

Highlights of the VMD Molecular Graphics Program

- > 120,000 registered users
- Platforms:
 - Unix / Linux
 - Windows
 - MacOS X
- Display of large biomolecules and simulation trajectories
- Sequence browsing and structure highlighting
- Multiple sequence structure analysis
- User-extensible scripting interfaces for analysis and customization

The program is used today more for preparation and analysis of modeling than for graphics

Key Features of VMD

- General 3-D molecular visualization with extensive drawing and coloring methods
- Extensive atom selection syntax for choosing subsets of atoms for display
- Visualization of dynamic molecular data
- Visualization of volumetric data
- Supports all major molecular data file formats
- No limits on the number of molecules or trajectory frames, except available memory

6

- Molecular analysis commands
- Rendering high-resolution, publication-quality molecule images
- Movie making capability
- Building and preparing systems for molecular dynamics simulations
- Interactive molecular dynamics simulations
- Extensions to the Tcl/Python scripting languages
- Extensible source code written in C and C++

Ubiquitin

- 76 amino acids
- highly conserved
- covalently attaches to proteins and tags them for degradation
- other cell traficking

• Glycine at C-terminal attaches to the Lysine on the protein by an isopeptide bond.

• it can attach to other ubiquitin molecules and make a polyubiquitin chain.

There are 7 conserved lysine residues in ubiquitin.

Two ubiquitins attached together through LYS 48. LYS 63 and LYS 29 are also shown there.

Ubiquitination Pathway

The Nobel Prize in Chemistry 2004

"for the discovery of ubiquitin-mediated protein degradation"

1/3 of the prize

Technion – Israel

Institute of

Technology

b. 1937

Haifa, Israel

Israel

Aaron Ciechanover

1/3 of the prize Israel

Technion – Israel Institute of Technology Haifa, Israel b. 1947

Irwin Rose

1/3 of the prize USA

University of California Irvine, CA, USA

b. 1926 (in Karcag, Hungary)

Ubiquitin Functions

 tagging misfolded proteins to be degraded in the proteasome (kiss of death).

• regulates key cellular processes such as cell division, gene expression, ...

A chain of at least four ubiquitins is needed to be recognized by the proteasome.

The cell's waste disposer, the proteasome. The black spots indicate active, protein-degrading surfaces.

Form-follows-function architecture of purple bacterial light harvesting systems Klaus Schulten Dept. Physics Utilinois at Urbana-Champaign

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Time-averaged Electrostatic Potential Calculation for the Ribosome with VMD Direct Coulomb summation ~580,000 atoms Lattice spacing 1.0Å, padding 10Å Time-average from 1,000 frames

- 3 GPUs: 49 hours
- 3 CPUs: 0.23 years (est.)

This was one of our early results, using the multi-GPU direct Coulomb summation algorithm, showing the benefit it gave at the time. Now that we have MSM (multilevel summation) we would get much faster performance since it is a linear-time algorithm, but we haven't yet re-run these tests using MSM.

Stone et al. (2007) J Comp Chem 28:2618-2640

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Beckman Institute, UIUC

