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ABSTRACT

Several classes of models of visual cortical map characterization and development
are compared. Characteristics and predictions of the models are compared to one
another and to cortical maps observed in animals. Several models are found to predict
incorrect map structure. Certain observed patterns of visual maps imply constraints
on the processes which could be involved in their morphogenesis.

1 FEATURE MAPS IN VISUAL CORTEX

Individual cells in the mammalian primary visual cortex, or striate cortez, re-
spond differently to features in visual input, with feature preferences deter-
mined in part by the pattern of connection between retinal light receptors and
cortex. Striate cortical receptive fields, descriptions of features to which each
cell responds, are often localized in the visual field, may be dominated by input
from either eye, and usually show a preference for stimuli with a particular
orientation. Several receptive field properties of neurons are arranged in the
cortex in a complicated two-dimensional map such that nearby columns of neu-
rons tend to have similar receptive fields. Due to the ordered projections from
the eyes, a roughly topographic map of visual space is formed on the cortical
surface. An optical imaging technique [1, 2, 4] reveals the embedded maps of
ocular dominance and orientation preference over small patches of the cortex.

The details of the cortical maps vary greatly between individual animals, but
certain organizing principles appear invariant. Depending on the species, ocular
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Figure 1 Tangent curves illustrating local orientation preferences near
(a),(b) vortex and (c),(d) fracture singularities. (Adapted from [13].)

dominance patterns consist of bands or patches of left- and right-eye dominance.
Orientation preference changes smoothly over most of the map surface, includ-
ing linear regions where slabs of cells with a common preferred orientation are
aligned alongside one another. Regions of rapid change are primarily confined
to one-dimensional fractures (Fig. 1c,d), across which orientation preference
changes by up to 90° and vortices where orientation preference rotates through
a complete cycle of 180° around a point [1, 2]. Loop vortices (Fig. 1a) where
orientation preference rotates in the same direction as motion around a central
point and tri-radius vortices (Fig. 1b) where orientation preference rotates in
contrary motion exist in equal numbers. These structures correspond to the
simplest singularities which are possible in a ridge-type pattern (Fig. 1) [13].
Fourier power spectra of the ocular dominance and orientation preference maps
have a ring, or bi-lobed distribution, for species with isotropic or anisotropic
map patterns. Map patterns are correlated such that vortices tend to lie at the
centers of ocular dominance bands where receptive fields are primarily monoc-
ular, and linear regions tend to lie in binocular regions with the slab borders
orthogonal to the ocular dominance column borders. A successful model of
striate cortical map formation must be capable of explaining the development
of these patterns and the correlations between them. Further details of the
spatial patterns of orientation preference and ocular dominance may be found
in [1, 12].

2 VISUAL CORTICAL MAP MODELS

Although often based on different developmental principles and degree of biolog-
ical detail, many models are successful at predicting or describing the structure
of striate cortical maps. We attempt to find the common features of successful
models, as well as unique insights from individual models. Rather than dis-
cussing the details of a series of models, which are more fully described in the
original references, we have organized a discussion of the most common mod-
elling approaches around three classes of models based on similar principles:
(1) feature map models, (2) correlation-based learning models, and (3) pattern
models. Feature map models and correlation-based learning algorithms both
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explain the development of feature selectivities based on the Hebbian learning
hypothesis for synaptic change, but differ in the manner in which this principle
is expressed. Pattern models, may also suggest developmental principles and
processes, but the emphasis is on finding a concise description of the observed
map patterns. A careful study of the structure of cortical maps reveals orga-
nizing principles which constrain the types of processes which could form the
maps.

3 FEATURE MAP MODELS

The feature map models, which include the self-organizing feature map al-
gorithm [6, 7, 12, 11], the elastic-net algorithm [3], and related models [16],
comprise one class of developmental models. Although the details of the al-
gorithms differ, these models share many features. They each assume a set of
cortical units — either single cells, or local groups of cells — arranged in a two-
dimensional lattice. The receptive field of each cortical unit is described as a
feature vector, which encodes the strengths of connections to retinal receptors,
either directly, or in an abstract representation. For example, a five-dimensional
feature vector & = {z,y,¢sin(20),gcos(26), 2} can describe the location of a
receptive field in visual space z and y, the orientation preference 6 and orien-
tation specificity ¢, and the ocularity z of a cortical unit. Feature map models
have been used to provide a rationale for cortical map patterns, by suggesting
that the maps are organized to map a high-dimensional visual feature space as
completely as possible while maximizing continuity of feature preferences [3].

