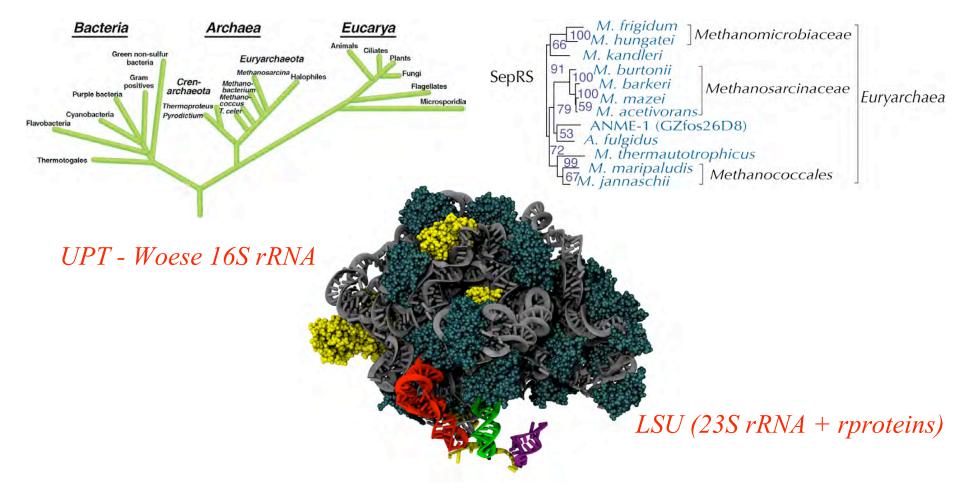
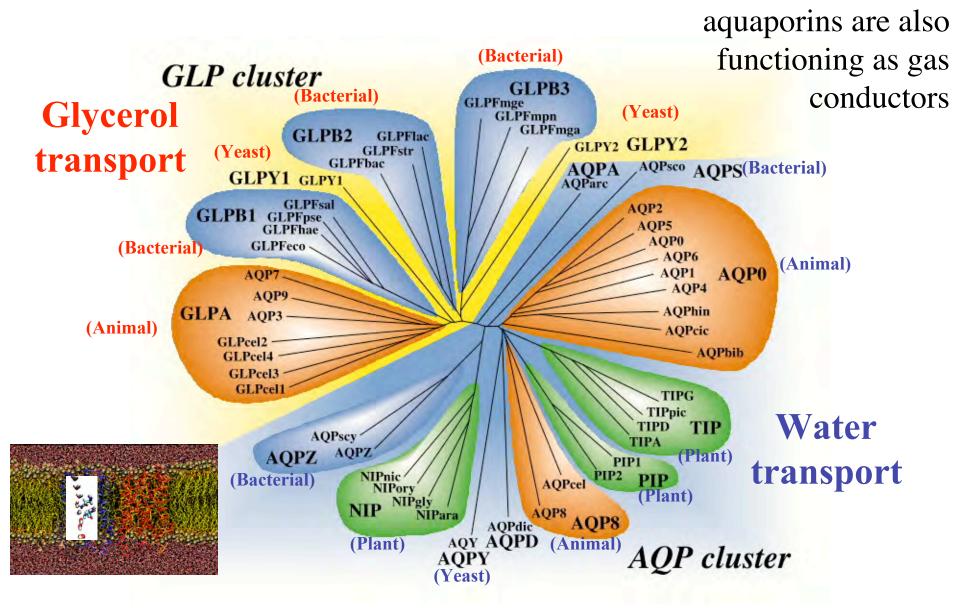
Introduction to Evolutionary Concepts and VMD/MultiSeq - Part I

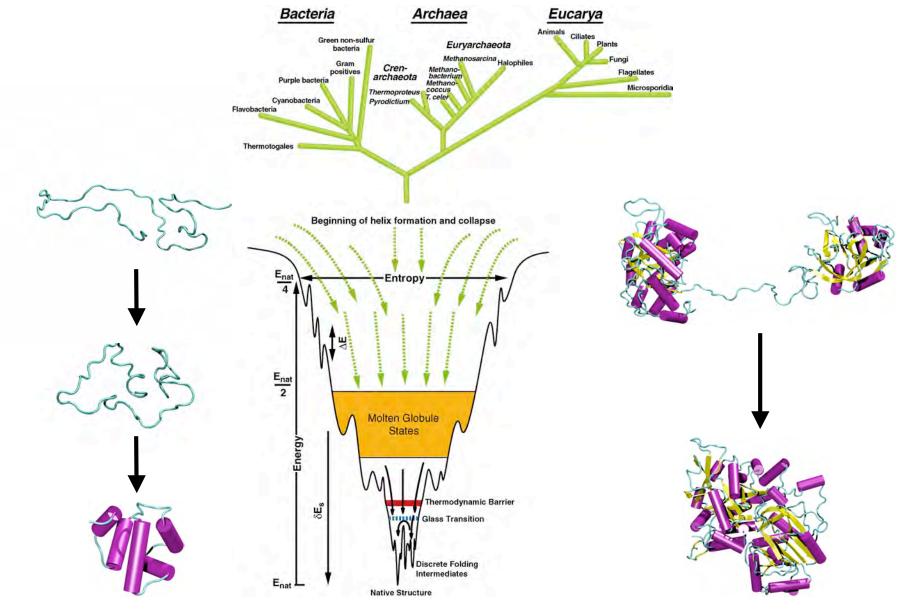

Zaida (Zan) Luthey-Schulten Dept. Chemistry, Beckman Institute, Biophysics, Institute of Genomics Biology, & Physics

NIH Workshop 2009

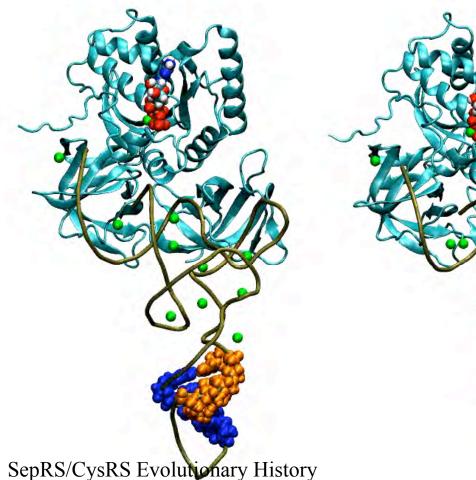


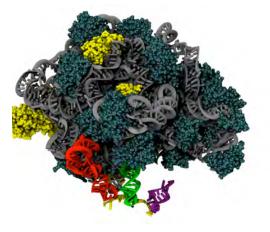
VMD/MultiSeq - "A Tool to Think"

Carl Woese - "VMD is far from a simple visualization tool for a biologist, it is a true thinking tool. Without it a whole class of biological hypotheses would simply not exist."



