Simulating Biomolecules with Variable Protonation State: Constant-pH Molecular Dynamics Simulations with NAMD

Brian Radak

University of Illinois at Urbana–Champaign Beckman Institute and Center for Macromolecular Modeling & Bioinformatics

Computational Biophysics Workshop – Enhanced Sampling and Free Energy Calculations September 11, 2018

Acknowledgements (other people to blame)

Univ of Chicago

- Benoît Roux
- Donghyuk Suh

ALCF

Wei Jiang

UIUC

- Dave Hardy
- Jim Phillips
- Chris Chipot
- Abhi Singharoy (ASU)
- Shashank Pant
- Emad Tajkhorshid

Theta Early Science Program

MEMBRANE PROTEIN STRUCTURAL DYNAMICS GATEWAY

pH Effects in Biochemistry

Casey, et al Nat Rev Mol Cell Biol, 2010

Conventional MD samples a canonical ensemble:

$$Q = \int d\mathbf{x} \, e^{-eta U(\mathbf{x})}$$

Constant-pH MD samples a semi-grand canonical ensemble:

$$\Xi(\mathsf{pH}) = \sum_{oldsymbol{\lambda} \in \mathcal{S}} Q_{oldsymbol{\lambda}} 10^{-n_{oldsymbol{\lambda}}\mathsf{pH}}$$

The added interaction is between the number of protons, n_{λ} , and a pH bath. λ is a new variable designating the protonation state.

Networks of protonation states

Networks of protonation states

pH as a *thermodynamic* force

Classical MD utilizes mechanical forces

$$\boldsymbol{F} = -\nabla U[\boldsymbol{x}(t)]$$

▶ pH may be regarded as a *thermodynamic* force

$$\mathsf{pH} = -\frac{1}{\ln 10} \frac{\partial \ln \Xi}{\partial n_{\lambda}}$$

Mechanical forces – deterministic/stochastic dynamics Thermodynamic forces – probabilistic "dynamics"

 $P_{m{\lambda}}(\mathrm{pH}) \propto Q_{m{\lambda}} 10^{-n_{m{\lambda}}\mathrm{pH}}$

How do we define nodes in the network?

Consider a system with m sites:

Protonation state probabilities/populations

$$\langle A(\mathbf{x}, \boldsymbol{\lambda}) \rangle_{\mathsf{pH}} = \frac{\sum_{\boldsymbol{\lambda} \in \mathcal{S}} \int d\mathbf{x} A(\mathbf{x}, \boldsymbol{\lambda}) e^{-\beta U(\mathbf{x}; \boldsymbol{\lambda})} 10^{-n_{\boldsymbol{\lambda}}\mathsf{pH}}}{\Xi(\mathsf{pH})}$$

 $P_{\lambda_s} = \langle \lambda_s \rangle_{\rm pH}$ — the probability that site s is occupied There are two kinds of terms in the summation, $\lambda_s = 0/1$

$$\Xi(\mathsf{pH}) = \Xi_0(\mathsf{pH}) + \Xi_1(\mathsf{pH})10^{-\mathsf{pH}}$$

thus,

$$\langle \lambda_s \rangle_{\mathsf{pH}} = \frac{\Xi_1(\mathsf{pH})10^{-\mathsf{pH}}}{\Xi_0(\mathsf{pH}) + \Xi_1(\mathsf{pH})10^{-\mathsf{pH}}} = \frac{1}{1 + \frac{\Xi_0(\mathsf{pH})}{\Xi_1(\mathsf{pH})}10^{\mathsf{pH}}}$$

