. If the space of stim-
uli possesses a higher dimensionality, the map tries to project
the higher-dimensional space as faithfully as possible by means
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Figure 4.7 Result of the same simulation as
in Fig. 4.6, except that within the circular
region marked by dots signals were emitted
with a three times higher probability than in
the remaining region of G. In this case, more
neurons code positions in the circular region.
This corresponds to a higher resolution of the
map created for this region.

Figure 4.8 The same effect as in Fig. 4.7
can be achieved by a signal-dependent ad-
justment of the plasticity of the neurons. In
this simulation, the sound signals were again
emitted as in Fig. 4.4-4.6 with a homogeneous
probability everywhere in G, but the learning
step size € was increased by a factor of three
if the sound source was located in the circular
region.

of an appropriate “convolution.” To illustrate this behavior, we
consider a one-dimensional neural “net,” i.e., a neuron chain.
For the input signal, we take a random sequence of two-dimen-
sional vectors v, whose values are homogeneously distributed
in the unit square. For h,s, we choose the Gaussian (68) with
o(t) = 100 - (0.01)10_5t. The correspondence between neurons
and points of the square is again represented as an embed-
ding of the neuron chain into the square, as in the previous
example. This assignment is initially made at random as shown
in Fig. 4.9a. After 200 iterations, the curve has attained a U-
shaped configuration (Fig. 4.9b). At this time, the range o of the
function A, is still large and, hence, structure has formed only
at this length scale. As o decreases further, structures gradually
form at shorter length scales as well (Fig. 4.9¢c, 50,000 iterations).
Eventually, after 100,000 iteration steps, the hierarchically con-
voluted graph of Fig. 4.9d has emerged. The network thus tries
to fill the two-dimensional region while reproducing the neigh-
borhood relations as well as possible. The degree of success is
evident from the similarity of the curve created in this way to
the finite approximation of a so-called “Peano curve.” This is an



Figure 4.9 Mapping between a “neural” chain and a squared stimulus space. From top left to
bottom right: a) randomly chosen initial assignment; b) coarse assignment after 200 Markov steps;
c) after 50,000 Markov steps; d) assignment obtained after 100,000 Markov steps resembling a
“Peano curve.”

infinitely, recursively convoluted fractal curve representing the
solution of the problem of mapping a one-dimensional interval
continuously onto a two-dimensional surface.

However, as a rule one is interested in mapping of higher-
dimensional regions onto a two-dimensional image. Indeed, Ko-
honen used the procedure successfully to map spectra of differ-
ent speech sounds (phonemes) to separate map positions. Here,
the tonal similarity relations between the individual phonemes
are translated into locational relations in the image. This con-
stitutes a very important preprocessing step for the problem of
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artificial speech recognition. The subsequent steps require the
analysis of transitions between individual phonemes, i.e., of time
sequences. The possibility of employing the procedure also for
such purposes shall be indicated in the following concluding
example. At the same time, this example will clarify how in the
course of the formation of a map hierarchic relations can also
be represented.

The source of the signal is a Markov process (here used as
a simple model of a temporal signal and to be distinguished
from the learning algorithm itself) with 10 states. The aim is
to create a map of the possible transitions between states of
the process. Transitions to the same successor state are to be
adjacent in the map. A state i, ¢ = 0,...,9, is assumed to
have one of the five states 1 — 3, 1 —2, ¢ — 1, ¢ + 1 or ¢ 4 2
(modulo 10) as a possible successor. A transition from state i to
state j is coded by a 20-component vector v with components
vk = 6k; + 6 j+10- A transition occurs at each time step, and
all transition probabilities have the same value 0.2. A lattice
consisting of 20x20 neurons is used, and the Gaussian (68) is
chosen for h,.. The remaining parameter values of the sim-
ulation are o(t) = 5 - 0.2/tmez, ¢(t) = 0.9 - (0.05/0.9)!/¢me= and
tmaz = 5,000 learning steps. Additionally, for the computation
of the distances ||v —w(r)||, a “metric” was used which weights
the differences in the last 10 components of v twice as strongly as
those of the first 10 components. In Fig. 4.10, the 20x20-lattice
of neurons is represented. For each lattice site, two numbers
i,7 € {0,...,9} indicate the initial and final state of the transition
assigned to the respective neuron. The initial distribution was
again chosen randomly. Figure 4.10 shows the map obtained
after 5,000 learning steps. For each of the 50 allowed transitions,
an “island” of neurons responding to this transition has formed,
and the islands are in turn arranged in such a way that islands
corresponding to transitions to the same successor state form a
larger cluster. This corresponds to a hierarchical arrangement
and is a consequence of the described choice of weight, the
successor state obtaining a higher weight than the predecessor
state in the choice of the excitation center. This choice dominates
the formation of the “large-scale” structure of the map, i.e., the
structure on the level of “clusters of islands.” This illustrates
that, by an appropriate choice of metric (the choice of weight
corresponds to a choice of metric), it is possible to arrange for
certain features (here successors) to be grouped together hierar-



