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Figure S1. Translocation models. Autotransporter β-domain (yellow), folded 
passenger domain (red), unfolded passenger (solid or dashed black line), BamA 
(blue). The N-terminus of the passenger is indicated (N). (a) Hairpin model. (b) 
BamA model. In both models a hairpin is formed by the C-terminus of the 
passenger domain. The tip of the hairpin protrudes into the extracellular space 
while the N-terminal portion of the passenger is still in the periplasm. Folding at 
the tip of the hairpin provides the energy to pull the passenger from the periplasm 
to the extracellular space. The primary difference between these models is the 
pore the passenger passes through to cross the outer membrane. For the Hairpin 
model, the passenger domain passes through the pore of its β-domain; for the 
BamA model, the passenger domain passes through a pore created by its 
partially folded β-domain and the Bam complex (only BamA is shown above). For 
a more complete description of these models please refer to Oomen et al.1 and 
Ieva et al.2. 
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Figure S2. Stereo image of the (2Fo - Fc) electron density map near the cleavage 
site. (a) N1023A (b) N1023D (c) N1023S. The map is contoured at 1.0σ and 
position 1023 is labeled. 



	
   4	
  

 
 
Figure S3. Electron density maps of Tyr1150 in the EspP N1023A (yellow) and 
N1023D (green) mutants. The map is contoured at 1.0σ. Tyr1150 favors two 
different conformations that depend on the amino acid substitution at the active 
site asparagine. For the N1023D mutant, Tyr1150 points towards the cleavage 
site. For the N1023A mutant, it points away from the cleavage site. (a) The 
N1023A and N1023D mutants are superposed. The (2Fo - Fc) electron density 
map for the N1023A mutant is shown. (b) The N1023D mutant alone and its (2Fo 
- Fc) electron density map. 
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Figure S4. Distance between EspP 
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Asn1023  and 
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Asn1023

  (N-C distance) or the 
equivalent atoms in Hbp in 10 ns molecular dynamics simulations. The average 
N-C distance is shown in parenthesis. (a) Wild-type EspP and selected EspP 
mutants. The simulations were performed for wild-type EspP by substituting 
asparagine at position 1023 of the EspP N1023A or N1023D pre-cleavage 
structures. These wild-type models are referred to as A1023N and D1023N, 
respectively. Several EspP mutants that affect cleavage in vivo were then 
simulated in the D1023N background. (b) Repeated runs for the wild-type EspP 
models A1023N and D1023N, the EspP E1154Q mutant in the D1023N 
background, and EspP with unprotonated Glu1172 (E1172-) in the D1023N 
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background. A wild-type model of Hbp was also simulated by replacing the 
mutant aspartate with the native asparagine at position 1100. 
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Figure S5. Root mean-square deviation (RMSD) of the protein backbone for 
selected simulations.  Included for each curve are the initial 3.5 ns of equilibration 
with Asn1023 restrained for EspP or Asn1100 restrained for Hbp followed by the 
subsequent 10 ns of free simulation.  The EspP models A1023N, D1023N, and 
E1154Q are shown along with the Hbp wild-type model. 
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Supplemental Experimental Procedures 
 

Expression, purification, and crystallization 

The genes used to express the EspP pre-cleavage mutants (N1023A, N1023S, 

and N1023D) were made by gene synthesis (Biobasic Inc.). The genes were 

cloned into the EcoRI and HindIII sites of pTrc99a 3. Each gene contains the 

OmpA signal sequence followed by a short linker (APKDN) and six histidines. 

Directly after the histidine tag, the EspP sequence begins with Ala999. 

 The EspP pre-cleavage mutants were grown to saturation in Overnight 

ExpressTM Instant TB Medium (Novagen) containing 100 µg/ml carbenicillin at 37 

ºC with shaking. The cells were harvested, lysed, and EspP was purified as 

described previously 4 with the following exceptions. For the size exclusion step, 

the column was equilibrated with buffer containing 20 mM Tris HCl pH 7.5, 200 

mM NaCl, 0.5 mM EDTA, 0.02% (w/v) Sodium Azide, 0.05% 

lauryldimethylamine-N-oxide (Fluka), and 0.45% (w/v) tetraethylene glycol 

monooctyl ether (Anatrace). The purified protein was concentrated to 10 mg/ml. 

Heptanetriol (Sigma) was added to the protein to a final concentration of 3.0% 

(w/v) and this protein solution was used for crystallization. 

 Crystals were grown at 21 ºC in hanging drops. The best crystals were 

grown for the EspP N1023A and N1023S mutants by mixing equal volumes of 

protein and well solution containing 20% (w/v) PEG 8,000 and 20% (v/v) glycerol. 

For the EspP N1023D mutant, the best crystals were grown similarly using a well 

solution containing 18% (w/v) PEG 8,000, 20% (v/v) glycerol, and 25 mM sodium 

acetate. Crystals were frozen and stored in liquid nitrogen. 
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