Connection to thermodynamics

$$\langle \lambda_s
angle_{\mathsf{pH}} = rac{1}{1 + rac{\Xi_0(\mathsf{pH})}{\Xi_1(\mathsf{pH})} 10^{\mathsf{pH}}}$$

compares to the Henderson-Hasselbalch equation such that

$$\mathsf{p}\mathcal{K}_\mathsf{a}(\mathsf{p}\mathsf{H}) = -\log\frac{\Xi_0(\mathsf{p}\mathsf{H})}{\Xi_1(\mathsf{p}\mathsf{H})},$$

except that now $pK_a(pH)$ is pH *dependent*. One often uses the approximation:

$$\mathsf{p}K_{\mathsf{a}}(pH) \approx \mathsf{p}K_{\mathsf{a}}^{(\mathsf{a})} + (1-n)\left(\mathsf{p}H - \mathsf{p}K_{\mathsf{a}}^{(\mathsf{a})}\right),$$

where *n* is the Hill coefficient and $pK_a^{(a)}$ is the "apparent" pK_a .

Networks of protonation states

We can now see that the fraction of simulation time spent in a given protonation state is directly impacted by the *difference* of the pK_a of a residue/site and the pH.

- 1. Sample the configuration space of a given state (*i.e.*, sample x for a given Q_{λ})
- Change between protonation states according to the number of protons and the given pH (*i.e.*, sample λ and choose a new Q_λ)

This may be regarded as a **Gibbs sampling**, whereby the configuration and state are sampled in an *alternating* fashion.

A problem! Environmental response

- (De)Protonation is a significant electrostatic event.
- Non-trivial reorganization of solvent, possibly solute.
- Naive sudden changes in protonation are likely to cause high energy configurations and/or steric clashes.

Possible solutions to the solvent clash problem

"Fast" alchemical growth

- Swap the protonation state by using time-dependent interactions.
- Gradually stronger interactions will induce solvent response.
- Clashes are avoided by using the natural dynamics of the model.

The neMD/MC constant pH paradigm

- Drive alchemical growth with nonequilibrium work
- Accept/reject with a generalized Metropolis criterion

Stern J Chem Phys, 2007; Chen & Roux J Chem Theory Comput, 2015; Radak, et al. J Chem Theory Comput, 2017

The neMD/MC constant pH paradigm

- Drive alchemical growth with nonequilibrium work
- Accept/reject with a generalized Metropolis criterion

Stern J Chem Phys, 2007; Chen & Roux J Chem Theory Comput, 2015; Radak, et al. J Chem Theory Comput, 2017 We now alternate conventional sampling with MD (x) and Metropolis Monte Carlo sampling $(x \text{ and } \lambda)$:

$$\rho(\mathbf{x}, \boldsymbol{\lambda}) T(\mathbf{x}, \boldsymbol{\lambda} \to \mathbf{x}', \boldsymbol{\lambda}') = \rho(\mathbf{x}', \boldsymbol{\lambda}') T(\mathbf{x}', \boldsymbol{\lambda}' \to \mathbf{x}, \boldsymbol{\lambda})$$

such that the neMD/MC transition probability is:

$$T(\mathbf{x}, \mathbf{\lambda} \to \mathbf{x}', \mathbf{\lambda}') = \min \left[1, \frac{\rho(\mathbf{x}', \mathbf{\lambda}')}{\rho(\mathbf{x}, \mathbf{\lambda})}\right]$$
$$= \min \left[1, e^{-\beta W} 10^{-\Delta n \text{pH}}\right]$$

(If you'd like, MD uses the probability T(x
ightarrow x') = 1.)

- How long should I sample the equilibrium stage?
- How long should I sample the nonequilibrium stage? (the "switch time," τ_{switch})
- Rejecting a nonequilibrum trajectory is expensive, how can we avoid doing that so much?

