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Description

The Programmer’s Guide describes the structure and organization of the program VMD, and
provides complete descriptions for all important object classes. This guide is designed to aid
researchers interested in learning how VMD is constructed and who are interested in making mod-
ifications or improvements to the existing code. The program is logically divided into six main
categories: (1) Utility objects; (2) Rendering (display) objects; (3) Molecule objects; (4) Remote
connection objects; (5) User interface objects; (6) Spatial tracking and 3D pointer object. The Pro-
grammer’s Guide describes first the organization and conventions used in all source files for VMD,
then discusses the program design and relationship between the five components, and concludes
with individual descriptions of each object class.

1http://www.ks.uiuc.edu/
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Introduction
VMD is a molecular graphics and visualization program designed to be used for interactive

display of molecular systems, particularly biopolymers such as proteins, nucleic acids, and biological
assemblies such as membrane lipid bilayers. VMD has several goals:

• General molecular visualization
This program is at heart a general application for graphical display of molecules, similar in
basic capabilities to commercial program such as Quanta and non-commercial programs such
as XMol, Ribbons, and others. The goal of VMD is not to become a complete replacement
for these programs; instead, VMD focuses on accomplishing the specific goals outlined here.

• Visualization of dynamic molecular data
VMD can display in a variety of ways dynamically varying quantities for a molecule, such
as position, velocity, and energy. Each molecule displayed by VMD consists of an animation
list, which is comprised of individual frames of the molecule’s trajectory as computed by
some means (molecular dynamics, energy minimization, etc.). This animation list can be
edited, played back, or saved to a file in a variety of formats. This dynamical data may
be obtained from previous computation, or may be obtained directly from a concurrently
running simulation.
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• Display and control of molecular dynamics simulations
VMD contains the ability to act as a graphical front end for a molecular dynamics (MD)
program running on a remote supercomputer or high-performance workstation. This allows
the user of VMD to set up, initiate, and interactively display and control the MD simulation
as it is running. The user can disconnect from the simulation and let it continue, or inter-
actively kill the simulation program and start another. Any number of simulations may be
simultaneously displayed and controlled by a single VMD session.

• Support for several input and display (output) devices
Beyond the standard workstation monitor and keyboard + mouse display and input devices
available for graphical workstation users, a number of different visual display and control
systems are available. For example, spatial tracking devices are available which may be used
as a three-dimensional pointer, and stereo image projection devices are possible which may
be used to display a three-dimensional image of a molecular system to a number of viewers.
VMD supports the use of the two example devices described here, and aims to make support
for other such devices relatively simple.

• Provide an easily modifiable and extendible program
VMD is written in C++ and employs an object-oriented design to make the program easy
to modify and extend. This Programmer’s Guide is specifically designed to aid those people
who are interested in changing the current implementation of VMD, or who are interested in
adding new features to the program.

This manual, along with the Users Guide and Installation Guide, document the use of VMD.
A major intention of this manual is that it be kept up-to-date with all changes to VMD.

As features are changed, these changes should be reflected in the description here, and as new
capabilities are added these new features should be added to the relevant section in this document.
In particular, when new object classes are added or when existing ones are changed or augmented,
the description of the relevant class should be updated in the ‘Program Structure’ and ‘Class
Descriptions’ chapters. In this way, other uses can also benefit from new additions. This is a major
goal for VMD, to become a useful, common resource for all users in the field of computational
structural biology.

1 Guide organization

As mentioned, this guide is designed to aid users who are interested in modifying or extending the
current implementation of VMD. This manual is organized into the following chapters following
this introduction:

• Source code file structure (section 8)
What subdirectories exist within the VMD working directory tree, and how to use the RCS
(Revision Control System) to access and modify source files.

• Using the configure script and makefile (section 10)
The design and use of the configure script, which creates the proper Makefile needed to
compile VMD for a particular architecture and set of options, and how to use the Makefile
once it has been created.
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• Source code style guide (section 16.3)
A set of guidelines used (mostly) in the naming of C++ classes, functions and variables, and
a set of steps to follow when adding new objects and source code files to VMD.

• Program structure (section 18.1)
A comprehensive overview of the design of VMD, concentrating on the organization and
relationship of the various C++ objects which make up the program.