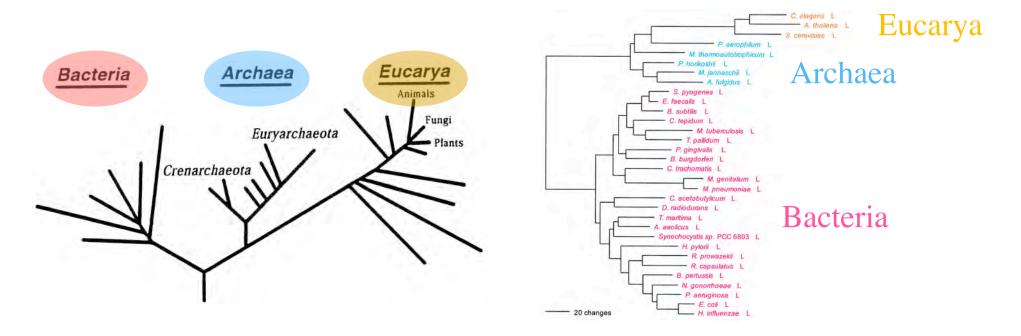
The Aquaporin Superfamily




Heymann and Engel News Physiol. Sci. 14, 187 (1999)

Evolution of Protein (RNA) Folding, Structure, & Function

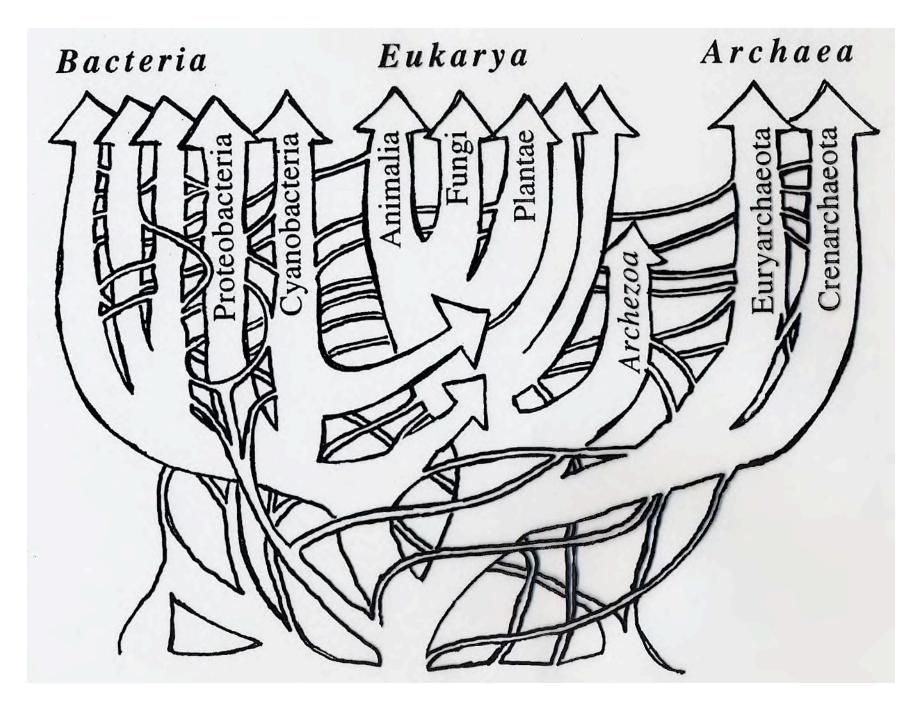
Evolution of Translational Machinery


Proteins/RNA Ribosome

Molecular Signatures of Ribosomal Evolution,

SepRS/CysRS Evolutionary History Sethi, O'Donoghue, ZLS, *PNAS* 2005 O'Donoghue, Sethi, Woese, ZLS, *PNAS* 2005, Sethi, et al. Dynamics of Allosteric Network, **PNAS** 09

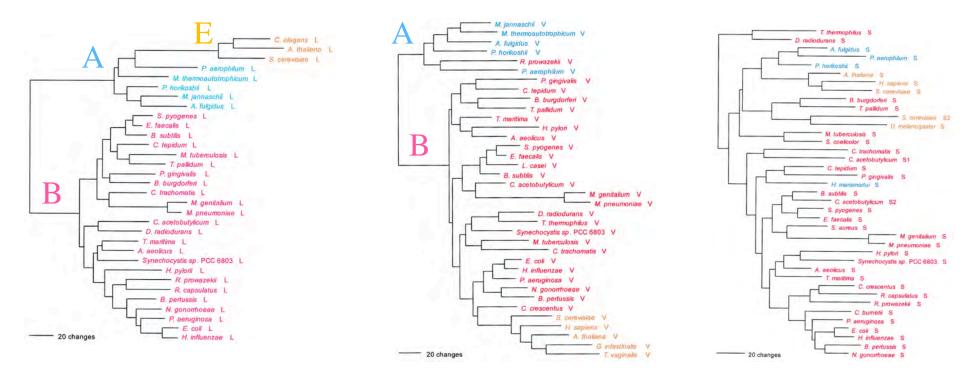
PNAS 2008, Roberts, Dynamical Recognition EF-Tu:tRNA-Novel Amino Acids Eargle et al., *JMB* 2008


Universal Phylogenetic Tree three domains of life

Based on 16S rRNA

Leucyl-tRNA synthetase displays the full canonical phylogenetic distribution.

