Sampling the firee energy surfaces of collective variables

Jérôme Hénin

Enhanced Sampling and Free-Energy Calculations
Urbana, 12 September 2018

Please interrupt!

Outline

- Free energy
- Collective variables
- Free energy landscapes
- Methods to compute (estimate) FE landscapes
- from probability distribution (histograms)
- from forces (thermodynamic integration)
- from adapted biasing potential (metadynamics)
- Methods to sample FE landscapes
- umbrella sampling
- metadynamics : adaptive biasing potential
- adaptive biasing force

Tetramethylammonium - acetone binding

Free energy

- free energy differences \leftrightarrow probability ratios

$$
\begin{gathered}
\Delta F_{A B}=F_{B}-F_{A}=-k_{B} T \ln \left(\frac{P_{B}}{P_{A}}\right) \\
\Delta F_{A B}>0 \Longleftrightarrow P_{B}<P_{A} \\
\Delta F_{A B}=0 \Longleftrightarrow P_{B}=P_{A}
\end{gathered}
$$

- macrostates (A, B) are collections of microstates (atom coordinates x)
- \rightarrow probabilities of macrostates are sums (integrals) over microstates

$$
P_{A}=\int_{A} p(x) d x
$$

- probabilities of microstates follow Boltzmann distribution

$$
p(x)=\frac{\exp \left(-V(x) / k_{B} T\right)}{Z}=\frac{1}{Z} e^{-\beta V(x)}
$$

Collective variables

- geometric variables that depend on the positions of several atoms (hence "collective")
- mathematically: functions of atomic coordinates $z=\xi\left(x_{i}, y_{i}, z_{i} \ldots\right)$
- example: distance between two atoms

$$
d_{12}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\sqrt{\left(r_{2}-r_{1}\right)^{2}}
$$

- distance between the centers of mass of groups of atoms $\mathrm{G}_{1}, \mathrm{G}_{2}$

$$
d_{G 1, G 2}=\sqrt{\left(\frac{\sum_{i \in G_{2}} m_{i} r_{i}}{\sum_{i \in G_{2}} m_{i}}-\frac{\sum_{i \in G_{1}} m_{i} r_{i}}{\sum_{i \in G_{1}} m_{i}}\right)^{2}}
$$

Probability distribution of a collective variable

- we know the 3 N -dimensional probability distribution of atom coordinates x :

$$
p(x)=\frac{\exp \left(-V(x) / k_{B} T\right)}{Z}
$$

- what is the probability distribution of $z=\xi(x)$
- theory: sum (integral) over all the values of x corresponding to a value of z

$$
\rho(z)=\int p(x) \delta(\xi(x)-z) d x
$$

- in simulations: sample and calculate a histogram of coordinate z

Probability distribution of a collective variable (1) from unbiased simulation

Probability distribution
TMA-acetone pair in vacuum, 1 ns unbiased MD

Probability distribution
TMA-acetone pair in vacuum, 1 ns unbiased MD

Probability distribution of a collective variable (2) with enhanced sampling

From probability to free energy

Probability distribution
TMA-acetone pair in vacuum

Free energy profile for TMA - acetone pair

Ways to calculate the free energy

- from unbiased histogram $A(z)=-k_{B} T \ln (\rho(z))+C$
- from biased histogram (importance sampling) with bias Vbias(z)

$$
A(z)=-k_{B} T \ln (\rho(z))-V^{\mathrm{bias}}(z)+C
$$

- in Umbrella Sampling, need to find values of C !
- estimate and integrate free energy derivative (gradient): Thermodynamic Integration

$$
\begin{aligned}
A(z) & =\int_{0}^{z} A^{\prime}\left(z^{*}\right) d z^{*}+A(0) \\
A^{\prime}(z) & =\left\langle\frac{\partial V}{\partial z}-k_{B} T \frac{\partial \ln |J|}{\partial z}\right\rangle_{\xi(x)=z}
\end{aligned}
$$

Umbrella sampling

Histograms from Umbrella Sampling

- distribute (stratify) sampling using multiple confinement restraints
- combine partial information of each histogram by computing relative free energies
- WHAM (weighted histogram analysis method)
- MBAR (multistate Bennett's acceptance ratio)
- requires overlap between sampling in adjacent windows

Multi-channel free energy landscape

Multi-channel free energy landscape

Umbrella Sampling: stratification

Umbrella Sampling or Not Sampling?

benefit of adaptive sampling methods: no stratification needed

Orthogonal relaxation in ABF

Hénin, Tajkhorshid, Schulten \& Chipot, Biophys J. 2008

Adaptive sampling 1: adaptive biasing potential

Free energy profile $A(z)$ is linked to distribution of transition coordinate:

$$
e^{-\beta A(z)} \propto \rho(z) \propto \int e^{-\beta V(x)} \delta(\xi(x)-z) d x
$$

ABP: time-dependent biased potential

$$
\tilde{V}_{t}(x)=V(x)-A_{t}(\xi(x)) \quad \text { where } A_{t} \text { converges to } A
$$

Long-time biased distribution: $\quad \tilde{\rho}_{\infty}(z) \propto e^{-\beta\left(A(z)-A_{\infty}(z)\right)}$
that is, a uniform distribution.

