Lipid Bilayers Are Excellent For Cell Membranes

- Hydrophobic interaction is the driving force
- Self-assembly in water
- Tendency to close on themselves
- Self-sealing (a hole is unfavorable)
- Extensive: up to millimeters

Technical difficulties in Simulations of Biological Membranes

- Time scale
- Heterogeneity of biological membranes 😕

60 x 60 Å Pure POPE 5 ns ~100,000 atoms

Coarse grain modeling of lipids

Also, increasing the time step by orders of magnitude.

by: J. Siewert-Jan Marrink and Alan E. Mark, University of Groningen, The Netherlands

Analysis of Molecular Dynamics Simulations of Biomolecules

- A very complicated arrangement of hundreds of groups interacting with each other
- Where to start to look at?
- What to analyze?
- How much can we learn from simulations?

It is very important to get acquainted with your system

Aquaporins Membrane water channels

Molecular Dynamics Simulations

Protein: ~ Lipids (POPE): ~ Water: ~ Total: ~

15,000 atoms
40,000 atoms
51,000 atoms
106,000 atoms

NAMD, CHARMM27, PME NpT ensemble at 310 K 1ns equilibration, 4ns production 10 days /ns - 32-proc Linux cluster 3.5 days/ns - 128 O2000 CPUs

0.35 days/ns - 512 LeMieux CPUs

Protein Embedding in Membrane

Hydrophobic surface of the protein Ring of Tyr and Trp

GlpF in VMD

Structurally Conserved Features

112 A

A Recipe for Membrane Protein Simulations

- Insert your protein into a hydrated lipid bilayer.
- Fix the protein; minimize the rest and run a short "constantpressure" MD to bring lipids closer to the protein and fill the gap between the protein and lipids.
- Watch water molecules; if necessary apply constraints to prevent them from penetrating into the open gaps between lipids and the protein.
- Monitor the volume of your simulation box until it is almost constant. Do not run the system for too long during this phase.
- Now release the protein, minimize the whole system, and start an NpT simulation of the whole system.
- If desired, you may switch to an NVT simulation, when the system reaches a stable volume.

Lipid-Protein Packing During the Initial NpT Simulation

Adjustment of Membrane Thickness to the Protein Hydrophobic Surface

Glycerol-Saturated GlpF

Complete description of the conduction pathway

Details of Protein-Substrate Interaction Are Always Important

- Identify those groups of the protein that are directly involved in the main function of the protein.
- Look at the interaction of these primary residues with other groups in the protein.
- Look at buried charged residues inside the protein; they must have an important role.
- Backbone hydrogen bonds are mainly responsible for stabilization of secondary structure elements in the protein; side chain hydrogen bonds could be functionally important.

Channel Hydrogen Bonding Sites

```
""
{set frame 0}{frame < 100}{incr frame}{
    animate goto $frame
    set donor [atomselect top
    "name 0 N and within 2 of
    (resname GCL and name H0)"]
    lappend [$donor get index] list1
    set acceptor [atomselect top
    "resname GCL and name 0 and
    within 2 of (protein and name HN H0)"]
    lappend [$acceptor get index] list2
}</pre>
```


Channel Hydrogen Bonding Sites

GLN	41	OE1 NE2	LEU	197	0
TRP	48	O NE1	THR	198	0
GLY	64	0	GLY	199	0
ALA	65	0	PHE	200	0
HIS	66	O ND1	ALA	201	0
LEU	67	0	ASN	203	ND2
ASN	68	ND2			
ASP	130	OD1	LYS	33	HZ1 HZ3
GLY	133	0	GLN	41	HE21
SER	136	0	TRP	48	HE1
TYR	138	0	HIS	66	HD1
PRO	139	O N	<u>ASN</u>	68	HD22
ASN	140	OD1 ND2	TYR	138	HN
HIS	142	ND1	ASN	140	HN HD21 HD22
THR	167	OG1	HIS	142	HD1
GLY	195	0	GLY	199	HN
PRO	196	0	<u>ASN</u>	203	HN HD21HD22
			<u>ARG</u>	206	HE HH21HH22

Channel Hydrogen Bonding Sites

GLN	41	OE1 NE2	LEU	197	0
TRP	48	O NE1	THR	198	0
GLY	64	0	GLY	199	0
ALA	65	0	PHE	200	0
HIS	66	O ND1	ALA	201	0
LEU	67	0	ASN	203	ND2
ASN	68	ND2			
ASP	130	OD1	LYS	33	HZ1 HZ3
GLY	133	0	GLN	41	HE21
SER	136	0	TRP	48	HE1
TYR	138	0	HIS	66	HD1
PRO	139	O N	<u>ASN</u>	68	HD22
ASN	140	OD1 ND2	TYR	138	HN
HIS	142	ND1	ASN	140	HN HD21 HD22
THR	167	OG1	HIS	142	HD1
GLY	195	0	GLY	199	HN
PRO	196	0	<u>ASN</u>	203	HN HD21HD22
			<u>ARG</u>	206	HE HH21HH22

Single Glycerol per channel

Steered Molecular Dynamics

SMD Simulation of Glycerol Passage

Trajectory of glycerol pulled by constant force

Evidence for Stereoselectivity of Glycerol

Cannot be verified by experimental measurements

Free Energy Calculation in SMD

SMD simulation a non-equilibrium process

$$\Delta G \leq \left< W \right>$$

One needs to discount irreversible work

$$e^{-\Delta G/k_BT} = \left\langle e^{-W/k_BT} \right\rangle$$

Jarzynski, *PRL* 1997 Hummer, *PNAS*, *JCP* 2001 Liphardt, et al., *Science* 2002

Constructing the Potential of Mean Force

- Captures major features of the channel
- The largest barrier ~ 7.3 kcal/mol; exp.: 9.6±1.5 kcal/mol

Water permeation

18 water conducted In 4 monomers in 4 ns 1.125 water/monomer/ns Exp. = ~ 1-2 /ns

5 nanosecond Simulation

7-8 water molecules in each channel

Diffusion of Water in the channel

One dimensional diffusion: $2Dt = \langle (z_t - z_0)^2 \rangle$ Experimental value for AQP1: 0.4-0.8 e-5

REMEMBER:

One of the most useful advantages of simulations over experiments is that you can modify the system as you wish: You can do modifications that are not even possible at all in reality!

This is a powerful technique to test hypotheses developed during your simulations. Use it!

Electrostatic Stabilization of Water Bipolar Arrangement

Proton transfer through water