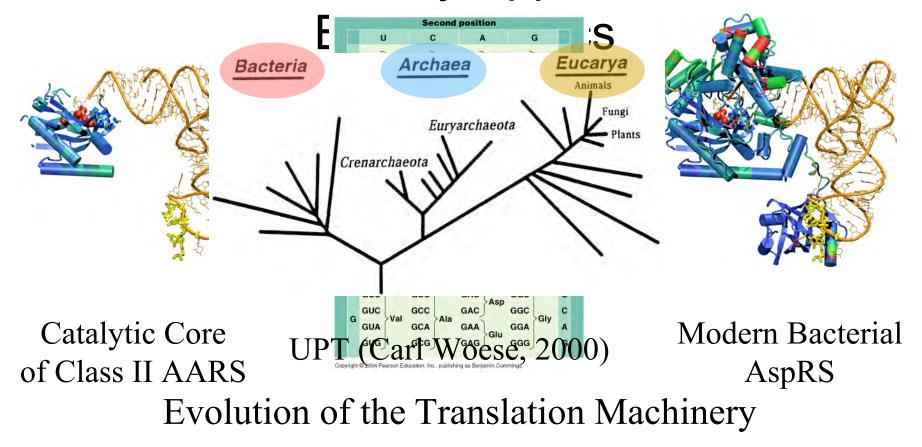
Woese, Olsen, Ibba, Soll MMBR 2000


After W. Doolittle, modified by G. Olsen

Phylogenetic Distributions

Full Canonical

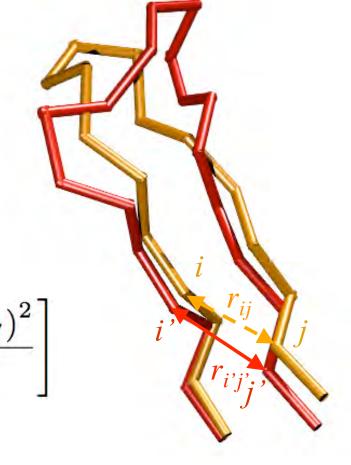
Basal Canonical


Non-canonical

increasing inter-domain of life Horizontal Gene Transfer

"HGT erodes the historical trace, but does not completely erase it...." G. Olsen

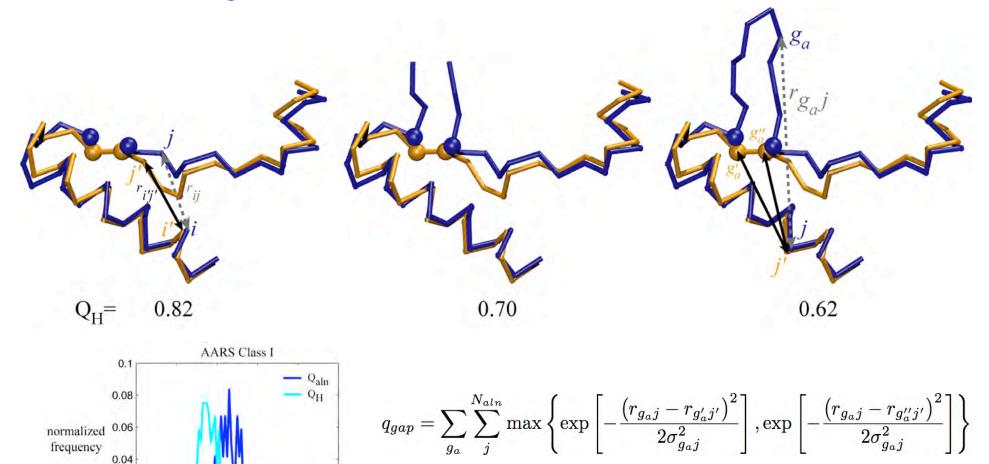
MultiSeq in VMD Evolutionary Approach to


Protein Structure Similarity Measure

Q_H Structural Homology

fraction of native contacts for aligned residues + presence and perturbation of gaps

 $Q_H = \aleph \left[q_{aln} + q_{gap} \right]$


$$q_{aln} = \sum_{i < j-2} \exp\left[-\frac{(r_{ij} - r_{i'j'})^2}{2\sigma_{ij}^2}\right]$$

O'Donoghue & Luthey-Schulten MMBR 2003.

Structural Similarity Measure the effect of insertions

"Gaps should count as a character but not dominate" C. Woese

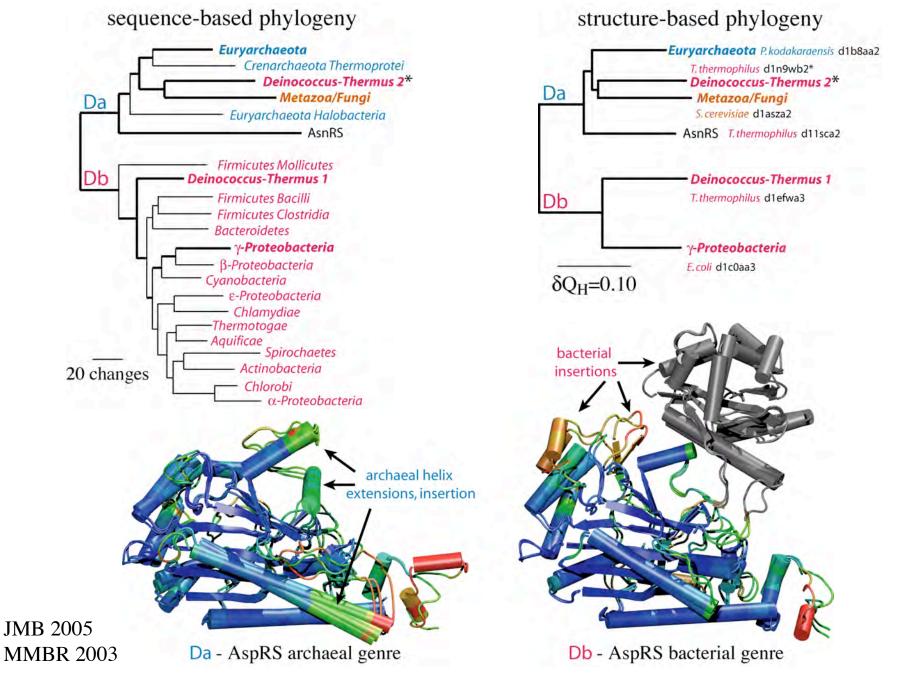
0.02

0

0

0.2

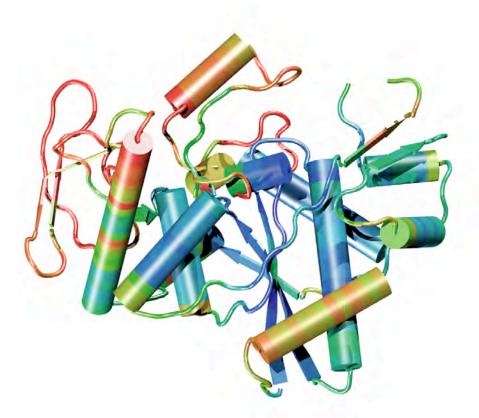
0.4

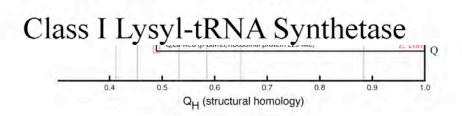

Q

0.6

0.8

$$+ \sum_{g_b} \sum_{j}^{N_{aln}} \max\left\{ \exp\left[-\frac{\left(r_{g_b j} - r_{g'_b j'} \right)^2}{2\sigma_{g_b j}^2} \right], \exp\left[-\frac{\left(r_{g_b j} - r_{g''_b j'} \right)^2}{2\sigma_{g_b j}^2} \right] \right\}$$