The two-step "inherent" pK_a algorithm

$$T(\mathbf{x}, \mathbf{\lambda} \to \mathbf{x}', \mathbf{\lambda}') = T^{(i)}(\mathbf{\lambda} \to \mathbf{\lambda}')T^{(s)}(\mathbf{x} \to \mathbf{x}'|\mathbf{\lambda} \to \mathbf{\lambda}')$$
$$T^{(i)}(\mathbf{\lambda} \to \mathbf{\lambda}') = \min\left[1, 10^{\mathsf{pK}_{\mathsf{a}}^{(i)}(\mathbf{\lambda}, \mathbf{\lambda}') - \Delta n\mathsf{pH}}\right]$$

neMD/MC can be split into *two* parts 1. T⁽ⁱ⁾ – only depends on λ and the pH – CHEAP 2. T^(s) – depends on the switch (W) – COSTLY

Chen & Roux J Chem Theory Comput, 2015; Radak, et al. J Chem Theory Comput, 2017

The two-step "inherent" pK_a algorithm

$$egin{aligned} \mathcal{T}(m{x},m{\lambda}
ightarrowm{x}',m{\lambda}') &= \mathcal{T}^{(i)}(m{\lambda}
ightarrowm{\lambda}')\mathcal{T}^{(s)}(m{x}
ightarrowm{x}'|m{\lambda}
ightarrowm{\lambda}') \ \mathcal{T}^{(i)}(m{\lambda}
ightarrowm{\lambda}') &= \min\left[1,10^{\mathsf{p}K^{(i)}_{\mathsf{a}}(m{\lambda},m{\lambda}')-\Delta n\mathsf{p}\mathsf{H}}
ight] \end{aligned}$$

- neMD/MC can be split into *two* parts
 1. T⁽ⁱ⁾ only depends on λ and the pH CHEAP
 2. T^(s) depends on the switch (W) COSTLY
- Effort is shifted by estimating a parameter, $pK_a^{(i)}$
- Optimal efficiency achieved for exact pK_a

The two-step "inherent" pK_a algorithm

$$egin{aligned} \mathcal{T}(m{x},m{\lambda}
ightarrowm{x}',m{\lambda}') &= \mathcal{T}^{(i)}(m{\lambda}
ightarrowm{\lambda}')\mathcal{T}^{(s)}(m{x}
ightarrowm{x}'|m{\lambda}
ightarrowm{\lambda}') \ \mathcal{T}^{(i)}(m{\lambda}
ightarrowm{\lambda}') &= \min\left[1,10^{\mathsf{p}K^{(i)}_{\mathsf{a}}(m{\lambda},m{\lambda}')-\Delta n\mathsf{p}\mathsf{H}}
ight] \end{aligned}$$

- Effort is shifted by estimating a parameter, $pK_a^{(i)}$
- Optimal efficiency achieved for exact pK_a
- Dramatically improved performance on wide pH ranges!

A graphical view of the inherent pK_a algorithm

- It's silly to try to add/remove protons to/from acidic/basic residues at high/low pH
- Transitions are proposed in proportion to the estimated population.

What about after we've proposed a switch?

- A short switch will not change much and likely be rejected.
- ► A long switch is expensive (limit of a single switch BAD).
- Since the switch success depends on the work, let's analyze that.

Work and force fluctuations – a typical neMD/MC cycle

Radak & Roux J Chem Phys, 2016

Theoretical and Empirical Performance Analysis

- High acceptance is good, but not naively optimizable
- The transition rate can be optimized within constraints

Radak & Roux J Chem Phys, 2017; Radak, et al. J Chem Theory Comput, 2017

- Estimating/updating the inherent pK_a is very helpful for efficiency.
- ► The best choice of switch time depends on the particular dynamics values near 10–20 ps are reasonable. Look for acceptance rates ~20%.
- The length of each cycle depends largely on the number of residues. Values near 0.1–1 ps should be reasonable.

NAMD Constant pH: Features and Keywords

- Flexible Tcl interface source lib/namdcph/namdcph.tcl
- PSF build procedure is unchanged (automated psfgen)
- Implemented with PME and full electrostatics
- No GPU yet depends on alchemy
- Companion analysis script cphanalyze

```
parameters par_cph36_prot.prm
cphConfigFile conf_cph36_prot.json
topology top_cph36_prot.rtf
pH 7.0
cphNumstepsPerSwitch 7500 ;# run 7500 steps per switch
cphRun 500 10 ;# run 10 cycles of 500 MD steps
```

CHARMM36: Reference amino acids are well-reproduced

- Adjustments to force field enforce empirical reference values
- Implicitly model solvated proton and bond energy effects
- Bonus: accurate reproduction of tautomeric ratios!