Feature map algorithms consider the development of cortical maps to be gov-
erned by neural activity driven either by images viewed by a young animal, or
by the spontaneous firing of retinal cells, which can occur even before birth.
Map formation proceeds through repetitive presentations of stimuli and mod-
ification of the receptive fields of the cells in response. The rule for receptive
field modification requires that a distance measure, which must be computable
by a single cortical unit, be defined between the input pattern vectors and the
synaptic weight vectors. This distance determines the amount each neural unit
is stimulated by an input pattern, and its form crucially affects the organiza-
tion of the feature maps. Changes in the feature vectors are proportional to
this distance. However, in the self-organizing feature map algorithm, competi-
tion for activity allows only units in a neighborhood around the unit with the
smallest distance to modify their receptive fields, which generates the smooth
map structure. Smoothness is maintained in the elastic-net model maps by a
type of averaging of the receptive field properties of nearby neurons. Since the
receptive fields are only adapted to more resemble the stimuli, if the stimuli
show pronounced features, the specificity of the receptive fields will be high
with regard to these features.
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Maps produced by the feature map models closely resemble observed cortical
maps in structure [3, 12], even though only the most basic properties of the
maps are specified in advance. For example, ocularity varies across the cortical
surface in blob- or band-like patterns. Orientation preferences vary smoothly
and gradually across most areas of the cortex, except near the fractures and the
loop and tri-radius vortices, and these are correlated with regions of gradual
change in receptive field location. Feature specificity is high in most map areas,
with the exact distribution of specificities being tunable through algorithm
parameters. Power spectra of orientation and ocular dominance patterns can
have a ring-like or bi-lobed distribution, and the orientation and ocularity map
patterns may repeat on different length scales.

4 CORRELATION-BASED LEARNING

Correlation-based learning algorithms [8, 9, 10] comprise a second class of devel-
opmental models, which share many features with the feature map algorithms,
but differ in the way the effect of retinal activity is implemented. Whereas
feature-map models assume a competitive network where receptive fields change
through a non-linear function of retinal input, correlation-based learning mod-
els assume a linear relationship. Thus patterns of correlation in the input will
be represented in the receptive field properties of cortical cells.

In one such model of ocular dominance development [10], ocularity of each
cortical cell is determined by the difference in total connection strength to
receptors in each eye. Assuming that the activity in nearby cells in one retina
is correlated, and that activity at greater distances or in opposite eyes is non-
or anti-correlated, and taking a Gaussian or “Mexican-hat” function of intra-
cortical influence, this model produces cortical patterns of ocular dominance
resembling those seen experimentally. Miller [9] adapted this algorithm to
study the development of orientation-selective cells and orientation preference
maps. In his model a spatial “Mexican-hat” correlation function in the firing of
retinal cells in the same population of ON- or OFF-center cells, with a weaker,
inverted “Mexican-hat” correlation function for cells in different classes, leads
to banded patterns of connection to ON- and OFF-center retinal cells, giving
cortical cells an orientation preference.

When “Mexican-hat” intra-cortical interactions are included, receptive field
properties become arranged in a repetitive map across the cortical surface.
Maps of orientation preference show high orientation specificity and smooth
variation in preferred orientation at most cortical locations, and the maps con-
tain loop and tri-radius vortices in equal numbers. However, the organization
of the maps seems to differ from the organization of cortical maps in some
finer details. The difference in organization between the model and cortical
maps is not immediately apparent in the maps developed with the best set of
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Figure 2 Maps of orientation preference from the correlation-based
learning algorithm with (a) standard parameters, (b) one parameter
altered. (See text)

model parameters, Fig. 2a. However, varying just one parameter in the model
makes the organizing principles behind the model maps more clear. The model
map in Fig. 2b was developed with the parameter determining the length-scale
for correlations in the firing pattern of retinal cells set 27 percent longer than
its preferred value. This map contains many cells which are unspecific to ori-
entation, and the cells with high orientation specificity are mainly located in
one of several “streams” which run through the map with their receptive field
orientations aligned with the “streamlines”. As the parameters of the model
are slowly returned to normal, the streams widen and grow together producing
loop and tri-radius vortices. Nearby parallel streams grow together seamlessly,
seldom producing one-dimensional fractures along which orientation preference
changes abruptly. The “streamlines” in Fig. 2b suggest contour lines of a sur-
face, whereas the curves in a general ridge system [13] and the experimental
orientation preference maps cannot be associated with contour lines. If the
model maps for normal parameter values are governed by the same principles,
then the model may be rejected by this topological reasoning,.