64 840434 34 2474 74 74]70 70 70|20 2 20|60 80 W]& &
5464 64 84/24 34/74 74 74]70 70 78|20 20 20(00 o0 w]sr o
70]04 04 0413424 24 24 24]70[10 10 1000 0 0[er @7 |7 &
78 76 70[46[24 24 24 24 24]10 10 10 10|00 0 0o|er o7 &y
76 76 70 00 bo[oe]2¢ 24[12 12 12]10 10|00 00 oler &7 [ &7
%0[78/00 00 8 sofoefn2[12 12 12 13]@ |w @ @ @|w &
90 80[00 |80 oo oofs2 62 62|12[42 2|2 @ @& @ | &
o oofo2 62 52 82(42 42 42|02 02 0207 @ w|er @
™ 83 0352 62 52|42 42 42|02 02 c2fo0]e0]wr[e0 w0
48 48 4853 53 ©3 w3]s2[32 32 322 22 32|20 0 w0 0|00 00
46 40(30]|53 = 53 53 83]a2 22 32 3230 0 30|80 0 #0[00 00
13 13(23 23|83 83 83 83]32 32 32far]30 30 30|80 80 e0[10 10
13 1323 23 23[43 43 43 43]s2f31 31 31]30[20 20 2010 10 10
13 13|23 29 23|43 43 43f41(31 31 31 31]20|20 20 20 20|10 10
83 63 6343 43 43 43f41 41 41]31 31 ;1 21]20 20 20[0e |18 16
63 e3fos[46 46 48[41 41 41 41 4101 01 orfon]oe]0e 0610 18
uwu«uuwn«uﬁx_lmmuo-muauu
06 06 05|45 45 45/75/15]01 91 91]01 01]oe 08 08 |0e 0o oeve
36] 0096 o6 0678 78 78]01 01 0121 21J0s ca[78 78 7808 6o
36 36|96 05 85(78 78 78]01 01{21 21 21[1e]78 78 78 78|08 €8

Figure 4.10 Mapping of the transitions i — j of a Markov process with states
1,5 = 0,...,9 onto a lattice consisting of 20 x 20 neurons. For each lattice
location, the transition to which the corresponding neuron best responds is
indicated as jk. Neurons with the same transition are adjacent to one another
within islands. Islands with the same successor in turn form “clusters.” This
corresponds to a hierarchical distribution of the neuron specificities over the
lattice.

chically in the map. By the inclusion of contextual information,
such a hierarchical grouping can emerge from the data itself. For
example one can create “semantic maps” which arrange words
in hierarchies of meaning. This ordering is gradually found
by the system itself in the course of a learning phase, where
simple English sentences can serve as “training data” (Ritter
and Kohonen 1989).

After this initial overview, we consider in the following
chapters a series of information processing tasks, for which the
choice is motivated by their significance for biological systems.
At the same time, we investigate how self-organizing maps can
be useful in solving such problems. While viewing biological
examples as a guide, we will occasionally consider technical ap-
plications when appropriate. This applies particularly to Chap-
ter 6, which gives a solution to the “traveling salesman problem”
and Chapters 10-13, which are concerned with applications to

robotics.



5. Kohonen’s Network for Modeling
the Auditory Cortex of a Bat

In this chapter we employ Kohonen’s model to simulate the
projection of the space of the ultrasound frequencies onto the
auditory cortex of a bat (Martinetz, Ritter, and Schulten 1988).
The auditory cortex is the area of the cerebrum responsible for
sound analysis (Kandel and Schwartz, 1985). We will compare
the results of the simulation with available measurements from
the cortex of the bat Pteronotus parnelli rubiginosus, as well as
with an analytic calculation.