Protein structure encodes evolutionary information



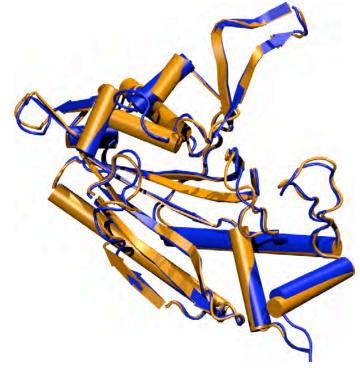
Protein structure reveals distant evolutionary events Class I AARSs Class II AARSs

structure-based phylogenetics

sequence-structure overlap

las	s II I	VSV	l-tR1	NAS	Synth	neta
					T. thermo	ophilus
				-		
0.4	0.5	0.6	0.7	0.8	0.9	1.0
		Q _H (strue	ctural homo	ology)		

Sequences define more recent evolutionary events

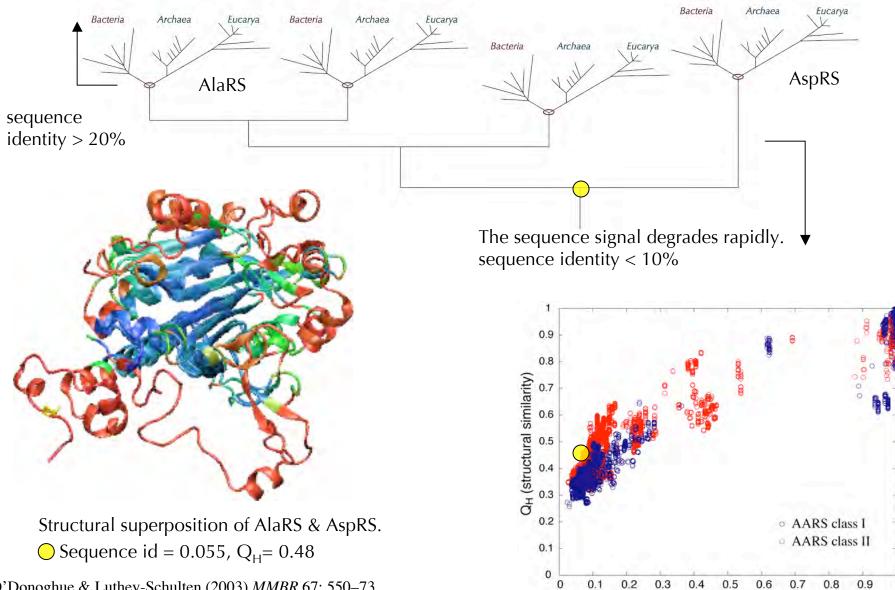


Conformational changes in the same protein.

ThrRS

T-AMP analog, 1.55 A. T, 2.00 A.

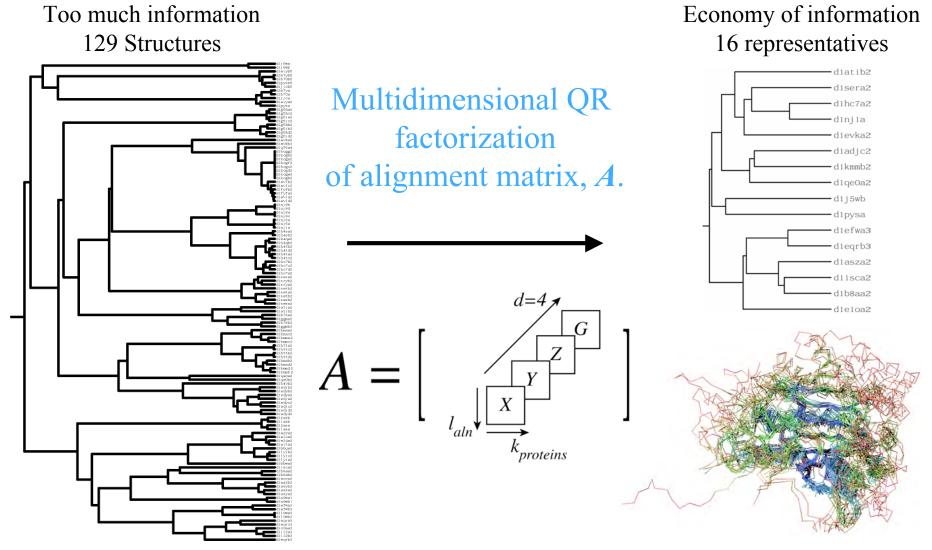
 $Q_{\rm H} = 0.80$ Sequence identity = 1.00


Structures for two different species.

ProRS

M. jannaschii, 2.55 A. *M. thermoautotrophicus*, 3.20 A.

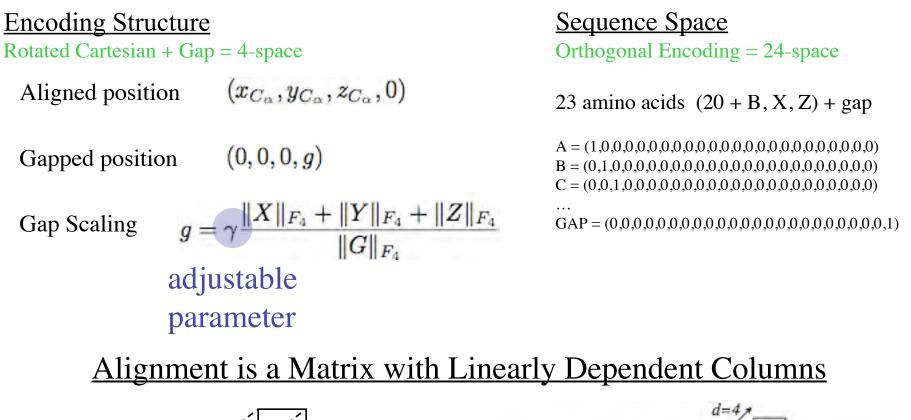
 $Q_{\rm H} = 0.89$ Sequence identity = 0.69

