Evolution of Protein Structure

			Second	position			
		U	С	A	G		
First position	U	UUU UUC UUA UUA Leu	UCU UCC UCA UCG	UAU UAC Tyr UAA Stop UAG Stop	UGU UGC Cys UGA Stop UGG Trp	UCAG	U C A G
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAA GIn CAG	CGU CGC CGA CGG	U C A G	osition
	A	AUU AUC AUA AUG Met/start	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	UCAG	Third po
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC Asp GAA GAA GAU GAG	GGU GGC GGA GGG	U C A G	

Luthey-Schulten Group

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings

Department of Chemistry, Biophysics, and Beckman Institute University of Illinois at Urbana-Champaign

Copyright 2006 ZLS Universal Phylogenetic Tree three domains of life

Based on 16S rRNA

Leucyl-tRNA synthetase displays the full canonical phylogenetic distribution.

Woese, Olsen, Ibba, Soll MMBR 2000

After W. Doolittle, modified by G. Olsen

Phylogenetic Distributions

Full Canonical

Basal Canonical

Non-canonical

increasing inter-domain of life Horizontal Gene Transfer

"HGT erodes the historical trace, but does not completely erase it...." G. Olsen

Protein Structure Similarity Measure

Q_H Structural Homology

fraction of native contacts for aligned residues + presence and perturbation of gaps

 $Q_H = \aleph \left[q_{aln} + q_{gap} \right]$

$$q_{aln} = \sum_{i < j-2} \exp \left[-\frac{(r_{ij} - r_{i'j'})^2}{2\sigma_{ij}^2} \right]$$

O'Donoghue & Luthey-Schulten MMBR 2003.

0.02

0

0

0.2

0.4

0

0.6

0.8

1

Structural Similarity Measure the effect of insertions

"Gaps should count as a character but not dominate" C. Woese

$$+ \sum_{g_b} \sum_{j}^{N_{aln}} \max\left\{ \exp\left[-\frac{\left(r_{g_b j} - r_{g'_b j'} \right)^2}{2\sigma_{g_b j}^2} \right], \exp\left[-\frac{\left(r_{g_b j} - r_{g''_b j'} \right)^2}{2\sigma_{g_b j}^2} \right] \right\}$$

^{Compright 2006 ZLS} structure encodes evolutionary information

Ceptrotein structure reveals distant evolutionary events Class I AARSs Class II AARSs

Copyright 2006 ZLS Protein structure reveals distant evolutionary events Class I AARSs Class II AARSs

Class I Lysyl-tRNA Synthetase

Class II Lysyl-tRNA Synthetase

^{Cop}Sequences define more recent evolutionary events

Conformational changes in the same protein.

ThrRS

T-AMP analog, 1.55 A. T, 2.00 A.

 $Q_{\rm H} = 0.80$ Sequence identity = 1.00

Structures for two different species.

ProRS

M. jannaschii, 2.55 A. *M. thermoautotrophicus*, 3.20 A.

 $Q_{\rm H} = 0.89$ Sequence identity = 0.69

Copyright 2006-ZLS Non-redundant Representative Sets

QR computes a set of maximal linearly independent structures.

P. O'Donoghue and Z. Luthey-Schulten (2003) MMBR 67:550-571.

P. O'Donoghue and Z. Luthey-Schulten (2005) J. Mol. Biol., 346, 875-894.

^{Copyright 2006 ZLS} Numerical Encoding of Proteins in a Multiple Alignment

Alignment is a Matrix with Linearly Dependent Columns

A maximal linearly independent subset can be determined with respect to a threshold, e.g., similarity measure threshold.

Applications of Evolutionary Profiles

- I. Genome Annotation AARS MJ1660
- **II. Conserved Core -- Folding Nuclei? HD Exchange?**
- **III. Functional Ancestor ?**
- **IV. Classification of Protein Structures** Superfamilies

Profile of the ILMV Subclass?

Subclass

Profile of the ILMV Subclass

How many sequences are needed to represent the Subclass ILMV?

If each of ILMV was full canonical, then we would need 4x3=12 sequences.

	Class I	Class II
Full Canonical	WYLIE	FHPD
Basal Canonical	R M V K ₁	ТА
Non-Canonical	CQ	$S~G_{\alpha_2}~K_{11}~N~G_{(\alpha\beta)_2}$

Since M and V are basal, we need at least 2x3 + 2x2 = 10 sequences.

We have 6 structures.

^{Coppright 2006 ZLS} EVOlUtionary Profiles for Homology Recognition AARS Subclass ILMV

The composition of the profile matters. Choosing the right 10 sequence makes all the difference.

A. Sethi, P. O'Donoghue, Z. Luthey-Schulten (2005) JMB, PNAS

Genome Annotation

M.jannaschii genome was completely sequenced in 1996. Genome had four missing AARSs:

AsnRS
GlnRSIndirect MechanismLysRSClass I AARSCysRS?

Cysteinyl-tRNA(Cys) formation in *Methanocaldococcus jannaschii*: the mechanism is still unknown. *J. Bacteriology*, Jan. 2004, **186:**8-14. Ruan B, Nakano H, Tanaka M, Mills JA, DeVito JA, Min B, Low KB, Battista JR, and Söll D.

M. jannaschii genome database search using EP of class II AARS with HMMER

Protein	E-value	
HisRS	1.1e-10	
AspRS	1.9e-10	
PheRS α -chain	9.5e-10	
ThrRS	6.6e-04	
ProRS	9.1e-03	
SerRS	9.2e-03	11000
putative CysRS	1.6e-02 + M	J166U
AlaRS	5.1e-02	
GlyRS	0.12	
PheRS β-chain	0.15	Sethi, et. al., PNAS, 102 , 2005
DNA repair protein	7.5	
and the second		

Connections of Direct and Indirect Pathways for Cysteinyl-tRNA formation to Cysteine Biosynthesis

Sauerwald et al., Science, 307, 2005, 1969-1972.