For each animal species, the size of an area of neural units
responsible for the analysis of a particular sense strongly de-
pends on the importance of that sense for the species. Within
each of those areas the extent of the cortical representation of
each input stimulus depends on the required resolution. For
example, the fine analysis of the visual information of higher
mammals is accomplished in the fovea. The fovea is a very small
area of the retina in the vicinity of the optical axis with a very
high density of rods and cones, the light sensitive receptors in
the eye. The especially high density gives rise to a significantly
higher resolution in this area than in the regions of the retina
responsible for the peripheral part of the visual field. Although
the fovea is only a small part of the total retina, the larger part of
the visual cortex is dedicated to the processing of signals from
the fovea. Similarly nonproportional representations have also
been found in the somatosensory system and in the motor cor-
tex. For example, particularly large areas in the somatosensory
and the motor cortex are assigned to the hand when compared
to the area devoted to the representation of other body surfaces
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5.1. The

or limbs (Woolsey 1958).

In contrast no nonproportional projections have been found
so far in the auditory cortex of higher mammals. The reason
for this is perhaps that the acoustic signals perceived by most
mammals contain a wide spectrum of frequencies; the signal
energy is usually not concentrated in a narrow range of fre-
quencies. The meow of a cat, for example, is made up of many
harmonics of the base tone, and no region of the frequency
spectrum plays any particular function in the cat's survival,
The auditory cortex of cats was thoroughly examined, and the
result was that frequencies, as expected, are mapped onto the
cortex in a linearly increasing arrangement without any regard
for particular frequencies. The high-frequency units lie in the
anterior and the low-frequency units lie in the posterior region
of the cortex. According to available experimental evidence,
the auditory cortex of dogs and monkeys is structured very
similarly (Merzenich et al. 1975). '

Auditory Cortex of a Bat

+ In bats, nonproportional projections have been detected in
the auditory cortex. Due to the use of sonar by these animals,
the acoustic frequency spectrum contains certain intervals which
are more important. Bats utilize a whole range of frequencies
for orientation purposes. They can measure the distances to
objects in their surroundings by the time delay of the echo of
their sonar signals, and they obtain information about the size
of the detected objects by the amplitude of the echo.

In addition, bats are able to determine their flight velocity
relative to other objects by the Doppler shift of the sonar signal
that they transmit. This ability to determine the Doppler shift
has been intensively studied in Pteronotus parnelli rubiginosus, a
bat species which is native to Panama (Suga and Jen 1976). This
species has developed this ability to the extent that it is able
to resolve relative velocities up to 3 cm/s, enabling it to detect
even the beating of the wings of insects, its major source of
nutrition. The transmitted sonar signal consists of a pulse that
lasts about 30 ms at a frequency of 61 kHz. For the analysis of
the Doppler-shifted echoes, this bat employs a special part of its
auditory cortex (Suga and Jen 1976).



The Doppler shift A f of the sonar frequency by an object
moving in the same line with the bat is determined by

Af _ 2vbat _ 2Vobj
fe c c

Here f. is the bat’s sonar frequency, i.e., 61 kHz, v, is the bat’s
velocity, vop; is the object’s flight velocity, and c¢ is the velocity
of sound. The factor of two is due to the fact that both the
transmitted signal and the echo are Doppler shifted. If the bat
knows its own velocity, it can determine v,;; from the Doppler
shift Af.

Excellent sonar capabilities are certainly indispensable for
the bat’s survival. To be able to detect a frequency shift of 0.02%
which corresponds to the stated relative velocity of 3 cm/s,
assuming a sound velocity of 300 m/s, a particularly high res-
olution of frequencies around the sonar frequency is necessary.
Therefore, it would not be surprising if the interval around
61 kHz of the frequency spectrum were disproportionately rep-
resented in the part of the auditory cortex responsible for the
Doppler analysis. Investigations on Pteronotus parnelli rubigi-
nosus indeed support this expectation (Suga and Jen 1976).

Figure 5.1 shows the results of observations by Suga and
Jen (1976). In part B of Fig. 5.1 one can clearly see that the
one-dimensional frequency spectrum essentially extends con-
tinuously and monotonically from the posterior to the anterior
region of the auditory cortex. In addition, one recognizes a
region around the sonar frequency of 61 kHz with a very high
resolution. To emphasize this anomaly, the region shaded in
part A of Fig 5.1 has been displayed separately in part C. This
region corresponds to the frequency interval which is especially
important for the bat and extends monotonically from a mini-
mum frequency of about 20 kHz up to a maximum frequency
of about 100 kHz. The position and best frequency for each
measurement in the shaded region of A is also shown in part
C of Fig. 5.1. As "best frequency” for a neuron, one picks
the frequency that causes the highest excitation of that neuron.
- One clearly sees that the majority of the measured values are
clustered around the sonar frequency, as is expected. Almost
half of the anterior-posterior region is used for the analysis of
the Doppler-shifted signals. This provides the particularly high
resolution of 0.02% which gives the bat its fine navigational and
insect hunting abilities.

