
NAMD TUTORIAL

NAMD Developer: James Phillips

Timothy Isgro James Phillips Marcos Sotomayor Elizabeth Villa

The NAMD Configuration File / 1

Files needed:

structure mypsf.psf coordinates mypdb.pdb

Define temperature

set temperature 310
 ;# target temperature used several times below

Starting simulation with random velocities

starting from scratch
temperature \$temperature
;# initialize velocities randomly

Continuing a simulation with positions and velocities from previous run

# continuing a r	un	
set inputname	myinput	;# only need to edit this in one place!
binCoordinates	<pre>\$inputname.coor</pre>	;# coordinates from last run (binary)
binVelocities	<pre>\$inputname.vel</pre>	;# velocities from last run (binary)
extendedSystem	<pre>\$inputname.xsc</pre>	;# cell dimensions from last run
firsttimestep	50000	;# last step of previous run
numsteps	100000	;# run stops when this step is reached

The NAMD Configuration File / 3

Organizing output

outputName	myoutput	
;# base	name for output from this run	
restartfreq dcdfreq xstFreq	500 ;# 500 steps = every 1ps 500 500	
outputEnergies outputTiming	100 ;# 100 steps = every 0.2 ps 1000	
;# SHOW	s time per step and time to completion	

```
# Force-Field Parameters
paraTypeCharmm on
parameters par_all27_prot_lipid.inp
# These are specified by CHARMM
exclude scaled1-4
1-4scaling 1.0
switching on
# You have some freedom choosing the cutoff
cutoff 12. ;# may use smaller, maybe 10., with PME
switchdist 10. ;# cutoff - 2.
# Promise that atom won't move more than 2A in a cycle
pairlistdist 14. ;# cutoff + 2.
stepspercycle 10 ;# redo pairlists every ten steps
# Integrator Parameters
timestep 2.0 ;# 2fs/step
rigidBonds all ;# needed for 2fs steps
nonbondedFreq 1 ;# nonbonded forces every step
fullElectFrequency 2 ;# PME only every other step
```

The NAMD Configuration File / 5

Controlling temperature

{\small \begin{verbatim}						
# Constant Temperature Control						
langevin	on	;# langevin dynamics				
langevinDamping	5.	;# damping coefficient of 5/ps				
langevinTemp	<pre>\$temperature</pre>	;# random noise at this level				
langevinHydrogen	no	;# don't couple bath to hydrogens				

Underlying Langevin equation for all atoms

$$m_i \frac{d^2 x_i(t)}{dt^2} = F_{i,\text{ff}} - \gamma m_i \frac{dx_i(t)}{dt} + R_i(t)$$
$$\langle R_i(t) R_i(t') \rangle = 2k_B T_{\text{target}} \gamma_i \,\delta(t - t')$$

Using periodic boundary conditions

(avoids surface effects; permits Particle-Mesh-Ewald (PME) electrostatics; permits pressure control)

<pre># Periodic Boundary</pre>	condi	tions		
cellBasisVector1	31.2	Ο.	0.	;# vector to the next image
cellBasisVector2	0.	44.8	0.	
cellBasisVector3	0.	0	51.3	
cellOrigin	Ο.	Ο.	0.	;# the *center* of the cell
wrapWater	on			;# wrap water to central cell
1				;# wrap other molecules too
wrapAll	on			· ·
wrapNearest	off			;# use for non-rectangular cells

The NAMD Configuration File / 7

Particle-Mesh-Ewald electrostatics (avoids cut-off of long-range Coulomb forces)

#PME (for full-system periodic electrostatics)
PME yes
PMEGridSizeX 32 ;# 2^5, close to 31.2
PMEGridSizeY 45 ;# 3^2 * 5, close to 44.8
PMEGridSizeZ 54 ;# 2 * 3^3, close to 51.3

Pressure Control

# Constant Pressure Control (variable volume)					
useGroupPressure yes ;# needed for rigid bonds					
useFlexibleCell	no ;# no for water box, yes for membrane				
useConstantArea no ;# no for water box, maybe for membrane					
langevinPiston	on				
langevinPistonTarget	1.01325 ;# pressure in bar -> 1 atm				
langevinPistonPeriod	100. ;# oscillation period around 100 fs				
langevinPistonDecay	50. ;# oscillation decay time of 50 fs				
langevinPistonTemp	<pre>\$temperature ;# coupled to heat bath</pre>				