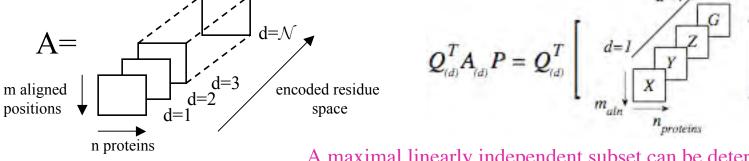

The Relationship Between Sequence & Structure

sequence identity

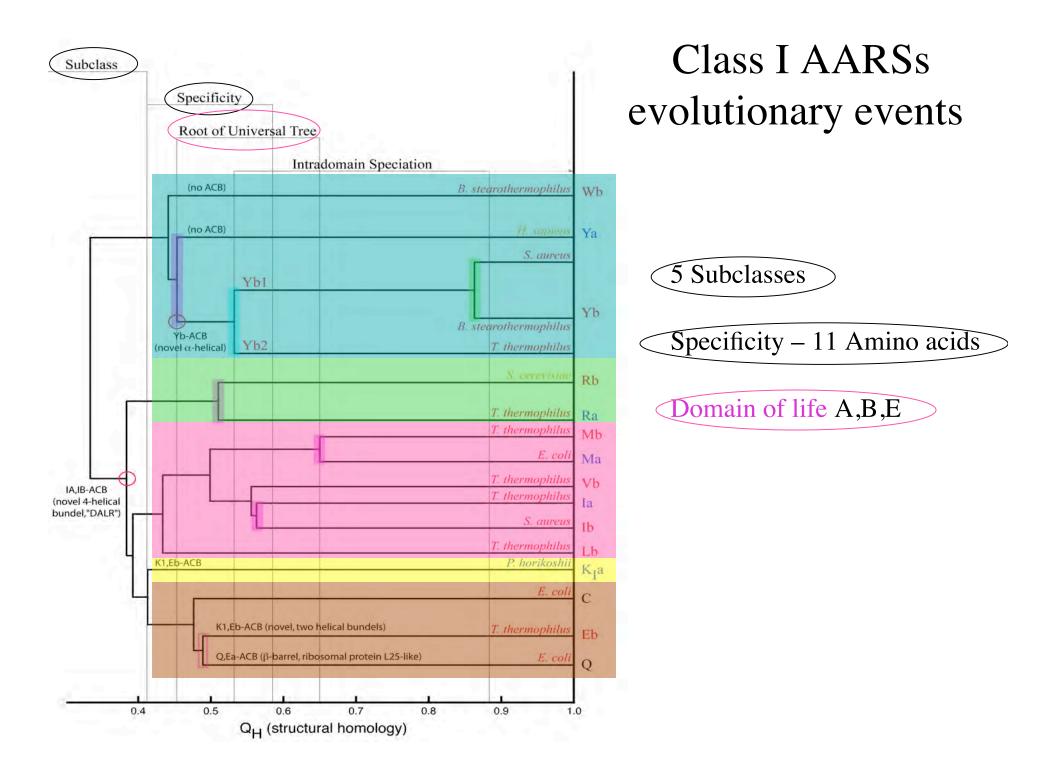
O'Donoghue & Luthey-Schulten (2003) *MMBR* 67: 550–73. Structural alignment & visualization software MultiSeq/VMD

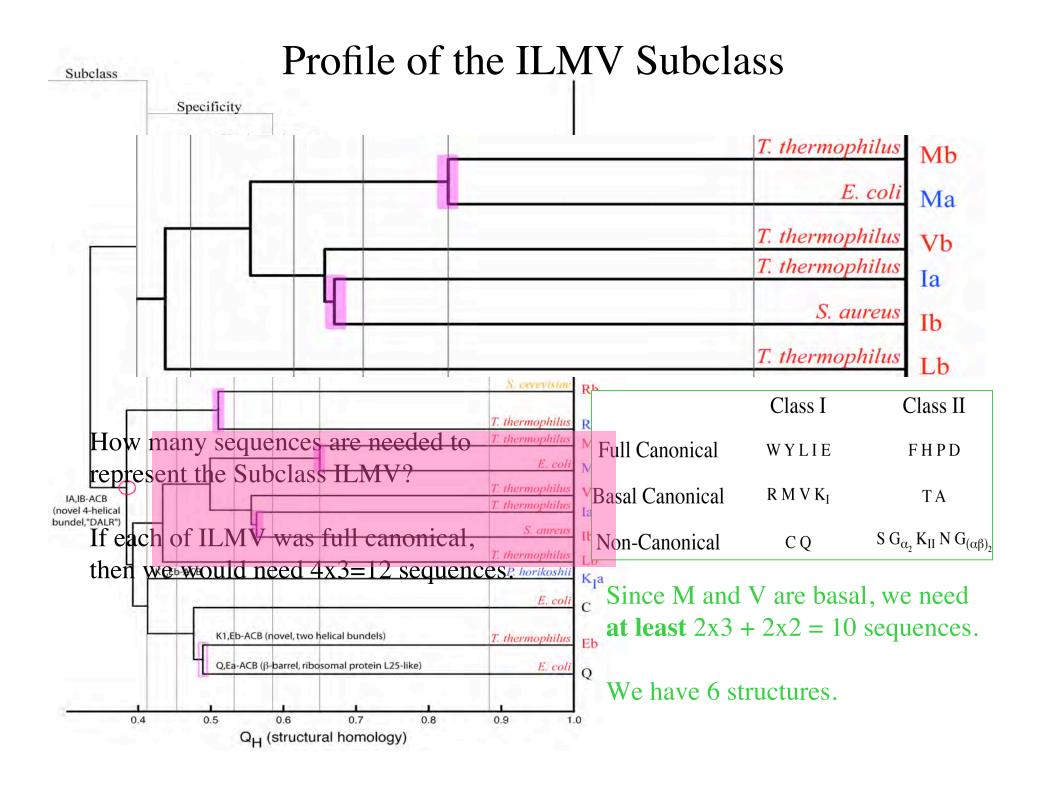
Non-redundant Representative Sets

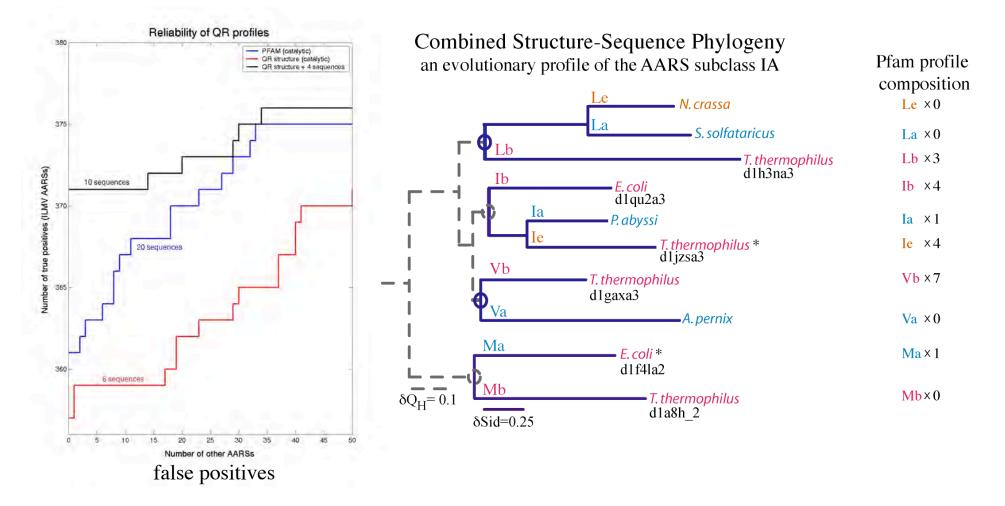



QR computes a set of maximal linearly independent structures.