(73)
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Figure 5.1 (A) Dorsolateral view of the bat’s cerebrum. The auditory cortex lies within the
inserted rectangle. (B) Distribution of “best frequencies” on the auditory cortex, the rectangle in
(A). (C) Distribution of “best frequencies” along the region shaded in (A) and (B). The distribution
of measured values around 61 kHz has been enlarged (after Suga and Jen 1976).

'5.2. A Model of the Bat’s Auditory Cortex

The development of the projection of the one-dimensional fre-
quency space onto the auditory cortex, with special weighting
of the frequencies around 61 kHz, will now be simulated by
Kohonen’s model of self-organizing maps. For this purpose we
will model the auditory cortex by an array of 5x25 neural units.

The space of input stimuli is the one-dimensional ultrasound
spectrum of the bat’s hearing. In our model this spectrum
will be simulated by a Gaussian distribution of Doppler-shifted
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Figure 5.2 The relative probability density of the input signals versus fre-
quency. Doppler-shifted echoes occur exactly three times as often as signals
from the white background noise.

sonar echoes on top of a white background noise. The back-
ground noise in the range from 20 to 100 kHz depicts signals
from external ultrasound sources. In addition, there is a peak
near 61 kHz which consists of the echoes from objects moving
relative to the bat. We describe this peak of Doppler-shifted
sonar signals by a Gaussian distribution centered at 61 kHz with
a width of 0»=0.5 kHz. This corresponds to a root mean square
speed difference of the sonar-detected objects of about 2 m/s.
Doppler-shifted sonar signals occur in our model three times as
often as signals from the white background noise. Figure 5.2
shows the weighted probability distribution.

Initially, a random frequency is assigned to each model neu-
ron of our model cortex. This corresponds to Step 0 of Ko-
honen’s model as described in the last chapter. Due to the
one-dimensionality of the space of input stimuli, the synaptic
strengths w; of the model neurons r have only a single compo-
nent.! An input signal according to a probability distribution

t This is only an idealization that is caused by the explicit use of frequency values. In a more
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P(v) causes that model neuron whose momentarily assigned
frequency (the so-called “best frequency” of that neuron) lies
closest to the input frequency to determine the center of the
“activity peak” within which the neurons become significantly
excited (Step 2). Next, the “best frequencies” of all neurons
of the cortex are modified according to Step 3 of Kohonen’s
algorithm. After a sufficient number of steps this modification
should result in an arrangement of “best frequencies” on the
model cortex that is continuous and is adapted to the particular
probability distribution of the input signals.

5.3. Simulation Results

In Fig. 5.1B it can be seen that the region of the auditory cortex
of Pteronotus parnelli rubiginosus responsible for the resolution
of the echo is greatly elongated, it being much more extended
along the anterior-posterior axis than it is along the perpen-
dicular direction. A similar length-width ratio for the model
cortex was chosen in the simulation we will describe. There,
the anterior-posterior length contains 25 model neurons and is
fiye times longer than the width of the array.

Figure 5.3 shows the model cortex at different stages of
the learning process. Each model neuron is represented by
a box containing (the integer part of) the assigned frequency.
Figure 5.3a presents the initial state. Each neuron was assigned
randomly a frequency value in the range 20 to 100 kHz. As we
see in Fig. 5.3.b, after 500 learning steps a continuous mapping
between the space of input frequencies and the model cortex has
already emerged. The final state, achieved after 5000 learning
steps, is depicted in Fig. 5.3.c. One can see the special feature
of Kohonen’s model that represents the input stimuli on the net
of neural units according to the probability with which stimuli
occur. The strong maximum of the probability density in our
model causes a wide-ranging occupation of the “cortex” with
frequencies in the narrow interval around the sonar frequency
of 61 kHz. ‘

