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ABSTRACT:
We are investigating the application of biologically plausible
neural architectures to the problem of the controlling movement
of a limb in response to visual stimuli. Our approach is inspired
by the ability of biological systems to develop highly accurate
control strategies for movement by means of associations be-
tween random motor actions and the sensory consequences of
these acts. This is achieved using information processing algo-
rithms based upon Kohonen’s self-organizing feature map algo-
rithm (SOFM). As a means of enhancing the abilities of this
system we have incorporated additional processing stages, the
operation of which are based upon strategies that are consis-
tent with neurobiological approaches to the problem of motor
control.

INTRODUCTION

Both classical control strategies and artificial neural networks, have been em-
ployed in a number of different manners for the control of industrial robots. In
contrast to biological systems, however, artificial neural networks are generally
confined to one dedicated task or simple sensory to motor transformations. It
would appear that a combination of the engineering approach of robotics and
biologically motivated models of motor control offers potentially promising syn-
ergies: more flexible robot control applications on the one hand, and greater
insight into the biological basis of motor learning on the other. As a means of
pursuing this objective and as a practical demonstration of the capabilities of
neural network algorithms within an engineering framework, one research theme
within our group has been to implement neural control algorithms on a pneu-
matically driven robot arm (SoftArm). This robot provides an excellent testbed
for biologically plausible models of motor control as has been demonstrated in
previous studies (Hesselroth et al., 1994).

Our approach involves the application of self-organizing feature maps, origi-
nally proposed by Kohonen (Kohonen, 1982), as the basic information process-
ing element. Such networks have been successfully applied to the problem of
controlling movement in several technical applications (Ritter et al., 1989). In
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Figure 1: The basic network used to control movement. w, e and s, refer to the
joint wrist, elbow and shoulder joints of the arm respectively. Definitions of all
other quantities may be found in the text.

common with a number of previous studies of motor control, for example that
of Kupperstein (Kupperstein, 1989), our present approach involves the devel-
opment of connections between an input (sensory) and output (motor) map, the
connections between these maps being achieved by means of a learning process.

OPERATION OF THE NETWORK

To simplify the description of the algorithm, we will first discuss application of
the algorithm for use in the control of a simple movement system consisting of a
simulation of the human arm moving in the plane. It is assumed that one end of
this chain, in this case corresponding to the shoulder, is fixed in the workspace.

Figure 1 illustrates the elements of the basic network. Neurons in layer S
project via independent excitatory synapses to a set of motor cells vi responsible
for setting the joint angles of a simulation of the human arm moving in the plane.
We assume an input space defined by M independent sensory input sources. In
a biological system these sources might, for example, correspond to neurons
providing tactile input from receptors distributed over the body surface. In the
present work, however, we will be concerned with proprioceptors, which indicate
the respective joint angles of each of the segments of the limb and visual receptors
which specify the location of a target point of interest.

Two different types of sensory information converge upon neurons within the
network S. Exteroceptive input

r = [x1, x2] (1)

is derived from a Euclidean coordinate system defined by the visual field pre-
sented to the network. Proprioceptive input, denoted Θ, is derived from the
intrinsic coordinate system of the joints of the human arm where

Θ = [θ1, θ2, θ3] (2)
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The indices 1, 2, 3 specify the wrist, elbow and shoulder joints of the limb, re-
spectively. Control of limb movements in the workspace is achieved by modifying
the synaptic weights of the projections from neurons in the sensory layer S to
the motor cells. Each neuron in the sensory layer has a vector

Vj = [v1
j , v

2
j , v

3
j ] (3)

associated with it which corresponds to the output of the motor neuron when
activated by a neuron in the sensory layer. This output alters the joint angles
of each segment of the limb simulation in the workspace.

During learning, adjustment of vi
j , the ith component of V, is calculated as

vi
j(t) = vi

j(t− 1) + ε(t)hjs(u
i(t) − vi

j(t− 1)) (4)

where, in this instance, vi
j(t − 1) represents a random value generated during

the previous iteration of the algorithm leading to movement of a particular limb
segment (Coiton et al., 1991).

Prior to learning, all components of the vector V are assigned random values
and the total number of learning steps is specified. For each learning step a
sensory input vector U = [r,Θ] is then formed from exteroceptive input r given
by the values of the endpoint of the limb and proprioceptive input Θ speci-
fied by the joint angles of the limb. The Kohonen algorithm is applied to the
sensory layer and the vector of motor signals Vs associated with the neuron s,
chosen according to the Euclidean distance criteria, in the sensory layer, initi-
ates movement of the arm to a new randomly chosen position in the workspace.
The components of Vs are then adjusted according to (4) and this sequence of
operations is repeated for the total number of learning steps. Following a suit-
able number of learning steps, typically 3000, goal-directed movements to visual
targets can be executed by the network as described in (Wallace and Schulten,
1994).