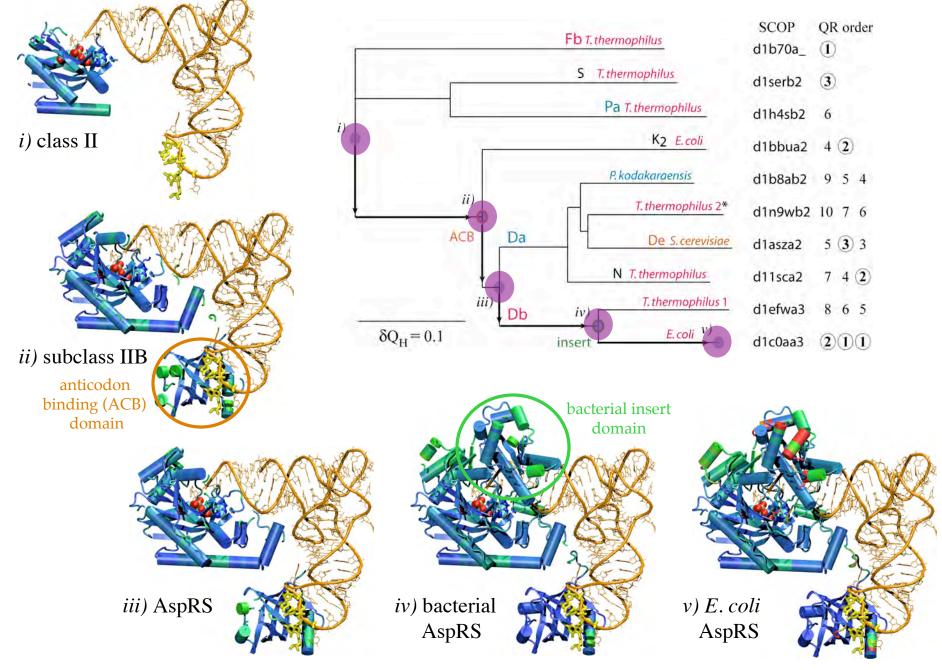
P. O'Donoghue and Z. Luthey-Schulten (2003) MMBR 67:550-571.


P. O'Donoghue and Z. Luthey-Schulten (2005) J. Mol. Biol., 346, 875-894.


Numerical Encoding of Proteins in a Multiple Alignment



A maximal linearly independent subset can be determined with respect to a threshold, e.g., similarity measure threshold.


Evolutionary Profiles for Homology Recognition AARS Subclass ILMV

The composition of the profile matters. Choosing the right 10 sequence makes all the difference.

A. Sethi, P. O'Donoghue, Z. Luthey-Schulten (2005) JMB, PNAS

Evolution of Structure and Function in AspRS

Structural Profiles

1.Structure more conserved than sequences!!! Similar structures at the Family and Superfamily levels. Add more structural information

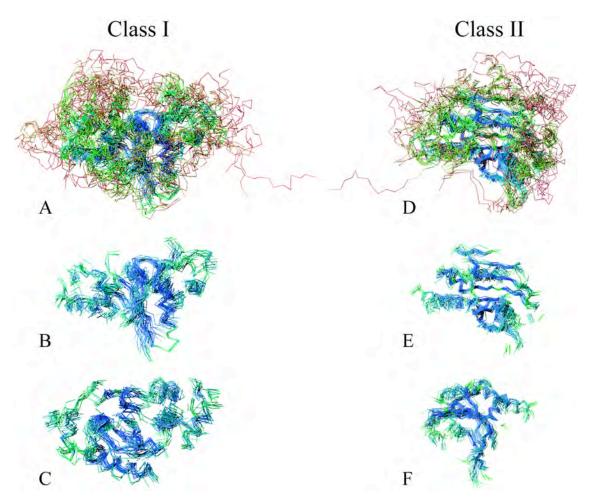
2.Which structures and sequences to include? Use evolution and eliminate redundancy with QR factorization

Structural Domains

Structural Classification of Proteins

Protein: Aspartyl-tRNA synthetase (AspRS) from Escherichia coli

Lineage:


- 1. Root: scop
- 2. Class: All beta proteins
- 3. Fold: OB-fold
- barrel, closed or partly opened n=5, S=10 or S=8; greek-key
- 4. Superfamily: Nucleic acid-binding proteins
- Family: <u>Anticodon-binding domain</u> barrel, closed; n=5, S=10
- 6. Protein: Aspartyl-tRNA synthetase (AspRS) this is N-terminal domain in prokaryotic enzymes and the first "visible" domain in eukaryotic enzymes
- 7. Species: Escherichia coli

PDB Entry Domains:

- 1. <u>1c0a</u> *** 2 2** 1. region a:1-106 *** •**
- - complexed with Img, 5mc, 5mu, amo, h2u, psu, so4
 - 1. region a:1-106
 - 2. region b:1001-1106 💩 🛚 🔳
- 3. <u>1eqr</u>
 - complexed with mg
 - 1. region a:1-106 🔤 🖛 🗉
 - 2. region b:1-106 🔤 🖲 🔲
 - 3. region c:1-106

Profile - Multiple Structural Alignments

Representative Profile of AARS Family Catalytic Domain

STAMP - Multiple Structural Alignments

- 1. Initial Alignment Inputs
- Multiple Sequence alignment
- Ridged Body "Scan"
- 2. Refine Initial Alignment & Produce Multiple Structural Alignment

$$P_{ij} = \left\{ e^{-d_{ij}^2/2E_1} \right\} \left\{ e^{-s_{ij}^2/2E_2} \right\}$$

probability that residue i on structure A is equivalent to residue j on structure B.

 S_{ij} - conformational similarity; function of rms betteen i-1, i, i+1 and j-1, j, j+1.

•Dynamic Programming (Smith-Waterman) through P matrix gives optimal set of equivalent residues.

•This set is used to re-superpose the two chains. Then iterate until alignment score is unchanged.

•This procedure is performed for all pairs.

Multiple Structural Alignments

STAMP – cont'd

2. Refine Initial Alignment & Produce Multiple Structural Alignment

Alignment score:

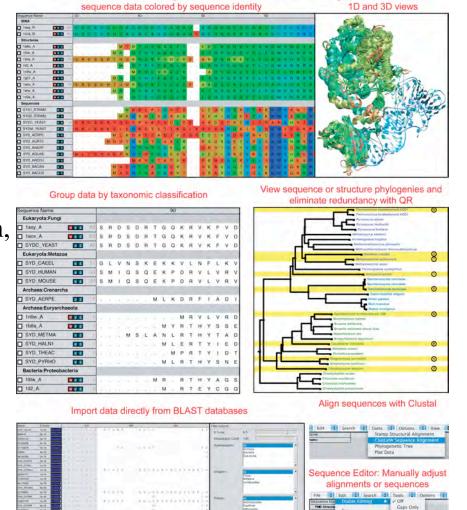
$$\begin{split} S_{C} &= \frac{S_{p}}{L_{p}} \frac{L_{p} - i_{A}}{L_{A}} \frac{L_{p} - i_{B}}{L_{B}} \\ S_{p} &= \sum_{aln.\,path} P_{ij} \\ L_{p}, L_{A}, L_{B} \quad - \text{ length of alignment, sequence A, sequence B} \\ i_{A}, i_{B} \quad - \text{ length of gaps in A and B.} \end{split}$$

Multiple Alignment:

- •Create a dendrogram using the alignment score.
- •Successively align groups of proteins (from branch tips to root).
- •When 2 or more sequences are in a group, then average coordinates are used.