• Function and class descriptions (section 21)
With section 18.1, the major part of the Programmer’s Guide. This section provides a
standard description for each utility function and object class in C++, outlining how to use
each class and, for the main base classes in VMD, how to define and create new derived
classes.

2 Document style conventions

1. Object Classes
All object class names are indicated with a typewriter font, and begin with a capital letter,
i.e.,

CommandQueue

2. Function Names
All function names begin with a lower case letter and are indicated with a typewriter font,
with the return type in bold font; arguments are specified with the type in bold font, and
the name in italics, i.e.,

char * stringdup(char * s)

When described specifically as a member function of a particular class, the class name is
prepended, i.e.,

void Displayable::pick(void *)

Unless otherwise specified, functions with no arguments given are assumed to have no argu-
ments, and specify void in their function prototype.

3 For more information on BioCoRE, MDTools, NAMD, and VMD

VMD is part of a suite of tools developed by the Theoretical Biophysics group at the University of
Illinois.

• BioCoRE
BioCoRE is a web-based collaborative environment for structural biology which provides tools
to allow collaboration between researchers down the hall or around the world. Anyone with
access to the internet and a standard web browser can join BioCoRE and create or be added
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to research projects, and information about a particular project is shared among all members
of that project. BioCoRE is accessed through a Java applet which includes instant messaging
and notification of project updates.

BioCoRE currently provides tools in three toolboxes. The Workbench toolbox provides ac-
cess to structural biology applications such as simulation and visualization programs. The
Notebook toolbox supplies a message board where users store project notes. The Conferences
toolbox allows interactive text-based chats, which are also archived to the message board for
future reference. Soon, the Documents toolbox will provide tools to assist in joint preparation
of publications.

BioCoRE is currently accessible to users through the BioCoRE server at UIUC, and a code
release is planned which will allow sites to run their own servers. Because BioCoRE is web-
based, updates and new features are automatically available every time the user logs in. More
information is available at the BioCoRE home page2

• MDTools
JMV is an easy-to-use Java-based molecular viewer which uses Java3D to provide hardware
accelerated 3D rendering of molecules. JMV is designed as component software, and can be
used within other programs, or as a standalone application. JMV is implemented as a Java
Bean, and can be used in the standard Bean-capable development tools. JMV can be used
as an applet to provide in-browser molecular visualization capabilities, in situations where
VMD is overkill for the task. More information is available at the JMV home page3

• MDTools
MDTools is a collection of programs, scripts, and utilities provided for researchers to make
various modeling and simulation tasks easier, and to provide basic code and utilities which can
be built up into larger toolsets. Each tool, script, or library has its own separate distribution,
documentation, etc. The programs in this collection are provided for the benefit of the
research community, but are not officially supported unless otherwise stated. Each program
may have a software license and/or citation suggestions which should be listed on its web
page. More information is available at the MDTools home page4

• NAMD
A parallel, object-oriented molecular dynamics code designed for high-performance simula-
tion of large biomolecular systems. NAMD uses the CHARMM force field and file formats
compatible with both CHARMM and X-PLOR. NAMD supports both periodic and non-
periodic boundaries with efficient full electrostatics, multiple timestepping, constant pressure
and temperature ensemble simulation methods. NAMD provides several methods of steering
a simulation through the application of additional forces, including the ability to connect
directly to VMD for interactive steering of a live simulation. NAMD is distributed free of
charge and includes source code. More information is available at the NAMD home page5

• Structural Biology Software Database
The Structural Biology Software Database contains programs which are thought to be of

2http://www.ks.uiuc.edu/Research/biocore
3http://www.ks.uiuc.edu/Development/jmv
4http://www.ks.uiuc.edu/Development/MDTools
5http://www.ks.uiuc.edu/Researach/namd
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interest to researchers in the fields of structural biology, quantum chemistry, and bioinfor-
matics. The database entries are contributed by users, and are moderated to provide a high
quality resource. More information is available at the Structural Biology Software Database
home page6

• VMD
A general molecular visualization program capable of interactive display and concurrent con-
trol of a molecular dynamics simulation running on a remote computer. VMD uses an object-
oriented design, and is written in C++. This document describes VMD. More information is
available at the VMD home page7

For more on any of the individual software efforts, BioCoRE, MDTools, NAMD, or VMD, see
the Theoretical Biophysics Group WWW home page8.