Adaptive Biasing Potential : Metadynamics

- adaptive bias is sum of Gaussian functions created at current position
- pushes coordinate away from visited regions
- convergence requires careful tuning of time dependence of the bias ("well-tempered" metadynamics)

Illustration: Parrinello group, ETH Zürich

Adaptive sampling 2: Adaptive Biasing Force (ABF)

- ABF: time-dependent biasing force
$\tilde{F}_{t}(x)=-\nabla V(x)+A_{t}^{\prime}(\xi(x)) \nabla \xi \quad$ where A_{t}^{\prime} converges to A^{\prime}
- long-time biased distribution is uniform, as in ABP
- how do we estimate A'?

Free energy derivative is a mean force

$$
\begin{gathered}
A(z)=-k_{B} T \ln \left(\int e^{-\beta V(x)} \delta(\xi(x)-z) d x\right) \\
A^{\prime}(z)=\left\langle\frac{\partial V}{\partial z}-k_{B} T \frac{\partial \ln |J|}{\partial z}\right\rangle_{\xi(x)=z}
\end{gathered}
$$

$-\frac{\partial V}{\partial z}$ is a projected force (defined by coordinate transform)

$$
\frac{1}{\beta} \frac{\partial \ln |J|}{\partial z} \text { is a geometric (entropic) term }
$$

den Otter J. Chem. Phys. 2000

Simpler estimator of free energy gradient

- for each variable ξ_{i}, force is measured along arbitrary vector field $v_{i}(x)$ (Ciccotti et al. 2005)
- orthogonality condition: $v_{i} \cdot \nabla_{x} \xi_{j}=\delta_{i j}$
- free energy gradient: $\partial_{i} A(z)=\left\langle v_{i} \cdot \nabla_{x} V-k_{B} T \nabla_{x} \cdot v_{i}\right\rangle_{\xi(x)=z}$
- there are other estimators:
- from constraint force (original ABF, Darve \& Pohorille 2001)
- from time derivatives of coordinate (Darve \& Pohorille 2008)

1. Stretching deca-alanine

Hénin \& Chipot JCP 2004

2. Sampling deca-alanine?

Chipot \& Hénin JCP 2005
3. Sampling in higher dimension

4. More robust sampling for poor coordinates: Multiple-Walker ABF

- good performance with hidden barriers (Minoukadeh, Chipot, Lelièvre 2010)
- can sample systems using incomplete set of collective variables?

ABF, $1 \times 100 \mathrm{~ns}$

MW-ABF, 32×3 ns

ABF: a tale of annoying geometry

Estimator of free energy gradient:

- for each variable ξ_{i}, force is "measured" along arbitrary vector field v_{i} (Ciccotti et al. 2005)
- orthogonality conditions: $\left\{\begin{array}{c}\boldsymbol{v}_{i} \cdot \nabla_{\boldsymbol{x}} \xi_{j}=\delta_{i j} \\ \boldsymbol{v}_{i} \cdot \nabla_{\boldsymbol{x}} \sigma_{k}=0\end{array}\right.$
- free energy gradient: $\partial_{i} A(z)=\left\langle v_{i} \cdot \nabla_{x} V-k_{B} T \nabla_{x} \cdot v_{i}\right\rangle_{\xi(x)=z}$
- geometric calculations are sometimes intractable (e.g. second derivatives of elaborate coordinates)
- orthogonality conditions are additional constraints
- in practice, many cases where ABF is unavailable

extended-system Adaptive Biasing Force (eABF)

- idea: Lelièvre, Rousset \& Stoltz 2007
- implementation: Fiorin, Klein \& Hénin 2013

Get rid of geometry by watching an unphysical variable λ, harmonically coupled to our geometric coordinate:

$$
V^{k}(x, \lambda)=V(x)+\frac{1}{2} k(\xi(x)-\lambda)^{2}
$$

λ undergoes Langevin dynamics with mass m.
Mass and force constant based on desired fluctuation and period:

$$
\begin{aligned}
\sigma & =\sqrt{\frac{k_{B} T}{k}} \\
\tau & =2 \pi \sqrt{\frac{m}{k}}
\end{aligned}
$$

eABF trajectories

Tight vs. loose coupling

Free energy estimators for eABF

- A^{k} is an estimator of free energy A, asymptotically accurate for high \boldsymbol{k}
- other estimators lift this "stiff spring" requirement:
- umbrella integration (Kästner \& Thiel 2005, Zheng \& Yang 2012, Fu, Shao, Chipot \& Cai 2016)
- CZAR (Lesage, Lelièvre, Stoltz \& Hénin 2017)
- using these estimators, eABF is a hybrid adaptive method (free energy estimate is separate from bias)

Hybrid methods

- adaptive sampling combines free energy estimation and enhanced sampling
- hybrid methods: bias based on one estimator, use another estimator to compute final free energy
- examples:
- unbiased sampling with thermodynamic integration
- metadynamics with thermodynamic integration
- eABF dynamics with UI or CZAR estimator

Different estimates at very short sampling times

- same long-time results, but different short-time convergence!
- caution: may be system-dependent
- efficiency of sampling vs. biases in short-time estimates
\rightarrow benefit of hybrid methods

Thank you!

Questions?