In this simulation the time dependence of the excitation zone

realistic model one could, for example, code the frequency by different output amplitudes of
a set of overlapping filters as they are actually realized in the inner ear. The ordering process
demonstrated in the simulation would, however, not be affected by this.
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Figure 5.3 (a)(left) The initial state with random frequencies assigned to
the neural units. The length-to-width ratio of the array of model neurons is
five (anterior-posterior) to one (dorsolateral). Each box represents a neuron
and contains the integer part of the current “best frequency” assigned to that
neuron. (b)(middle) The state of the “auditory cortex” after 500 learning
steps. The field has evolved into a state where neighboring neurons have similar
“best frequencies;” i.e., the space of input stimuli is represented continuously
on the array. (c)(right) The “auditory cortex” in the final state, after 5000
learning steps. The region of “best frequencies” around the sonar frequency,
which represents the Doppler-shifted input signals, occupies almost half of the
model cortex.

o and of the adaptation step widths ¢ were chosen as follows:
o(t) = o;[l + exp(—5 (t/tmax)2)] and () = ¢; exp(—5 (t/tmax)Z)
with o; = 5 and ¢; = 1, where t denotes the number of per-
formed learning steps. The final number of learning steps at
the end of the simulation was t;qy = 5000.

In accordance with the experimental results from the au-
ditory cortex of Pteronotus parnelli rubiginosus, the representa-
tion of the input frequencies on our model cortex increases
monotonically along the “anterior-posterior” axis. In order to
compare the results of our simulation with the measurements,
we have presented the distribution of “best frequencies” as in
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Figure 5.4 The simulation results presented as in Fig. 5.1C. Along the abscissa
are the positions 1 through 25 of the model neurons along the “anterior-
posterior” axis. The ordinate shows the corresponding “best frequencies.”
For every value between 1 and 25 five frequency values are represented, one for
each of the five neural units along the “dorso-lateral” direction.

Fig. 5.1C. Figure 5.4 depicts the simulation results of Fig. 5.3
in the same way as Fig. 5.1C represents the data of Fig. 5.1A-B.
Each model neuron has been described by its position 1 to 25 on
the “anterior-posterior” axis as well as by its “best frequency.”
This representation of the results of the simulation produces a
picture very similar to that of the experimental measurements
(Fig. 5.1). In both cases a plateau arises that occupies almost
half of the cortex and contains the neural units specialized in the
analysis of the Doppler-shifted echoes. The size of this plateau
is determined by the shape of the probability distribution of the
input stimuli. In Section 5.4 we will look more closely at the
relation between the shape of the probability distribution and
the final cortical representation in Kohonen’s model.




5.4. Mathematical Description of the “Corti-
cal Representation”

We want to investigate what mappings between a neural lattice
and an input signal space result asymptotically for Kohonen'’s
model. For “maximally ordered” states we will demonstrate a
quantitative relation between the “neural-occupation density”
in the space of input stimuli which corresponds to the local
enlargement factor of the map, and the functional form of the
probability density P(v) of the input signals (Ritter and Schulten
1986a). The result will enable us to derive an analytical expres-
sion for the shape of the curve shown in Fig. 5.4, including the
size of the plateau. Unfortunately, such analytical expressions
will be limited to the special case of one-dimensional networks
and one-dimensional input spaces. The following derivation is
mainly directed at the mathematically inclined reader; it can be
skipped without loss of continuity.

To begin, we consider a lattice A of N formal neurons ry, rg,
...»fN. A map ¢w : V — A of the space V onto A, which
assigns to each element v € V an element ¢w(v) € A, is defined
by the synaptic strengths w = (Wy,, Wr,,..., Wry), wr; € V.
The image ¢w(v) € A that belongs to v € V is specified by the
condition

%40y (v) = VIl = min [Jwz — v, (74)

i.e, an element v € V is mapped onto that neuron r € A for
which ||wy — v|| becomes minimal.

As described in Chapter 4, ¢ emerges in a learning process
that consists of iterated changes of the synaptic strengths w =
(Wry, Wry, ..., Wry). A learning step that causes a change from
w’ to w can formally be described by the transformation

w = T(w/,v,e). (75)

Here v € V represents the input vector invoked at a particular
instance, and ¢ is a measure of the plasticity of the synaptic
strengths (see Eq. (70)).

The learning process is driven by a sequence of randomly
and independently chosen vectors v whose distribution obeys
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a probability density P(v). The transformation (75) then de-
fines a Markov process in the space of synaptic strengths w €
VeV ®...®V that describes the evolution of the map ¢w(v).
We will now show that the stationary state of the map which
evolves asymptotically by this process can be described by a
partial differential equation for the stationary distribution of the

synaptic strengths.