4 Contacting the authors

The current authors of VMD are Justin Gullingsrud, David Norris, and John Stone. We are very
interested in and grateful for any user comments and reports of program bugs or inaccuracies. If
you have any suggestions, bug reports, or general comments about VMD, please send them to us
at vmd@ks.uiuc.edu.

5 Credits and Program Reference

The authors request that any published work or images created using VMD include the following
reference:

Humphrey, W., Dalke, A. and Schulten, K., “VMD - Visual Molecular Dynamics” J. Molec.
Graphics 1996, 14.1, 33-38.

VMD has been developed by the Theoretical Biophysics group at the University of Illinois and
the Beckman Institute. The main authors of VMD are A. Dalke, J. Gullingsrud, W. Humphrey,
S. Izrailev, D. Norris, J. Stone, J. Ulrich. This work is supported by grants from the National
Institutes of Health (grant number PHS 5 P41 RR05969-04), the National Science Foundation
(grant number BIR-9423827 EQ), and the Roy J. Carver Charitable Trust.

6 Copyright and Disclaimer

VMD is Copyright c© 1995-2001 Theoretical Biophysics Group and the Board of Trustees of the
University of Illinois

Portions of this code are copyright c© 1997-1998 Andrew Dalke.

The terms for using, copying, modifying, and distributing VMD are specified by the VMD
License. The license agreement is distributed with VMD in the file LICENSE. If for any reason

6http://www.ks.uiuc.edu/Development/biosoftdb/
7http://www.ks.uiuc.edu/Researach/vmd
8http://www.ks.uiuc.edu/
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you do not have this file in your distribution, it can be downloaded from:
http://www.ks.uiuc.edu/Research/vmd/current/LICENSE.html
Some of the code and executables used by VMD have their own usage restrictions:

• STRIDE
STRIDE, the program used for secondary structure calculation, is free to both academic and
commercial sites provided that STRIDE will not be a part of a package sold for money. The use
of STRIDE in commercial packages is not allowed without a prior written commercial license
agreement. See http://www.embl-heidelberg.de/argos/stride/stride info.html

• SURF
The source code for SURF is copyrighted by the original author, Amitabh Varshney, and the
University of North Carolina at Chapel Hill. Permission to use, copy, modify, and distribute
this software and its documentation for educational, research, and non-profit purposes is
hereby granted, provided this notice, all the source files, and the name(s) of the original
author(s) appear in all such copies.
BECAUSE THE CODE IS PROVIDED FREE OF CHARGE, IT IS PROVIDED ”AS IS”
AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED.
This software was developed and is made available for public use with the support of the
National Institutes of Health, National Center for Research Resources under grant RR02170.
See ftp://ftp.cs.unc.edu/pub/projects/GRIP/SURF/surf.tar.Z

• url get
The Perl script url get, was written by Jack Lund at the University of Texas as Austin. There
appear to be no restrictions on its use.

• Python
Python is made available subject to the terms and conditions in CNRI’s License Agree-
ment. This Agreement together with Python may be located on the Internet using the
following unique, persistent identifier (known as a handle): 1895.22/1012. This Agree-
ment may also be obtained from a proxy server on the Internet using the following URL:
http://hdl.handle.net/1895.22/1012

• PCRE
The Perl Compatible Regular Expressions (PCRE) library used in VMD was written by Philip
Hazel and is Copyright (c) 1997-1999 University of Cambridge.
Permission is granted to anyone to use this software for any purpose on any computer system,
and to redistribute it freely, subject to the following restrictions:
1. This software is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.
2. The origin of this software must not be misrepresented, either by explicit claim or by
omission.
3. Altered versions must be plainly marked as such, and must not be misrepresented as being
the original software.
4. If PCRE is embedded in any software that is released under the GNU General Purpose
Licence (GPL), then the terms of that licence shall supersede any condition above with which
it is incompatible.
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• Tachyon
The Tachyon ray tracing system distributed with VMD was written by John E. Stone and is
Copyright (c) 1994-2001 by John E. Stone. Please see the current distribution of Tachyon for
redistribution and or licensing information outside of VMD use. Permission is granted to use
Tachyon freely along with VMD.
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7 Registering VMD

VMD is made available free of charge for all interested end-users of the software (but please see
the Copyright and Disclaimer notices). Redistribution of the software to third parties may require
a special license, please check the current VMD license agreement for details. We would like to
request that you register with us that you are using VMD. This is so that we can maintain some
idea of the number of users of the program and so that we know who to contact about program
updates, bug fixes, etc. Registration is now part of our software download procedure, so once you’ve
filled out the forms on the VMD download area you are finished.
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Source Code File Structure
Within the main VMD directory there are several subdirectories, as well as a configuration script

(section 10) used to configure VMD to compile for a particular architecture and set of options.