^{Copyright 200} Genes for Cysteine Biosynthesis and Aminoacylation

	Cys coding		Cys bio	ynthesis		Cys biosynt	nesis/coding
	CysRS	CysE	CysK/M	CBS	CGL	SepRS	SepCysS
Crenarchaea				100 Arr -			
Aeropyrum pernix	NP_148045	6	NP_148041	NP_147802	NP_147803	1.1.1	
Sulfolobus solfataricus	NP_343652	and the second	(NP_341900)	(NP_341900)	(NP_343729)	11 - E C	
Sulfolobus tokodaii	NP_378245	1	(NP_377338)	(NP_377338)	(NP_376392)		-
Pyrobaculum aerophilum	NP_558873	(NP_559322)	(NP_559045)	(NP_559045)	(NP_559999)		
Euryarchaea	1.1						
Haloarcula marismortui	YP_135935	YP_135755	YP_134915	(YP_135866)	(YP_136993)	1 1 2	-
Halobacterium sp.	NP_280014	NP_280304	NP_280167	NP_279635	(NP_279780)	1 million	
Methanothermobacter thermautotrophicus						NP_276615	NP_276195
Methanocaldococcus jannaschii		+		1.04	-	NP_248670	NP_248688
Methanococcus maripaludis	NP_988180	11 - C			- S.	NP_987808	NP_988360
Methanopyrus kandleri	149.0	1. 2				NP_613724	NP_613516
Methanosarcina acetivorans	NP_615709	NP_617620	NP_617619	1.1.20	(NP_617435)	NP_615064	NP_615682
Methanosarcina barkeri	AAF18751	40160510*	AAF07039	- A-		ZP_00298242	ZP_00297376
Methanosarcina mazei	NP_633935	NP_635293		1.	NP_635109	NP_633407	NP_633905
Methanosarcina thermophila	?	AAG01805	AAG01804	2	2	?	2
Methanococcoides burtonii	?	ZP_00149388	ZP_00149387	2	2	ZP_00147576	ZP_00148017 ZP_00148733
Methanospirillum hungatei	401798240*	401798540*	401798280*	7	2	40179880*	401798260*
Methanogenium frigidum	2	7	Contig384. gene842**	2	2	Contig1085. gene108**	Contig1260, gene378**
Pyrococcus abyssi	NP_127080	NP_126842	(NP_126065)	(NP_126065)	(NP_126586)		
Pyrococcus furiosus	NP_578753	NP_578497	(NP_578587)	(NP_578587)	NP_578995		
Pyrococcus horikoshii	NP_142595		-	-	NP_142999		
Ferroplasma acidarmanus	401193730*	2	ZP_0306996	2	2	2	2
Thermoplasma acidophilum	NP_394604	1. 40.	(NP_394010)	(NP_394010)	NP_393559	1	13.0
Thermoplasma volcanium	NP_111763		(NP_111108)	(NP_111108)	(NP_110693)	-	
Picrophilus torridus	YP_022862		YP_022929	(YP_023731)	(YP_023880)		
Archaeoglobus fulgidus	NP_069247	4				NP_068951	NP_068869 NP_069020
Nanoarchaea Nanoarchaeum equitans	NP_069247	11.a.m					.P. O'

*gene object identifiers from Integrated Microbial Genomes database at JGI.

**M. frigidum draft genome sequence, Saunders et al. (2003) Gen. Res. 13, 1580–1588.

All other codes are NCBI-NR database gene identifiers. - absence of gene. ? absence of gene in incomplete genome.

-P. O' Donoghue, A. Sethi, C. Woese, and Z. Luthey-Schulten, PNAS, 2005.

Same pattern as euryarchaeal portion of rRNA tree.

Was present in LUCAS.

P. O' Donoghue, A. Sethi, C. Woese, and Z. Luthey-Schulten, PNAS, 2005.

Evolutionary history of class I CysRS

Bacterial groupings from UPT tree also seen in CysRS phylogeny.

Multiple HGT events of the direct route to archaeal organisms.

The direct route to cysteine aminoacylation was also present in the LUCAS.

P. O' Donoghue, A. Sethi, C. Woese, and Z. Luthey-Schulten, PNAS, 2005.

Evolution of Structure and Function in AspRS

^{Copyright 20} Evolutionary profile for HisA-HisF family

Sethi, et. al., PNAS, 2005.

Economy of Information

How many sequences are needed for profiles?

40

hits to RPB superfamily

20

60

80

A. Sethi, P. O'Donoghue, ZLS, PNAS 102, 2005

Copyright 2006 ZLS Reclassification of TIM barrel Superfamilies ?

Unifying the Worlds of Sequence and Structure

Copyright 2006 ZLS Multiseq in VMD : Merging the sequence and structure worlds

Version 1.83

2006 MultiSeq: New Features

Analyze the Evolution of Sequence and Structure

Plus More Functions

Eliminate Redundancy

Copyright 200

.....

Sequence Editor: Manually adjust alignments or sequences

Acknowledgements

Patrick O'Donoghue Anurag Sethi

Rommie Amaro Felix Autenrieth Alexis Black

John Eargle

Corey Hardin Taras Pogorelov Elijah Roberts Dan Wright

Funding NSF, NIH, DOE Graphics Programmers VMD Elijah Roberts, Dan Wright, John Eargle John Stone

Collaborators Evolutionary Studies Gary Olsen, Carl Woese (UIUC) QR Algorithms Mike Heath (UIUC) Protein Structure Prediction Peter Wolynes, Jose Onuchic (UCSD) Ken Suslick (UIUC)