APPLICATION OF THE ALGORITHM TO CONTROL THE Soft-
Arm PNEUMATIC ROBOT SYSTEM

The SoftArm is modeled upon the human arm and has four joints resulting in five
degrees of freedom. It exhibits the essential mechanical characteristics of skeletal
muscle system by means of agonist-antagonist pairs of rubbertuators which are
mounted on opposite sides of rotating joints. When air pressure in a rubbertuator
is increased, the diameter of the tube increases thereby causing the length of the
tube to decrease and the joint to rotate. Stiffness of the joint is determined by the
total pressure in both the agonist and antagonist tubes such that the compliance
of individual joints may be varied. A more detailed description of the mechanical
characteristics is given in (Hesselroth et al., 1994). The complete robot system
consists of the SoftArm, air supply, control electronics (servo drive units) and
a workstation which includes a serial interface, connected to the robot’s servo
drive units, and a video input card. The servo drive units provide the internal
control circuitry of the robot, operate the servo valve units and send joint angle
data, available from optical encoders mounted on each joint, to the computer.
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Use of the basic algorithm for control of the SoftArm results in average
accuracies in the region of 12% of the dimensions of the workspace of this system.
Clearly such performance is unacceptable. A number of factors contribute to this
poor performance, including the mechanical characteristics of the SoftArm and
the increased dimensionality of the problem (nine dimensions as opposed to five
for the simulations of planar arm movement). The principal problems that arise,
however, are the need for a single network to provide a ‘good’ representation of
two distinct sensory input spaces, namely the visual and proprioceptive spaces,
and the discretizing effect that results from the use of small numbers of neurons
to map these input spaces. In general, while the use of larger number of neurons
in the network can lead to some improvements in performance there is no simple
linear relationship between greater numbers of neurons and accuracy (Ritter,
1989).

AN IMPROVED ALGORITHM FOR MOTOR CONTROL

There is now considerable evidence to suggest that biological systems adopt a dis-
tributed approach to the problems inherent in motor control. This is evidenced
by the processing which occurs in parallel at many sites of motor activity, con-
nected in a semi-hierarchical fashion (Johnson, 1992). These observations have
led us to propose a model of cerebro-cerebellar interactions that results in signif-
icant improvements in the performance of the basic algorithm outlined (Wallace
and Schulten, 1994). For this model we adopt a task-related strategy in which
the motor cells specify the intended absolute endpoint of a movement while an
additional component provides information regarding a relative movement nec-
essary to achieve a desired target point.

Extension of the algorithm is achieved by defining a set C consisting of D
neurons. Each neuron j ∈ C has a randomly assigned value, denoted by ϕj,
associated with it which lie in the closed interval [0, 1]. In addition each neuron
j ∈ C has a set of connections denoted by ei

j, i = 1, 2, . . . , m, corresponding to
‘projections’ to the motor cells controlling movement of the individual joints of
the limb arising from the cerebellar component.

We assume that the projections ei
j can assume multiple values in the range

[0, 1], the actual value being dependent upon the movement being learnt. This
task-related approach derives from the observation that, anatomically, cerebel-
lar organization is based upon task-related ‘zones’ which constitute the basic
operational unit of the cerebellar cortex (Ito, 1984). We assume that distinct
tasks are reflected in distinct patterns of the projections from C to S, thereby,
resulting in different patterns of activation to the motor cells.

Following the initial phase of the basic algorithm during which the sensory
layer and motor cell connections are developed, an additional phase is introduced
to the simulations during which initially random cerebellar input, modulating
the output from the motor cells, is introduced. This phase involves repeated
practicing until movement to a particular target approximates the target loca-
tion to some predetermined accuracy. The cerebellar component is obtained by
calculating
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γ = arccos

(
r̂p · rθ1

|r̂p||rθ1|
)

(5)

where r̂p denotes the location of the target point relative to the position of the
wrist joint and rθ1 denotes the vector running from the wrist joint to the tip of
the hand. For target points that involved negative rotation of the wrist joint,
the sign of γ is defined to be negative. This value is normalized

γ̂ = (γ + π)/2π (6)

and the cerebellar neuron c given by

‖ ϕc − γ̂ ‖= min ‖ ϕj − γ̂ ‖ (7)

for j = 1, 2, . . . , D calculated. The resulting correction factor vi
c, is calculated as

vi
c = κiei

cϕc (8)

where i = 1, 2, 3, κi is a scaling constant which determines the ‘stiffness’ of the
relevant joint and

ei
c =

{
êi

c if ψ had previously equalled 1 during practice of the task
uniform deviate in the range [0, 1] otherwise

(9)

where êi
c denotes the value associated with ei

c when the quantity ψ = 1 indicating
that the movement has attained the required accuracy. This condition leads to
storage of the set of values output by the cerebellar component leading to the
required target point being attained. For a given task, therefore, the nature of
the input arising from the cerebellar component is chosen on the basis of (1)
the particular task being performed, by virtue of ei

c assuming multiple, task
dependent values and (2) whether a movement of the required accuracy had
previously occurred for the task. The final motor signal sent to each joint is

vi
s(S) + vi

c(C) (10)

where S and C explicitly denote the input to the motor cells arising from the sen-
sory and cerebellar components respectively. At each point q during movement
to a target point, the quantity δ is calculated

δ = ||rp − rq|| (11)

and compared with a predetermined value δ̂. At each point q the quantity ψ is
calculated as

ψ =

{
0 if δ > δ̂

1 if δ ≤ δ̂
(12)

If during movement to a target point, ψ = 1 then the movement is terminated
and all values of ei

c stored.
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DISCUSSION

With the additional processing stage introduced in the algorithm, the absolute
accuracy of movement of the planar arm simulation that can be obtained is
significantly better than can be obtained through use of the simple algorithm
alone. For an arbitrary value of δ̂ = 1% of the workspace and a set of target
points in the workspace, convergence to the target points will typically occur
within 100 iterations of the introduction of the cerebellar component, the final
error typically being 0.3% of the workspace. More precise movements are eas-
ily obtained with only moderately larger number of iterations of the cerebellar
processing component.

Simulations in which the improved algorithm is required to control move-
ment of a 3 segment limb moving in 3 dimensions, with 4 degrees of freedom,
indicate similar improvements in accuracy over the basic algorithm. Here, how-
ever, the problem lies in choosing a set of values for the κi that can allow the
whole workspace to be arbitrarily approximated equally well. Thus, we currently
considering strategies by which additional contextual information regarding the
required task can be introduced to the algorithm such that an optimal set of
initial parameters can be specified to the algorithm.
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