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pH Effects in Biochemistry
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Constant pH and the semi-grand canonical ensemble

◮ Conventional MD samples a canonical ensemble:

Q =

∫

dx e−βU(x)

◮ Constant-pH MD samples a semi-grand canonical ensemble:

Ξ(pH) =
∑

λ∈S

Qλ10
−nλpH

The added interaction is between the number of protons, nλ, and a
pH bath. λ is a new variable designating the protonation state.



Networks of protonation states
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Networks of protonation states
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pH as a thermodynamic force

◮ Classical MD utilizes mechanical forces

F = −∇U[x(t)]

◮ pH may be regarded as a thermodynamic force

pH = −
1

ln 10

∂ ln Ξ

∂nλ

Mechanical forces – deterministic/stochastic dynamics
Thermodynamic forces – probabilistic “dynamics”

Pλ(pH) ∝ Qλ10
−nλpH



How do we define nodes in the network?

Consider a system with m sites:



Protonation state probabilities/populations

〈A(x ,λ)〉pH =

∑

λ∈S

∫

dx A(x ,λ)e−βU(x ;λ)10−nλpH

Ξ(pH)

Pλs
= 〈λs〉pH – the probability that site s is occupied

There are two kinds of terms in the summation, λs = 0/1

Ξ(pH) = Ξ0(pH) + Ξ1(pH)10
−pH

thus,

〈λs〉pH =
Ξ1(pH)10

−pH

Ξ0(pH) + Ξ1(pH)10−pH
=

1

1 + Ξ0(pH)
Ξ1(pH)10

pH



Connection to thermodynamics

〈λs〉pH =
1

1 + Ξ0(pH)
Ξ1(pH)10

pH

compares to the Henderson-Hasselbalch equation such that

pKa(pH) = − log
Ξ0(pH)

Ξ1(pH)
,

except that now pKa(pH) is pH dependent. One often uses the
approximation:

pKa(pH) ≈ pK
(a)
a + (1− n)

(

pH− pK
(a)
a

)

,

where n is the Hill coefficient and pK
(a)
a is the “apparent” pKa.



Networks of protonation states
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We can now see that the fraction of simulation time spent in a
given protonation state is directly impacted by the difference of the
pKa of a residue/site and the pH.



That’s great – how do we sample the states?

1. Sample the configuration space of a given state
(i.e., sample x for a given Qλ)

2. Change between protonation states according to the number
of protons and the given pH
(i.e., sample λ and choose a new Qλ)

This may be regarded as a Gibbs sampling, whereby the
configuration and state are sampled in an alternating fashion.



A problem! Environmental response

◮ (De)Protonation is a significant electrostatic event.

◮ Non-trivial reorganization of solvent, possibly solute.

◮ Naive sudden changes in protonation are likely to cause high
energy configurations and/or steric clashes.



Possible solutions to the solvent clash problem

auxillary

implicit

solvent

continuous

fractional

proton

discrete copy

fractional

proton



“Fast” alchemical growth

◮ Swap the protonation state by using time-dependent
interactions.

◮ Gradually stronger interactions will induce solvent response.

◮ Clashes are avoided by using the natural dynamics of the
model.



The neMD/MC constant pH paradigm

◮ Drive alchemical growth with nonequilibrium work

◮ Accept/reject with a generalized Metropolis criterion
Stern J Chem Phys, 2007; Chen & Roux J Chem Theory Comput, 2015;

Radak, et al. J Chem Theory Comput, 2017



The neMD/MC constant pH paradigm
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Beyond Gibbs sampling: Hybrid MD and neMD/MC

We now alternate conventional sampling with MD (x) and
Metropolis Monte Carlo sampling (x and λ):

ρ(x ,λ)T (x ,λ → x
′,λ′) = ρ(x ′,λ′)T (x ′,λ′ → x ,λ)

such that the neMD/MC transition probability is:

T (x ,λ → x
′,λ′) = min

[

1,
ρ(x ′,λ′)

ρ(x ,λ)

]

= min
[

1, e−βW 10−∆npH
]

(If you’d like, MD uses the probability T (x → x
′) = 1.)



Important considerations

◮ How long should I sample the equilibrium stage?

◮ How long should I sample the nonequilibrium stage?
(the “switch time,” τswitch)

◮ Rejecting a nonequilibrum trajectory is expensive,
how can we avoid doing that so much?



The two-step “inherent” pKa algorithm

T (x ,λ → x
′,λ′) = T (i)(λ → λ

′)T (s)(x → x
′|λ → λ

′)

T (i)(λ → λ
′) = min

[

1, 10pK
(i)
a (λ,λ′)−∆npH

]

◮ neMD/MC can be split into two parts

1. T (i) – only depends on λ and the pH – CHEAP
2. T (s) – depends on the switch (W ) – COSTLY

Chen & Roux J Chem Theory Comput, 2015; Radak, et al. J Chem Theory Comput, 2017
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The two-step “inherent” pKa algorithm

T (x ,λ → x
′,λ′) = T (i)(λ → λ

′)T (s)(x → x
′|λ → λ

′)

T (i)(λ → λ
′) = min

[

1, 10pK
(i)
a (λ,λ′)−∆npH

]

◮ neMD/MC can be split into two parts

1. T (i) – only depends on λ and the pH – CHEAP
2. T (s) – depends on the switch (W ) – COSTLY

◮ Effort is shifted by estimating a parameter, pK
(i)
a

◮ Optimal efficiency achieved for exact pKa

◮ Dramatically improved performance on wide pH ranges!