Underlying Langevin equation for all atoms

$$P = \rho k_B T + \frac{1}{Vd} \sum_{i < j} \langle r_{ij} \frac{dU_{tot}(r_{ij})}{dr_{ij}} \rangle$$
$$\frac{d^2 V(t)}{dt^2} = \frac{1}{m_{\text{pist}}} \left[P(t) - P_{\text{target}} \right] - \gamma_P \frac{dV(t)}{dt} + R_P(t)$$
$$\langle R_P(t) R_P(t') \rangle = \frac{2k_B T_{\text{target}} \gamma_P \delta(t - t')}{m_{\text{pist}}}$$

The NAMD Configuration File / 9

Fix atoms

fixedAtoms	on	
fixedAtomsFile	myfixedatoms.pdb	;# flags are in this file
fixedAtomsCol	В	;# set beta non-zero to fix an atom

Energy-minimize structure (T=0), reset temperature T, run:

minimize 1000 ;# lower potential energy for 1000 steps
reinitvels \$temperature ;# since minimization zeros velocities
run 50000 ;# 100ps

The NAMD Output File / 1

Preamble

Info: NAMD 2.5b2ss03 for Linux-i686-Clustermatic Info: Info: Please visit http://www.ks.uiuc.edu/Research/namd/ Info: and send feedback or bug reports to namd@ks.uiuc.edu Info: Info: Please cite Kale et al., J. Comp. Phys. 151:283-312 (1999) Info: in all publications reporting results obtained with NAMD. Info: Info: Built Fri May 30 13:09:06 CDT 2003 by jim on umbriel Info: Sending usage information to NAMD developers via UDP. Info: Sent data is: 1 NAMD 2.5b2ss03 Linux-i686-Clustermatic 47 umbriel jim Info: Running on 47 processors.

The NAMD Output File / 2

Energies

ETITLE:	TS	BOND	ANGLE	DIHED	IMPRP
	ELECT	VDW	BOUNDARY	MISC	KINETIC
	TOTAL	TEMP	TOTAL2	TOTAL3	TEMPAVG
F	RESSURE	GPRESSURE	VOLUME	PRESSAVG	GPRESSAVG
ENERGY:	1000	0.0000	0.0000	0.0000	0.0000
-970	22.1848	9595.3175	0.0000	0.0000	14319.5268
-731	.07.3405	300.2464	-73076.6148	-73084.1411	297.7598
-6	526.5205	-636.6638	240716.1374	-616.5673	-616.6619

The NAMD Output File / 1

Writing out trajectories

:

:

OPENING COORDINATE DCD FILE WRITING COORDINATES TO DCD FILE AT STEP 1000

Performance information

Info: Benchmark time: 47 CPUs 0.0475851 s/step 0.275377 days/ns 13540 kB memory

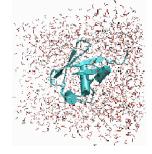
TIMING: 1000 CPU: 18.35, 0.01831/step Wall: 50.1581, 0.0499508/step, 6.92374 hours remaining, 14244 kB of memory in use.

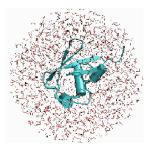
TIMING: 1000 CPU: 18.35, 0.01831/step Wall: 50.1581, 0.0499508/step, 6.92374 hours remaining, 14244 kB of memory in use.

Warnings

Warning: Pairlistdist is too small for 1 patches during timestep 17. Warning: Pairlists partially disabled; reduced performance likely. Warning: 20 pairlist warnings since previous energy output.

The NAMD Experience / 1


You will first simulate ubiquitin in a water sphere and water box:


Generating a Protein Structure File (PSF)

- Go to 1-1-build directory
- Open VMD, choose extension TkCon
- Make from 1UBQ.pdb a structure without hydrogens, ubqp.pdb
- Create psf file for ubqp.pdb: ubq.pdb and ubq.psf
- Check if files exist

Solvate the protein in a water sphere (from VMD)

Solvate the protein in a water box (from VMD)

The NAMD Experience / 2

- RMSD value for equibration
- Atomic RMSD values of equilibrated protein
- Velocity distribution
- Temperature distribution
- Specific heat
- Diffusion of whole protein
- Heat diffusion
- Temperature Echoes