5 PATTERN MODELS

Pattern models attempt to find the most concise description of feature map
structure, using an algorithm or formula with as few parameters as possible.
The hypothesis is that studying the structure of cortical maps can help charac-
terize types of processes which either are or are not capable of generating the
observed patterns.

Several distinct pattern models have been successful at reproducing the patterns
of ocular dominance [5, 14]. In one of the simplest, Rojer and Schwartz [14]
demonstrated that the global patterns of ocular dominance in several species
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can be reproduced by convolving a two-dimensional array of random real num-
bers with an appropriate filter and associating the positive and negative val-
ues in the resulting array with left- and right-eye dominances. A circularly-
symmetric, decaying sinusoidal filter, or a “Mexican-hat” filter gives an isotropic
ocular dominance pattern with a ring-like power spectrum similar to the pattern
seen in cat striate cortex, whereas a similar anisotropic filter gives a pattern of
mostly parallel, branching columns with a bi-lobed power spectrum as seen in
macaque cortex. A few parametersin the shape of the filter can be tuned to give
ocular dominance columns with any orientation, width and degree of branch-
ing. Although convolution with a filter is sufficient to give the global patterns,
tuning the distribution of ocular dominance values requires applying some local
operations, such as a threshold function associating each cortical unit wholly
with either the right or left eye, or a more realistic sigmoidal function.

Since the power spectrum of typical orientation column systems has a ring or
bi-lobed distribution similar to the ocular dominance column spectra, a similar
algorithm should be able to generate orientation column patterns. The simplest
such algorithm was proposed by Rojer and Schwartz [14]. A two-dimensional
array of random real numbers is convolved with a circular sinusoidal filter and
the local gradient vector of the resulting pattern is computed for each array unit.
Dividing the angle of each gradient vector by two gives angles 0° < 8 < 180°
which may be taken as preferred orientations for cortical cells. The length of
the gradient vectors gives the orientation specificity of the model cells, either
directly or after being subjected to a local function, such as a sigmoid, to give
the desired distribution of orientation specificities.

The pattern of orientation preferences given by this simple formula resembles
in many ways the observed patterns of orientation columns. Cells with simi-
lar orientation preference are clustered together, and there are both loop and
tri-radius vortices, and one-dimensional fractures. However, closer observa-
tion reveals a deficiency in the patterns. The orientation column pattern was
derived from a vector field under the rather restrictive assumption that this
vector field must be conservative. The properties of conservative vector fields
then dictate that for any closed circuit through one of the model maps, the
line integral § gcos(20)dz + gsin(26)dy always vanishes, where g(z,y) is the
orientation specificity, and where the orientation preference angles 6(z,y) are
measured from the x-axis. Experimental maps, and other model maps are not
similarly restricted®. The failure of this model illustrates the value of pattern
models since it reveals that any model which relates the lines in an orientation
column map to a conservative gradient field must fail for purely topographic
reasons [13], regardless of the form of the physiological implementation.

3The integral can only be approximated in maps defined only at discrete points.
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Figure 3 (a)-(d) Vortices in orientation maps and the associated vec-
tor fields. The vector field in (d) is non-conservative.

Although maps generated by this model differ from experimental maps in all
regions, the difference is most easily demonstrated at the vortices. The inserts
in Fig. 3 show four types of vortices, all of which occur in orientation column
maps. Also shown are the vector fields associated with each vortex with direc-
tions given by multiplying the orientation preference angles, measured from the
x-axis, by two. The loop vortices in Fig. 3a,b are associated with gradient vec-
tor fields around a local maximum or minimum in a surface, and the tri-radius
vortex of Fig. 3c is associated with the gradient vector field of a saddle point.
Although the loop vortex in Fig. 3d is simply a rotated version of the vortices
in Fig. 3a,b, such a vortex could not appear in a map from Rojer and Schwartz’
model, since the associated vector field could not be derived from the gradient
of any surface. All rotated version of the tri-radius vortex, Fig. 3c, are allowed.