Planned Tools in MultiSeq

Protein / RNA Sequence Data


Entire SwissProt DB, 100,000+ RNA seqs

Metadata Information, Clustal & Phylogenetic Trees

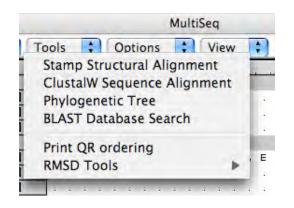
Incorporate genomic content

Blast & PsiBlast

Sequence Editor

Sequence / Structure Alignment RNA Secondary Structure

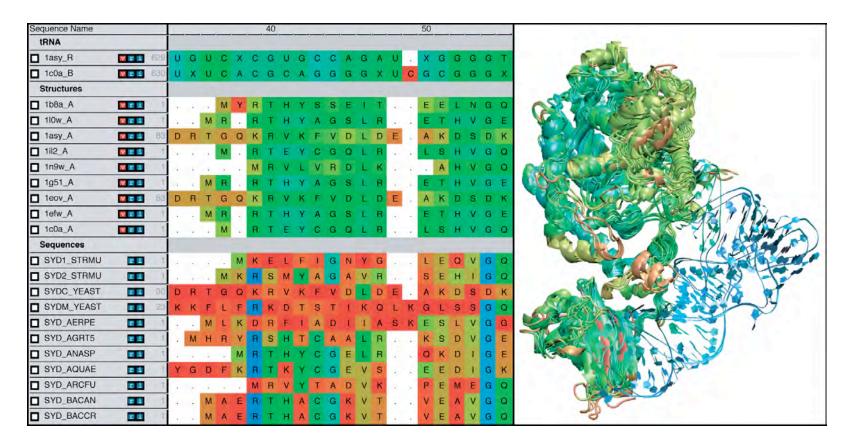
QR non-redundant seq / str sets


Cluster analysis / Bioinformatics scripting

Tutorials MultiSeq/AARS EF-Tu/Ribosome

J. Eargle, D. Wright, Z. Luthey-Schulten, *Bioinformatics*, 22:504 (2006) E. Roberts, J. Eargle, D. Wright, Z. Luthey-Schulten, *BMC Bioinformatics*, 7:382 (2006)

What is MultiSeq?


- MultiSeq is an extension to VMD that provides an environment to combine sequence and structure data
- A platform for performing bioinformatics analyses within the framework of evolution
- Provides software for improving the signal-to-noise ratio in an evolutionary analysis by eliminating redundancy (StructQR, SeqQR, Evolutionary Profiles "EP")
- Visualizes computationally derived metrics (Q_{res}, Q_H,..) or imported experimental properties

Integrates popular bioinformatics tools making them easier to use and reducing the barrier to performing bioinformatics analysis (ClustalW, STAMP, BLAST)

MultiSeq Combines Sequence and Structure

- Align sequences or structures; manually edit alignments
- View data colored by numerous metrics including structural conservation and sequence similarity
- Synchronized coloring between 1D and 3D views

BLAST DB Searching

- Import sequence data directly from BLAST databases
- Search using a single sequence or an EP profile
- Filter results based on taxonomy or redundancy (QR)

Name	E Score					410							4	120								430							Fi	ilter Options			
SYK_GLOVI	1e-19	N P	Y	Ρ	Y	R	Y	E.	R	Т	ΗM	/ A			. G	à D	L	Q									А	к		E Score:	e-5	11	
666876	2e-19	T C	- 1	С	К	I	K	s.																				.		E acore.	e-3	Ш	
67920132	2e-19	N G	E	Ε	\vee	Е	V	D.																						Redundancy Cutoff:	100		
23130228	3e-19	A D	L	А	S	G	ΕI	Ε.																						Superkingdom:	All		
57159018	3e-19			M	1	D	K	ν.			. 1	C C			. A	D	V	Т									Ρ	E		Superkinguom.	Archaea		
1N9W	4e-19	R V	L	V	R	D	LI	к.																				А			Bacteria		
46199389	5e-19	R V	L	\vee	R	D	L	к.																				А			Eukaryota		
SYK_SYNY3	5e-19	R D	L	S	Ν	G	ΕI	Ε.																									
SYK_SYNEL	1e-18	A H	L	А	А	G	E	Α.	1																						ļ		-
SYK_STRMU	1e-18	D P	F	G	К	R	F	Ε.	R	Т	A	S			. G	à Q	L	К	Εŀ	K Y	А	D	K 1	τĸ	Ε	Е	L	н		Kingdom:	All		
50256771	1e-18	E	V	- 1	D	Μ	P	Α.																						rangoom.	Fungi		
57227974	1e-18	E	\vee	1	D	Μ	P	Α.																							Metazoa		
68179432	3e-18	A A	A	L	Е	G	С	Ε.																							Viridiplantae		
SYK_PROMA	4e-18	P N	G	Q	D	R	Е	ι.																									
55738646	5e-18	D P	F	G	К	R	F	Ε.	R	Т	A	S			. 0	Q G	L	К	Εŀ	(Y	А	D	K T	τĸ	Ε	Е	L	н			J.		-
SYK_STRR6	5e-18	< Y	A	N	L	D	K	Ε.										Q									L	н		Phylum:	All	 	
55820759	5e-18	D P	F	G	К	R	F	E.	R	Т	A	S			. 0	à Q	L	К	ΕI	K Y	А	D	K 1	τĸ	Ε	Е	L	н			Actinobacteria		
SYK_STRPN	6e-18	< Y	A	N	L	D	К	Ε.										Q									L	н			Aquificae		
15900610	6e-18	< Y	A	N	L	D	К	Ε.										Q									L	н			Arthropoda Ascomycota		
62526807	6e-18	D P	F	G	К	R	F	E.	R	Т	A	S			. 0	à Q	L	К	ΕI	K Y	А	D	K 1	ΤK	Ε	Е	L	н			Bacteroidetes		
SYK1_SALTI	6e-18	E	L	E	А	L	Ν	Ι.																							Chlamydiae		•
SYK_ENTFA	8e-18	Y D	N	Н	Т	К	ΕI	Ε.																			L	s			Apply Filter		
56707357	8e-18	ΕL	E	Ε	L	D	Ν	к.																							rippi) i itter		

