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Biology and the curse of dimensionality
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we need reduced representations

made of few selected coordinates
● for human intuition
● for importance sampling



Outline

● Free energy

● Collective variables

● Free energy landscapes

● Methods to compute (estimate) FE landscapes

– from probability distribution (histograms)

– from forces (thermodynamic integration)

– from adapted biasing potential (metadynamics)

● Methods to sample FE landscapes

– umbrella sampling

– metadynamics : adaptive biasing potential

– adaptive biasing force



Tetramethylammonium – acetone binding



Free energy

● free energy differences ↔ probability ratios

● macrostates (A, B) are collections of microstates (atom coordinates x)

● →probabilities of macrostates are sums (integrals) over microstates

● probabilities of microstates follow Boltzmann distribution



Collective variables

● geometric variables that depend on the positions of several atoms
(hence “collective”)

● mathematically: functions of atomic coordinates

● example: distance between two atoms

● distance between the centers of mass of groups of atoms G1, G2



Probability distribution of a collective variable

● we know the 3N-dimensional probability distribution of atom coordinates x:

● what is the probability distribution of

● theory: sum (integral) over all the values of x corresponding to a value of z

● in simulations: sample and calculate a histogram of coordinate z



Probability distribution of a collective variable

(1) from unbiased simulation
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Probability distribution of a collective variable

(2) with enhanced sampling
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From probability to free energy
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Free energy profile for TMA - acetone pair



Ways to calculate the free energy

● from unbiased histogram

● from biased histogram (importance sampling) with bias Vbias(z)

– in Umbrella Sampling, need to find values of C!

● estimate and integrate free energy derivative (gradient):
Thermodynamic Integration



Umbrella sampling
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● distribute (stratify) sampling using multiple confinement restraints

● combine partial information of each histogram by computing relative free 
energies

– WHAM (weighted histogram analysis method)

– MBAR (multistate Bennett’s acceptance ratio)

● requires overlap between sampling in adjacent windows



Multi-channel free energy landscape

hidden
barrier



Multi-channel free energy landscape

hidden
barrier



Umbrella Sampling: stratification



Umbrella Sampling or Not Sampling?

benefit of adaptive sampling methods: no stratification needed



  

Orthogonal relaxation in ABF

Hénin, Tajkhorshid, Schulten & Chipot, Biophys J. 2008



Adaptive sampling 1: adaptive biasing potential

where A
t
 converges to A

Free energy profile A(z) is linked to distribution of transition coordinate:

ABP: time-dependent biased potential

Long-time biased distribution:

that is, a uniform distribution.



Adaptive Biasing Potential : Metadynamics

● adaptive bias is sum of Gaussian functions created at current position

● pushes coordinate away from visited regions

● convergence requires careful tuning of time dependence of the bias
(“well-tempered” metadynamics)

Illustration: Parrinello group, ETH Zürich



Adaptive sampling 2: Adaptive Biasing Force (ABF)

where A’
t
 converges to A’

● ABF: time-dependent biasing force

● long-time biased distribution is uniform, as in ABP

● how do we estimate A’?



Free energy derivative is a mean force

is a projected force (defined by coordinate transform)

is a geometric (entropic) term

den Otter J. Chem. Phys. 2000



Simpler estimator of free energy gradient

● for each variable ξi, force is measured along arbitrary vector field
(Ciccotti et al. 2005)

● orthogonality condition:

● free energy gradient:

● there are other estimators:

– from constraint force (original ABF, Darve & Pohorille 2001)  

– from time derivatives of coordinate (Darve & Pohorille 2008)



1. Stretching deca-alanine

Hénin & Chipot JCP 2004



2. Sampling deca-alanine?

Chipot & Hénin JCP 2005



3. Sampling in higher dimension

Hénin et al. JCTC 2010



4. More robust sampling for poor coordinates:

Multiple-Walker ABF

● good performance with hidden barriers (Minoukadeh, Chipot, Lelièvre 2010)

● can sample systems using incomplete set of collective variables? 

ABF, 1 x 100 ns MW-ABF,  32 x 3 ns



ABF: a tale of annoying geometry

Estimator of free energy gradient:

● for each variable ξi, force is “measured” along arbitrary vector field vi
(Ciccotti et al. 2005)

● orthogonality conditions:

● free energy gradient:

● geometric calculations are sometimes intractable
(e.g. second derivatives of elaborate coordinates)

● orthogonality conditions are additional constraints

● in practice, many cases where ABF is unavailable



extended-system Adaptive Biasing Force (eABF)

● idea: Lelièvre, Rousset & Stoltz 2007

● implementation: Fiorin, Klein & Hénin 2013

Get rid of geometry by watching an unphysical variable λ ,
harmonically coupled to our geometric coordinate:

λ undergoes Langevin dynamics with mass m.
Mass and force constant based on desired fluctuation and period:



eABF trajectories



Tight vs. loose coupling

λ

z z

λ



Free energy estimators for eABF

● Ak is an estimator of free energy A, asymptotically accurate for high k

● other estimators lift this “stiff spring” requirement:

– umbrella integration (Kästner & Thiel 2005, Zheng & Yang 2012,
Fu, Shao, Chipot & Cai 2016)

– CZAR (Lesage, Lelièvre, Stoltz & Hénin 2017)

● using these estimators, eABF is a hybrid adaptive method
(free energy estimate is separate from bias)



Hybrid methods

● adaptive sampling combines free energy estimation and enhanced 
sampling

● hybrid methods: bias based on one estimator, use another estimator to 
compute final free energy

● examples:

– unbiased sampling with thermodynamic integration

– metadynamics with thermodynamic integration

– eABF dynamics with UI or CZAR estimator



Different estimates at very short sampling times
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● same long-time results, but different short-time convergence!
● caution: may be system-dependent
● efficiency of sampling vs. biases in short-time estimates

→ benefit of hybrid methods



Thank you!

Questions?
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