Since the elements v occur with the probability P(v), the
probability Q(w,w’) for the transition of a state w' to a state w,

via adaptation step (75), is given by

Q(w,w') = /6(w —T(W,v,€))P(v) dv.

6(x) denotes the so-called delta-function which is zero for all
x # 0 and for which [ §(x)dx = 1. More explicitly, Eq. (75) can

be written

Wr = W;. + Chrs(v —_ W;.) fOI‘ all re A.

Here s = ¢,(Vv) is the formal neuron to which v is assigned in

the old map ¢,

In the following we take exclusive interest in those states ¢w
that correspond to “maximally ordered maps,” and we want to
investigate their dependence on the probability density P(v).
We assume that the space V and the lattice A have the same
dimensionality d. A “maximally ordered map” can then be char-
acterized by the condition that lines in V' which connect the wy
of r adjacent in the network are not allowed to cross. Figure 5.5
demonstrates this fact with an example of a two-dimensional
Kohonen lattice on a two-dimensional space V' of input stimuli
with a homogeneous probability distribution P(v). The square
frame represents the space V. The synaptic strengths wy € V
determine the locations on the square which are assigned to
the formal neurons r € A. Each mesh point of the lattice A
corresponds to a formal neuron and, in our representation, is
drawn at the location that has been assigned to that neuron
through wy. Two locations wy are connected by a line if the
two corresponding formal neurons r are neighbors in the lattice
A. Figure 5.5a shows a map that has reached a state of “maximal
order” as seen by the lack of line crossings between lattice
points. In contrast Fig. 5.5b presents a map for which even
in the final stage some connections still cross. Such a map is

not “maximally ordered.”



Figure 5.5a An example for a
“maximally ordered” state of the
network. Network and input signals
are both two-dimensional. All input
signals originate from the limiting
square. In the continuum limit the
network nodes are infinitely dense
and specify a one-to-one mapping
between the network and the square.

Figure 5.5b An example of an in-
completely ordered state of the net-
work, evolved as a consequence of
the range o(t) of hys to be too short
initially (see Eq. (68)). In this case
a topological defect develops and the
connections between neighboring lat-
tice points cross. In the continuum
limit a one-to-one mapping cannot

be obtained.

In the following calculation we will make a transition from
discrete values of r to continuous ones. This is possible because
in the following we restrict ourselves to “maximally ordered”
states where in the transition to a continuum w;, becomes a
smooth function of the spatial coordinate r in the network.

We consider an ensemble of maps that, after ¢ learning steps,
are all in the vicinity of the same asymptotic state and whose
distribution is given by a distribution function S(w,t). In the
limit ¢ — oo, S(w,t) converges towards a stationary distribution
S(w) with a mean value w. In Chapter 14 we will show that the
variance of S(w) under the given conditions will be of the order
of e. Therefore, for an ¢ that is sufficiently slowly approaching
zero, all members of the ensemble will result in the same map
characterized by its value w.

We want to calculate w in the limit ¢ — 0. In the stationary
state, the condition S(w) = [Q(w,w')S(w') dw' holds, and,
therefore, it also holds that

w = /WS(W) dw = //WQ(W,W')S(W') dwdw’.
In the limit € — 0 it follows S(w) — §(w — W) and, therefore,

w =/WQ(W,V‘V) dw

(78)
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= / T(%,v,¢)P(v) dv. (79)
Applying Eq. (77) we obtain
0=c¢ / hes(v — Wi)P(v) dv for all r € A. (80)

We formulate the restriction of maximally ordered maps by two
approximating assumptions:

() We assume that for sufficiently large systems wr is a func-
tion that varies slowly from lattice point to lattice point so
that its replacement by a function W(r) on a continuum of
r-values is justified.

(i¢) We assume that w(r) is one-to-one.

We demand also that hys at r = s has a steep maximum and
satisfies

/hrs(r —s)dr =0,

(81)

/hr—s —s,)(j——.s]-)dr=‘6,-ja2, ,3=1,...,d
where d is the dimension of V and r;, s; describe the d Cartesian
components of r, s. The constant o is the range of hrs which
coincides with o in (68) in case of a Gaussian hrs.