9 Directory tree structure

When a directory with the VMD source, library, documentation, and other data files is established,
the following subdirectories are present:

bin . . . Utility scripts and programs, such as the script used to start the proper architecture-
specific VMD executable, and the programs used on SGI workstations to change the current
stereo mode.

data . . . Data files used when VMD starts up, i.e., .vmdrc and other ‘dot’ files.
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doc . . . Latex documentation files.

lib . . . Special libraries and associated header files used by VMD.

proteins . . . Example protein data files used for testing.

src . . . Source code files (.c, .C, and .h files).

10 Using the RCS system

NOTE: This section is mainly for use by the main VMD developers, which use RCS to maintain the
source code, documentation, and other files. The standard VMD ftp distribution does not include
the RCS directory, and the discussions in the manual about RCS do not apply to that case. If you
are NOT using RCS, you may simply skip this section and other pertaining to the use RCS when
working on VMD.

The Revision Control System (RCS) is used here to allow several people to simultaneously work
on modifications to the files used in compiling and running VMD. To do this, each file (i.e., source
code files, utility scripts, data or documentation files) is stored in a special RCS format within
the directory RCS in the main VMD working directory. Within each subdirectory, a link to this
main RCS directory is made, so that there is one single official RCS dir, and several links to it. To
obtain a copy of a file, a user checks out the file from RCS. If the file is to be changed, the user
must also lock the file when checking it out. When the modifications are complete and verified to
be successful, the same user checks the file back in, releasing the lock and depositing the changed
version back in the main RCS directory. No other user can lock a file locked by another user until
the lock has been released, thus guaranteeing that no two users are attempting to make conflicting
changes to the same file simultaneously. Each time a file is modified and checked back in, the
current version number of that file is increased; through RCS commands, older versions of a file
may be retrieved if new changes end up not working out or are not needed. Several utility programs
comprise the RCS system; this section describes the basic use of these programs to perform the
tasks mentioned above.

• To add new files to the RCS:
The rcs program is used to initialize new files, and the ci program checks in a new version.
The commands to use are:

rcs -i -a<username>[,<username>[...]] -L <new files>
ci -u <new files>

Each file in the RCS should have a special header which includes special commands to allow
RCS to indicate the name, version, and other data in each file when it is checked out; see
section 16.3 for notes on what RCS headers to use for each type of file (Latex, shell script,
C/C++ source) and where to find standard RCS header examples.

• To check files out of the RCS:
The co program retrieves files from the RCS directory, and puts the retrieved copy in the
current directory. There are two ways to use this, the first to simply retrieve a copy of the
file for read-only access, and the second to check out and lock a file, assuring you are the only
one allowed to modify the file. The two commands are, respectively,
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co <list of files>
co -l <list of files>

For locked files, when modifications are complete the file should be checked back in, as
described next. Files checked out, but not locked, do not need to be checked in.

• To check a file back into the RCS:
The ci program updates the official RCS directory with a new version of a file previously
checked out and locked by a user. When the file is checked in, its current version number
is incremented, and the user may enter a quick note about what changes were made. It is
possible to have these revision notes placed within the file itself as comments, and this is done
by VMD through proper use of RCS headers. The command to check in a file is:

ci -u <list of checked out files>

The -u flag then does an automatic co <files> command, which assures there is a (non-
locked) version of the file still in your directory after checking in a file.

• To unlock a file that has been locked, without checking it in:
Occasionally changes are made to a file that has been locked out, but the changes are not
needed or just plain don’t work. To simply release a lock, which abandons the changes and in
fact will completely erase them unless a copy is made by hand beforehand, use the commands:

rcs -u <file>
chmod -w <file>
co <file>

The first command releases the lock; the others reset the file and check out a copy of the old
version (as it existed when initially checked out and locked).