Staph nuclease (SNase) - A constant pH benchmark

Benchmarking of SNase pKa values

Radak, et al. J Chem Theory Comput, 2017; Huang, et al. J Chem Theory Comput, 2016

- Good correlation with measured values for carboxylates
- Bonus: estimates for HIS

residue		this work
HIS	8	6.58 (0.29)
	121	5.19 (0.16)

Output and Analysis

- Normal usage requires multiple pH values ("titration curves")
- cphanalyze can...
 - boost performance with WHAM
 - extract pK_a from Hill fitting

A Brief WHAM Primer

Consider k = 1, ..., M pH values with N_k samples per value $(N = \sum_{k=1}^{M} N_k)$ and site occupancies λ_t at each timestep.

$$P_{\chi}(\mathsf{pH}) = \frac{1}{N} \sum_{t=1}^{N} w_t(\mathsf{pH})\chi(\boldsymbol{\lambda}_t),$$

$$w_t(\mathsf{pH}) \equiv \left[\sum_{k=1}^M \frac{N_k}{N} e^{f(\mathsf{pH}_k) - f(\mathsf{pH})} 10^{-(\mathsf{pH}_k - \mathsf{pH})n_t}\right]^{-1}$$

- Energy difference only depends on the proton count, n_t
- Can compute probability for any indicator, $\chi(\boldsymbol{\lambda}_t)$
- Permits consistent interpolation/extrapolation

Output and Analysis

New output: cphlog

 New checkpoint files: psf/pdb, cphrst

parameters par_cph36_prot.prm cphConfigFile conf_cph36_prot.json topology top_cph36_prot.rtf

structure \$oldOutputName.psf
coordinates \$oldOutputName.pdb
cphRestartFile \$oldOutputName.cphrst

cphRun 500 10

Example cphlog:

#pH 4.0 #PROA:129:ASP PROA:141:GLU PROA:142:HIS PROA:145:ASP PROA:150:LYS PROA:161:GLU PROA:162:ASP 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 2 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0 3 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 4 0 0 0 0 1 1 0 0 1 1 1 0 0 0

Membranes... things get weird

 A fluctuating net charge is tricky with PME.

$$E = E(\mathbf{x}) + \mathcal{O}\left(\frac{Q}{V\epsilon}\right)$$

- Membrane systems have a lower than usual mean dielectric and smaller aqueous volume.
- Multiple options to correct this, but all require care.

Membranes... things get weird

- Significant shifts due to low dielectric region.
- ▶ Effective pH changes by ~2 units!

Other cautions: WHAM versus "naive" data analysis

- WHAM is effectively a Bayesian framework with prior assumption that
 - 1. the data is i.i.d.
 - 2. the data is Boltzmann distributed
- This may be misleading when convergence is poor!

Other cautions: WHAM versus "naive" data analysis

- WHAM is effectively a Bayesian framework with prior assumption that
 - 1. the data is i.i.d.
 - 2. the data is Boltzmann distributed
- This may be misleading when convergence is poor!

Concluding Remarks/Future Directions

- 1. You can run constant-pH MD today on globular protein systems.
 - Consider using for systems with large numbers of (unknown) states
 - Can also use this as an alternative for structure based assignment
- 2. Things we are working on:
 - Performance improvements in alchemy CUDA support
 - Better support for membrane systems
 - Better visualization support in VMD
 - More automated inherent pKa selection
 - pH replica exchange
- 3. Things we would like to work on:
 - psfgen improvements support for Drude
 - Support for other force fields
 - More general small molecule support