Protein sequence alignment How do I align two similar, but different sequences

Sequence 1: $a_1 a_2 a_3 - - a_4 a_5 \dots a_n$ Sequence 2: $c_1 - c_2 c_3 c_4 c_5 - \dots c_m$

There exist web accessible tools, e.g., BLAST search: http://www.ncbi.nlm.nih.gov/

S NCBI		protein-prote	ein BLAST
Nucleotide	Protein	Translations	Retrieve results for an RID
Search			
Set subsequence	From: To:		
Choose database	nr 🛟		
Do CD-Search	\checkmark		
Now:	BLAST! OF Reset query	Reset all	

🍰 ExPASy Home page	Site Map	Search ExPASy	Contact us	Swiss-Prot
Search Swiss-Pro	ot/TrEMBL	🗘 for aqp	Go Clear	

NiceProt View of Swiss-Prot: P47865

Printer-friendly view Submit update Quick BlastP search

[Entry info] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]

Entry information	
Entry name	AQP1_BOVIN
Primary accession number	P47865
Secondary accession numbers	None
Entered in Swiss-Prot in	Release 33, February 1996
Sequence was last modified in	Release 44, July 2004
Annotations were last modified in	Release 45, October 2004
Name and origin of the protein	
Protein name	Aquaporin-CHIP
Synonyms	Water channel protein for red blood cells and kidney proximal tubule Aquaporin 1 Water channel protein CHIP29
Gene name	Name: AQP1
From	Bos taurus (Bovine) [TaxID: 9913]
Taxonomy	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovidae; Bovinae; Bos.
References	
[1] SEQUENCE FROM NUCLEI	
TISSUE=Ocular ciliary epithel	ium; Snapz Pro X

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Scroll down to the sequence:

Final Result: Sequence Alignment

```
Series Control Science Control Science Science Science Control Science Cont
                                Length = 230
   Score = 119 bits (299), Expect = 6e-27
   Identities = 70/186 (37%), Positives = 105/186 (56%), Gaps = 12/186 (6%)
Query: 53 VSLAFGLSIATLAQSVGHISGAHLNPAVTLGLLLSCQISVLRAIMYIIAQCVGAIVATAI 112
                                   V+ AFGL++ T+A ++GHISG HLNPAV+ GL++ +
                                                                                                                                                                                 + Y+IAO +GAI+A +
Sbjct: 40 VAFAFGLTVLTMAFAIGHISGCHLNPAVSFGLVVGGRFPAKELLPYVIAQVIGAILAAGV 99
Query: 113 LSGITSSLP--DNSLGL--NALAP----GVNSGQGLGIEIIGTLQLVLCVLATTDRRRRD 164
                                                                                                                                              G G E++ T
                                    + IS + SGL N A
                                                                                                                                                                                             ++ ++ TD R
                                                                                                                                 G
Sbjct: 100 IYLIASGKAGFELSAGLASNGYADHSPGGYTLGAGFVSEVVMTAMFLVVIMGATDARAP- 158
Ouery: 165 LGGSGPLAIGFSVALGHLLAIDYTGCGINPARSFGSSVITHNF--ODHWIFWVGPFIGAA 222
                                          G P+AIG ++ L HL++I T +NPARS G ++
                                                                                                                                                                               + O W+FWV P IGAA
Sbjct: 159 -AGFAPIAIGLALTLIHLISIPVTNTSVNPARSTGPALFVGGWALOOLWLFWVAPLIGAA 217
Query: 223 LAVLIY 228
                                     + +Y
Sbjct: 218 IGGALY 223
```

Search method returns approximate alignments - needing refinement

Flexible Grouping of Data

- Automatically group data by taxonomic classification to assist in evolutionary analysis (HGT) or create custom groups
- Apply metrics to groups independently, e.g bacterial signal

Sequence Name									_		90							
Eukaryota:Fungi															-			1
1asy_A	Vr i	83	S	Ħ	D	S	D	R	T	G	0	к	R	۷	к	F	V	D
1eov_A	V 12 11	83	S	Ħ	D	S	D	R	T	G	0	к	R	V	K	F	V	D
SYDC_YEAST	2 3	82	S	R	D	s	D	R	T	G	Q	ĸ	R	۷	ĸ	F	V	D
Eukaryota:Metazo	a																	
SYD_CAEEL	21	57	S	к			E	к	к	V	L.	N	F	L	к	v	к	E
SYD_HUMAN	21	33	S	Q	4		E	ĸ	Ρ	D	R	۷	L	۷	R	۷	R	D
SYD_MOUSE	r ii	33	S	Q			Е	к	Ρ	D	R	V	L	V	R	V	к	D
Archaea:Crenarch	a	1																
SYD_AERPE	r i	1			•					М	L	к	D	R	F	1	A.	D
Archaea:Euryarch	aeota		1. ···															
□ 1n9w_A	V 🖬 🖬	1								e		М	R	۷	L	۷	R	D
1 b8a_A	V 🖬 🖬	1			4	ų,	4			М	Y	R	T	н	Y	S	S	Е
SYD_METMA	r i	1	-			М	S	L	A	Ν	L	R	Т	н	Y	т	A	D
SYD_HALN1	r 1	1	*				•	*		м	Е	Ν	R	т	Y	т	A	D
SYD_THEAC	r i	7		14	4			*				÷	М	L	S	1	A	Е
SYD_PYRHO	r i	1	4							М	1	E	к	۷	Y	С	Q	E
Bacteria:Proteoba	cteria	1													-			
110w_A	Vr i	1						4	М	R	÷.	Ħ	Т	Н	Y	Α	G	S
1il2_A	V r i	1	1.						÷	M		R	T	E	Y	C	G	Q

MultiSeq: Display and Edit Metadata

- External databases are crossreferenced to display metadata such as taxonomic information and enzymatic function
- Changes to metadata are preserved for future sessions
- Electronic Notebook: Notes and annotations about a specific sequence or structure can be added

Sequence Name:	SYDC_YEAST	
Source Organism:	Saccharomyces cerevisiae	
Common Name:	yeast	
EC Number:	6.1.1.12	
EC Description:	AspartatetRNA ligase.	
Description:	Aspartyl-tRNA synthetase, cytoplasmic (EC 6.1.1.12) (AspartatetRNA ligase) (AspRS) - Saccharomyces cerevisiae (Baker's yeast).	•
Data Sources:	sp=P04802,SYDC_YEAST pdb=1EOV,A	•
		•
Lineage:	Eukaryota Fungi	•
	Ascomycota Saccharomycotina	
	Saccharomycetes	
	Saccharomycetales	-
Notes		
		•
	OK Cancel	•

MultiSeq Tutorials