

Mechanical Functions of Proteins

Forces naturally arise in cells and can also be substrates (ATPase) products (myosin) signals (integrin) of cellular processes

Atomic Force Microscopy Experiments of Ligand Unbinding

agarose bead surface

Atomic Force Microscopy Experiments of Ligand Unbinding

NIH Resource for Macromolecular Modeling and Bioinformatics Theoretical Biophysics Group, Beckman Institute, UIUC

Pulling Biotin out of Avidin

<u>Molecular dynamics study of unbinding of the avidin-biotin complex.</u> Sergei Izrailev, Sergey Stepaniants, Manel Balsera, Yoshi Oono, and Klaus Schulten. *Biophysical Journal*, 72:1568-1581, 1997.

SMD of Biotin Unbinding: What We Learned biotin slips out in steps, guided by amino acid side groups, water molecules act as lubricant, MD overestimates extrusion force

http://www.ks.uiuc.edu

Israilev et al., Biophys. J., 72, 1568-1581 (1997)

NIH Resource for Macromolecular Modeling and Bioinformatics Theoretical Biophysics Group, Beckman Institute, UIUC

Quantitative Comparison

Bridging the gap between SMD and AFM experiments

Rupture/Unfolding Force F₀ and its Distribution

 $\tau(F_0) = 1 \text{ ms}$ time of measurement => F_0 rupture/unfolding force

Distribution of rupture/unfolding force

determination of barrier height based

stationary force applied (pN)

$$p(F_{0}) = \kappa \exp[\beta F_{0}(b-a) - \beta \Delta U - \frac{\kappa k_{B}T}{b-a} e^{-\beta \Delta U} \left(e^{\beta F_{0}(b-a)} - 1 \right)$$

$$\kappa = \delta^{2}(F)/2\tau_{D}kv$$
Israilev *et al.*, Biophys. J., **72**, 1568-1581 (1997)
Balsera *et al.*, Biophys. J., **73**, 1281-1287 (1997)

Distribution of the Barrier Crossing Time

The fraction N(t) that has not crossed the barrier can be expressed through solving the Smoluchowski diffusion equation (linear model potential):

$$N(t) = \frac{1}{2} erfc \left[\frac{-a + \delta(F)Dt/(b-a)}{\sqrt{4Dt}} \right] - \frac{1}{2} exp \left[\frac{\delta(F)a}{b-a} \right] erfc \left[\frac{-a + \delta(F)Dt/(b-a)}{\sqrt{4Dt}} \right]$$

Or approximated by double exponential (general potential): $N(t) = [t_1 \exp(-t/t_1) - t_2 \exp(-t/t_2)]/(t_1-t_2)$, Nadler & Schulten, JCP., **82**, 151-160 (1985)

Interactive Modeling

Binding path of retinal to bacterio-opsin (1)

- Retinal deep in bacterio-opsin binding cleft
- How does it get in?
- Use batch mode interactive steered molecular dynamics to pull retinal out of cleft, find possible binding path

NIH Resource for Macromolecular Modeling and Bioinformatics Theoretical Biophysics Group, Beckman Institute, UIUC

- 10 path segments, 3 attempts each
- Choose best attempt at 9 points during pull
- Found path through membrane, and electrostatically attractive entrance window

Interactive Modeling

Binding path of retinal to bacterio-opsin

2979, 1997.

- Retinal deep in bacterio-opsin binding cleft
- How does it get in?
- Use batch mode interactive steered molecular dynamics to pull retinal out of cleft, find possible binding path

NIH Resource for Macromolecular Modeling and Bioinformatics Theoretical Biophysics Group, Beckman Institute, UIUC

Stepwise Unbinding of Retinal from bR

Isralewitz et al., Biophys. J., 73, 2972-2979 (1997)

NIH Resource for Macromolecular Modeling and Bioinformatics Theoretical Biophysics Group, Beckman Institute, UIUC

Interactive Molecular Dynamics

VMD ←·····► NAMD

J. Stone, J. Gullingsrud, K. Schulten, and P. Grayson. A System for Interactive Molecular Dynamics Simulation. 2001 ACM Symposium on Interactive 3D Graphics, pp.191-194, ACM SIGGRAPH P. Grayson, E. Tajkhorshid, and K. Schulten. Biophysical J, 83: 36 (2003)

- Any PC/Workstation
- Supports 3D forcefeedback devices for interaction

Quantitative Analysis of Substrate Permeation

Jensen et al, PNAS 99: 6731-6736 (2002)

Calculation of the free energy profile of sugar transport from SMD simulations by Jarzynski's identity

Thermodynamics: $\Delta G \leq \langle W \rangle$

Is there any chance to discount the irreversible work? Yes!

Free Energy of Stretched Alpha-Helix (Deca-alanin)

Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. S. Park, F. Khalili-Araghi, E. Tajkhorshid, and K. Schulten. *Journal of Chemical Physics*, 119:3559-3566, 2003

Calculating potentials of mean force from steered molcular dynamics simulations. S. Park and K. Schulten. *Journal of Chemical Physics*, 120: 5946-5961, 2004

Ankyrin Repeats: Springs in the Inner Ear Marcos Sotomayor

Mammalian Inner Ear (from Sensory Transduction. G. L. Fain

Cuticular plate, stereocilia and kinocilium in hair cells (from Sensory Transduction, G. L. Fain)

Tip Links (Kachar et al., 2000)

340,000 atom simulation of 24 repeat ankyrin

- 340,000 atoms including explicit water molecules
- CHARMM27 force-field
- Periodic boundary conditions
- Steered MD (25-75 pN)
- PME for full electrostatic calculation
- Teragrid benchmark: 0.7 day/ns on 128 Itanium 1.5GHz processors.

NAMD: 128 processors NCSA teragrid

Tip Links (Kachar et al., 2000; Corey Lab) Hair bundle (Assad and Corey, from Sensory Transduction, G. L. Fain).

Inner Ear Mechanism

water bath

340,000 atom simulation of 24 repeat ankyrin

NAMD: 128 processors NCSA teragrid

Tip Links (Kachar et al., 2000; Corey Lab) Hair bundle (Assad and Corey, from Sensory Transduction, G. L. Fain).

water bath

340,000 atom simulation of 24 repeat ankyrin

Non-entropic, nearly indistructable molecular spring

NAMD: 128 processors NCSA teragrid

Tip Links (Kachar et al., 2000; Corey Lab) Hair bundle (Assad and Corey, from Sensory Transduction, G. L. Fain).

water bath

Ubiquitin

Fatemeh Araghi, Timothy Isgro, Marcos Sotomayor

Monoubiquitylation versus multi-ubiquitylation

Multifaceted. Ubiquitin can attach to its various substrate proteins, either singly or in chains, and that in turn might determine what effect the ubiquitination has. (K29, K48, and K63 refer to the particular lysine amino acid used to link the ubiquitins to each other.)

First peak when the first beta strand is stretched out

- SMD simulation, with constant velocity
- Box of water 70x240x70 A ~81K atoms
- smd velocity 0.4 A/ps
- smd spring constant 7 kcal/mol A^2

Ubiquitin Unfolding I

Ubiquitin Unfolding II

Pulling Dimer

- SMD (v=0.4 A/ps k=7 kcal/mol A^2) constant P
- Two monomers separate.