From the above we will derive a differential equation for
w. Due to the continuum approximation (z), the quantity
n’éln |we — v|| in Eq. (74) vanishes because now for each v there

exists exactly one r for which w; = v holds. Therefore, we can
replace v in Eq. (80) by w(s). Here s := ¢w(v) is the image of v
under the map that belongs to w. This provides the condition

/ hes (W(s) — w(r)) P(W(s))J (s) ds = 0. (82)
Here
dv
J(S) = ES— (83)

is the absolute value of the Jacobian of the map ¢w. With
q = s —r as a new integration variable and P(r) := P(%(r))
the expansion of Eq. (82) in powers of q yields (with implicit
summation over repeated indices; e.g., ¢;J; is to be summed over



all values of z)

-1 -
0= / hqo(g:0; % + 59i90i0;% +...)-
P+ qpopP+...)-(J+qdJ +..) dq
_ 1 -
=/hq0q,‘Qj dq- ((6,'W)8j(PJ) + -2~PJ . 3;ajv_v) (r)+ 0(04)

= o [(Bw)(@:(PT) +

SPJ- 03w |(r) + O(a*),

(84)
where we made use of (81). In order for the expansion (84) to

hold it is necessary and sufficient for small ¢ that condition
- o;P 0;J 1 9 _
or, with the Jacobi matrix J;; = 9;w;(r) and A = > 6,-2, condition
4

J.Vin(P-J)= —%AW (86)

is satisfied. For the one-dimensional case we obtain J = J =
dw/dr and AW = d%@/dr? with @ and r as scalars. In this case
the differential equation (86) can be solved. For this purpose
we rewrite (86) and obtain

do (1dP (dd ) 1d%w -
dr \ P dr dr) dr2 ) " 2dr?
from which we can conclude
d . - 3d dw

This result allows us to determine the local enlargement factor

of the map in terms of the generating probability distribution
P(v).

~ Since ¢w(W(r)) = r holds, the local enlargement factor M of

éw can be defined by M = 1/J (compare Eq. (83)). For the one-

dimensional case M = (dw/dr)~! and we obtain as a relation

between input stimulus distribution and cortical representation

M) =J"1= % x P(v)?/3. (89)

The local enlargement factor M(v) depends on the probability
density P(v) according to a power law. It can be shown that the
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exponent 2/3 that we found in the continuum approximation
undergoes a correction for a discrete one-dimensional system
and is then given by % — [3(1 + n2)(1 + [n + 1]2)]"!, where n
is the number of neighbors that are taken into account on each
side of the excitation center, (i.e., hys = 1 for ||r — s|| < n and
zero elsewhere) (Ritter 1989). The continuum corresponds to
the limit of infinite density of neighbors. Then n = oo for each
finite & and we obtain the previous result of 2/3.

5.5. “Cortical Representation” in the Model
of the Bat’s Auditory Cortex

We now apply the mathematical derivation of Section 5.4 to the
particular input stimulus distribution that we assumed for our
model of the bat's auditory cortex and compare the result with
a simulation.

The input stimulus distribution that we assume can be writ-
ten in the range v <v < vy as

exp (_(i‘—”—)f> (90)

r

vy — Vi 2oy

with the parameters or=0.5kHz, ve=61.0 kHz, v;=20kHz,
v9=100kHz and Py=1/4. The width of the distribution of the
Doppler-shifted echoes is given by or, and Fy is the proba-
bility for the occurrence of an input stimulus from the white
background noise. v; and vy are the limits of the ultrasound
spectrum that we assume the bat can hear.

The integral I = [} P(v)dv is not exactly unity because of
the finite integration limits. Since, due to the small o, of 0.5kHz,
nearly all the Doppler-shifted echo signals lie within the interval
[20,100] and the deviation of I from unity is negligible. With the
choice Py = 1/4, the Doppler-shifted signals occur three times as
often as signals due to the background noise (see also Fig. 5.2).

From Egs. (89) and (90) we find
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where C is a proportionality constant. In integral form one has
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We will solve this integral numerically and then compare the
resulting @w(r) with the corresponding values from a simulation.

Since these considerations apply only to the case where the
dimensionality of the net and the dimensionality of the space
of input stimuli is identical, we stretch the “auditory cortex”
and, instead of a 5x25 net as in Figs. 5.3 and 5.4, assume a one-
dimensional chain with 50 elements for the present simulation.
Starting from a linear, second-order differential equation, we
need two boundary conditions, e.g., w1(r1) and wy(rg), from
our simulation data to be able to adjust the function r(w) of
Eq. (92) uniquely. Since boundary effects at the beginning and
the end of the chain were not taken into account in our analytic
calculation, the end points can in some cases deviate slightly
from our calculated curve. To adjust the curve to the simulation
data, we take values for w; and w9 that do not lie too close
to the end points; in this case we have chosen w at the third
and forty-eighth link of the chain, i.e, at r; = 3 and ry = 48.
The solid curve in Fig. 5.6 depicts the function w(r) calculated
numerically from Eq. (92) and adjusted to the simulation data.
The dots show the values w, that were obtained by simulating
the Markov process (75). The representation corresponds to the
one in Fig. 54. The time dependence of the excitation zone
o and of the adaptation step width e for the simulation were
chosen as follows: o(t) = o;[1 + exp(—(5t/tmaz)?)] with o; = 10,
e(t) = €; exp(—(5t/tmaz)?) With ¢; = 1. For the maximal number
of learning steps tmaz = 20000 was chosen.