It is possible to predict orientation map patterns based on their power spectra,
without imposing the unnecessary constraint in Rojer and Schwartz’ model.
Taking a ring spectrum in a two-dimensional Fourier space, with some noise
in the amplitudes and with random phases of the modes, and transforming
to a real space generates a two-dimensional array of complex numbers which
may be taken to represent orientation preference (phase) and specificity (mag-
nitude) [17]. An optional local function can also be applied to give the desired
distribution of orientation specificities. This method produces arrays of ori-
entation preferences that resemble experimentally observed maps, and which
aren’t subject to the constraint of Rojer and Schwartz’ model maps. Yet the al-
gorithm remains simple enough to be implemented by many different biological
processes.

Swindale [15] has presented a model for the combined development of orien-
tation and ocular dominance columns, which follows an algorithm similar to
those used in pattern models. A vector representing local feature preference
is associated with each location in a cortical lattice. Feature preferences grow
from initially small, random values through an iterative process of separately
convolving the orientation and ocular dominance components of the feature
vectors with “Mexican-hat” filters on different length scales. The column sys-
tems are coupled by making growth of orientation preference more rapid in
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monocular regions of cortex. Maps developed from this simple model have
linear regions, vortices and fractures in the orientation column map, and the
ocular dominance pattern consists of blobs or branching parallel columns. The
patterns are correlated such that vortices occur more often near the centers
of the ocular dominance bands, and as a natural consequence the linear re-
gions tend to intersect the ocular dominance bands at right angles. Like the
pattern models, this algorithm is general enough to allow several physiological
implementations.

6 CONCLUSIONS

Careful characterization of the structure of cortical map patterns is the first
step toward understanding the rationale behind the maps and the processes re-
sponsible for creating them. The lines in cortical maps of orientation preference
are organized in such a way which reveals that they could not, for example, be
given by the lines in a force field or by surface contour lines. Some proposed
models of cortical map formation may be rejected through such topological ar-
guments, even before consideration of the validity of the suggested physiological
mechanism.*

REFERENCES

(1]
(2]
(3]
4]
[5)
[6]
(7}

. G. Blasdel. J. Neurosci., 12(8):3115-3138,3139-3161 (series), Aug. 1992.

. G. Blasdel and G. Salama. Nature, 321:579-585, 1986.

. Durbin and G. Mitchison. Nature, 343:644-647, 1990.

Grinvald, et al. Nature, 324:361, 1986.

Jones, R. van Sluyters, and K. Murphy. J. Neurosct., 11:3794-3808, 1991.
. Kohonen. Biol. Cybern., 43:59-69, 1982.

. Kohonen. Biol. Cybern., 44:135-140, 1982.

[8] . Linsker. PNAS, 83:7508-7512,8390-8394,8779-8783 (series), 1986.

[9] . D. Miller. NeuroReport, 3:73-76, 1992.

[10] K. D. Miller, J. B. Keller, and M. P. Stryker. Science, 245:605-615, 1989.
[11] K. Obermayer, H. Ritter, and K. Schulten. PNAS, 87:8345-8349, 1990.

[12] K. Obermayer, G. Blasdel, and K. Schulten. Phys. Rev. A, 45:7568-7589, 1992.
[13] R. Penrose. Ann. Hum. Genet., Lond., 42:435-444, 1979.

[14] A. S. Rojer and E. L. Schwartz. Biol. Cybern., 62:381-391, 1990.

[15] N. V. Swindale. Biol. Cybern., 66:217-230, 1992.

[16] C. von der Malsburg. Kybernetik, 14:85-100, 1973.

[17] F. Worgétter and E. Niebur. This volume. 1992.

REHBO>ROQ

4This research was supported by the National Science Foundation (grant 91-22522) and the
National Institute of Health (grant PA1IRR05969). Computing time on a CM-2 was provided
by the National Center for Supercomputing Applications, funded by the National Science
Foundation. Financial support to E. E. by the Beckman Institute is gratefully acknowledged.