Chen & Roux J Chem Theory Comput, 2015; Radak, et al. J Chem Theory Comput, 2017



A graphical view of the inherent pKa algorithm
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◮ It’s silly to try to add/remove protons to/from acidic/basic
residues at high/low pH

◮ Transitions are proposed in proportion to the estimated
population.



What about after we’ve proposed a switch?

◮ A short switch will not change much and likely be rejected.

◮ A long switch is expensive (limit of a single switch – BAD).

◮ Since the switch success depends on the work, let’s analyze
that.



Work and force fluctuations – a typical neMD/MC cycle
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Theoretical and Empirical Performance Analysis
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◮ High acceptance is good, but not naively optimizable

◮ The transition rate can be optimized within constraints

Radak & Roux J Chem Phys, 2017; Radak, et al. J Chem Theory Comput, 2017



Main take-aways for the algorithm

◮ Estimating/updating the inherent pKa is very helpful for
efficiency.

◮ The best choice of switch time depends on the particular
dynamics – values near 10–20 ps are reasonable. Look for
acceptance rates ∼20%.

◮ The length of each cycle depends largely on the number of
residues. Values near 0.1–1 ps should be reasonable.



NAMD Constant pH: Features and Keywords

◮ Flexible Tcl interface source lib/namdcph/namdcph.tcl

◮ PSF build procedure is unchanged (automated psfgen)

◮ Implemented with PME and full electrostatics

◮ No GPU yet - depends on alchemy

◮ Companion analysis script cphanalyze

parameters par_cph36_prot.prm

cphConfigFile conf_cph36_prot.json

topology top_cph36_prot.rtf

pH 7.0

cphNumstepsPerSwitch 7500 ;# run 7500 steps per switch

cphRun 500 10 ;# run 10 cycles of 500 MD steps



CHARMM36: Reference amino acids are well-reproduced
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◮ Adjustments to force field
enforce empirical reference
values

◮ Implicitly model solvated
proton and bond energy
effects

◮ Bonus:
accurate reproduction of
tautomeric ratios!



Staph nuclease (SNase) - A constant pH benchmark



Benchmarking of SNase pKa values
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◮ Good correlation with
measured values for
carboxylates
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Output and Analysis
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◮ cphanalyze can...

◮ boost performance with
WHAM

◮ extract pKa from Hill
fitting



A Brief WHAM Primer

Consider k = 1, . . . ,M pH values with Nk samples per value
(N =

∑M
k=1 Nk) and site occupancies λt at each timestep.

Pχ(pH) =
1

N

N
∑

t=1

wt(pH)χ(λt),

wt(pH) ≡

[

M
∑

k=1

Nk

N
ef (pHk )−f (pH)10−(pHk−pH)nt

]−1

◮ Energy difference only depends on the proton count, nt

◮ Can compute probability for any indicator, χ(λt)

◮ Permits consistent interpolation/extrapolation



Output and Analysis

◮ New output: cphlog

◮ New checkpoint files:
psf/pdb, cphrst

parameters par_cph36_prot.prm

cphConfigFile conf_cph36_prot.json

topology top_cph36_prot.rtf

structure $oldOutputName.psf

coordinates $oldOutputName.pdb

cphRestartFile $oldOutputName.cphrst

cphRun 500 10

Example cphlog:

#pH 4.0

#PROA:129:ASP PROA:141:GLU PROA:142:HIS

PROA:145:ASP PROA:150:LYS PROA:161:GLU

PROA:162:ASP

1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0

2 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0

3 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0

4 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0



Membranes... things get weird

◮ A fluctuating net charge is
tricky with PME.

E = E (x) +O

(

Q

V ǫ

)

◮ Membrane systems have a lower
than usual mean dielectric and
smaller aqueous volume.

◮ Multiple options to correct this,
but all require care.



Membranes... things get weird
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◮ Significant shifts due to low dielectric region.

◮ Effective pH changes by ∼2 units!



Other cautions: WHAM versus “naive” data analysis

◮ WHAM is effectively a Bayesian framework with prior
assumption that
1. the data is i.i.d.
2. the data is Boltzmann distributed

◮ This may be misleading when convergence is poor!
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Other cautions: WHAM versus “naive” data analysis

◮ WHAM is effectively a Bayesian framework with prior
assumption that
1. the data is i.i.d.
2. the data is Boltzmann distributed

◮ This may be misleading when convergence is poor!
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Concluding Remarks/Future Directions

1. You can run constant-pH MD today on globular protein
systems.

◮ Consider using for systems with large numbers of (unknown) states

◮ Can also use this as an alternative for structure based assignment

2. Things we are working on:
◮ Performance improvements in alchemy – CUDA support
◮ Better support for membrane systems
◮ Better visualization support in VMD
◮ More automated inherent pKa selection

◮ pH replica exchange

3. Things we would like to work on:
◮ psfgen improvements – support for Drude
◮ Support for other force fields

◮ More general small molecule support