Clearly, the function w(r) resulting from Eq. (92) is in close
agreement with the simulation results, and even the deviations
at the end points are small. One may have expected intuitively
that for the magnification holds M(v) « P(v), i.e., a magnifi-
cation proportional to the stimulus density. The corresponding
result is presented in Fig. 5.6 as well to demonstrate that this
expectation is, in fact, incorrect.

For the present input stimulus distribution, it is possible
to estimate the size of the region relevant for the analysis of
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Figure 5.6 A bat’s sensitivity to accoustic and sonar signals (cf. Fig. 5.4).
The solid curve represents the function w(r) calculated from Eq. (92). The
dots show the values obtained from simulating the Markov process (75). For
comparison we show the result for M(v) ox P(v) with a dashed line. This result
strongly deviates from the simulation data.

the Doppler-shifted signal, i.e., the extension of the 61 kHz
plateau in Fig. 5.6. In Eq. (92) we integrate over P(v)%/3 and,
therefore, the function r(w) increases sharply for large values of
P(v). Hence, the plateau starts where the Gaussian distribution
of the Doppler-shifted echoes increases strongly relative to the
background. This is approximately the case for v = v, — 207.
Accordingly, the plateau ends where the Gaussian peak recedes
back into the homogeneous background, ie., at v = ve + 205
Therefore, the relation
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for the size of the plateau holds. Within these integration limits
the background portion in the integrand is negligible compared
to the values of the Gaussian. Furthermore, we can extend the
integration of the integrand that results without the background
towards infinity without significant error. The integral can then



be evaluated, yielding the approximation

o0

2
~O(1opa3 [ L 2V
Arplatean = C - (1 — Pp) / ( 27?0'7')2/3 XP (-520',2.) dv
—00
3 1/3
~(C - 5 ( 27(0'7.(1 — P0)2) / . (94)

In order to determine the part of the plateau relative to the over-
all “auditory cortex,” we also need an estimate of the integral in
Eq. (92), where we have to integrate over the full band width of
input frequencies. To obtain this we split the integration range
from v1=20kHz to v9=100kHz into three regions as follows
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We have already estimated the second integral in the sum by
Eq. (94). Within the integration limits of the other two integrals
the contribution of the Gaussian distribution is so small that it
can be neglected relative to the background. In addition, o, <
(v —v1), enabling us to write
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If we insert the parameters of our above model of the input
stimulus distribution of the bat into the two estimates (94) and
(96), we obtain for the size of the 61 kHz region, relative to the
size of the total “cortex,” the value

Arplateau

~ 39%.
Ariotal

This implies that for our case of a 50-unit chain, the plateau
should consist of 19 to 20 neurons. This value agrees very well
with the simulation results presented in Fig. 5.6.

By now we have extensively described the basics of Ko-
honen’s model—the self-organization of a topology-conserving
map between an input stimulus space and a network of neural
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units. We have compared the simulation results of Kohonen’s
model to experimental data as well as to a mathematical de-
scription valid for certain limiting cases. The simulation data
have agreed at least qualitatively with the experimental find-
ings. More than a qualitative agreement should not have been
expected, considering the many simplifications of Kohonen’s
model. In contrast to that, the mathematical result for the rep-
resentation of the input signals relative to their probability cor-
responds, even quantitatively, very well to the results obtained
from simulations.

In Chapter 6 we will become acquainted with a completely
different application of Kohonen’s model. Instead of a mapping
onto a continuum, we will generate a mapping that projects a
linear chain onto a discrete set of points. Such a mapping can be
interpreted as a choice of a connection path between the points.
The feature of the algorithm to preserve topology as much as
possible manifests itself in a tendency to minimize the path-
length. In this way, very good approximate solutions for the
well-known travelling salesman problem can be achieved.