Information on these RCS programs should be available via man pages as well.
Using the Configure Script and Makefile

11 The configure script

VMD is designed to be relatively easy to compile for different operating system versions (i.e., IRIX
or HP-UX), and to allow a person to individually include or exclude different optional capabilities
such as support for using the Tcl script interpreter library or support for remote simulation control
and display. To make this possible, a configure shell script has been written which will create a
Makefile properly configured for the selected architecture and options.

The configure Bourne shell script is found at the top level of the VMD working directory.
This script has three purposes:

1. To adapt the Makefile to use the proper libraries and compiler options for the type of operating
system being used.

2. To specify which ones of the many optional components of VMD should be included in the
final executable, and to include in the Makefile the necessary files for the selected options.
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3. To configure the VMD directories and source files to use the values for configurable parameters
chosen by the user, i.e., the name of the final executable, the location for where the program
is to be installed, etc.

The following steps must be followed to use the configure script to set up the VMD directories
in order to compile VMD:

1. The file configure.parameters must be edited to set the values for certain configuration
parameters which describe such things as where to install VMD, what names to use for data
files, etc. This is described in section 12.

2. After the parameters have been entered, the configure script must be run to create the
Makefile necessary to compile VMD. This is described in section 13.

3. Once the Makefile has been created, the command make depend; make must be run after
changing to the src subdirectory of the VMD working directory. This will regenerate the
source code file dependencies, and then compile the program.

4. After successful compilation, while still in the src directory, the command make install
will install the program and necessary data files. This will copy the necessary executables,
scripts, and data files to the proper directories as specified by the values of the configuration
parameters.

12 Setting the configuration parameters

The first step in using the configure script is to set the values of configurable parameters. The
configure script first assigns default values to these parameters, and then checks to see if the
file configure.parameters exists. If it does, the script will read this file and use the values
for parameters listed there. Edit the file configure.parameters and change the settings of the
variables to the required values. The file is interpreted as a Bourne shell script, so blank lines and
comments beginning with the # character are permissable. All parameters are of the form

<keyword>=<value>

with no space characters on either side of the equal sign. This section lists the keywords, pur-
pose, and possible values for each parameter. If a parameter is not listed at all in the file
configure.parameters, its default value will be used.

12.1 Installation parameters

The following parameters control where and how VMD is installed after compilation. They do
not have any effect on how VMD is compiled. It is easiest to change these at the same time
other parameters are being changed, so the configure script need only be run once. Edit the file
configure.parameters in the main working directory to change these settings.

• INSTALLBINDIR (default=/usr/local/bin)
The directory where scripts and utility programs are installed. This should be a directory
which is in the path of all users interested in running VMD.
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• INSTALLLIBDIR (default=/usr/local/lib/vmd)
A directory in which VMD data files and architecture-specific executables are placed. This
directory should not be in the path of users running VMD.

• INSTALLNAME (default=vmd)
VMD uses a shell script to run the proper VMD executable for the given version of Unix (the
script also sets some environment variables and starts an xterm running to act as the VMD
console). INSTALLNAME is the name given to this shell script, and will be the command users
type to run VMD. When the program is installed, the file bin/vmd is then copied to the file
INSTALLBINDIR/INSTALLNAME.

12.2 Compilation parameters

These parameters determine various aspects of how VMD is compiled, for example the names of
data files and maximum array sizes. Edit the file configure.parameters in the main working
directory to change these settings.

• TCL INCLUDE DIR (default=/usr/local/include)
The Tcl library is used by VMD to interpret and execute text scripts; there is also the option
to use the Tk library for the graphical user interface. This parameter determines where to
look for Tcl and Tk header files. If Tcl is not installed on your system, this option is ignored.
ALso, if Tcl is not installed, do not request the TCL or TK options when configuring VMD.

• TCL LIBRARY DIR (default=/usr/local/lib)
This parameter determines where to look for Tcl and Tk library files, just as TCL INCLUDE DIR
determines where to look for header files. If Tcl is not installed on your system, this option
is ignored.

• DEFBABELBIN (default=INSTALLBINDIR/babel)
VMD uses the program babel to convert different molecular data files to PDB files, in order
to allow it to understand a large number of file formats. DEFBABELBIN determines the location
of the babel executable which VMD should use. It should include the complete path and
name of the babel program. If VMD cannot find a babel executable, only PSF, PDB, binary
DCD files and Gromacs files will be understood by the program. If babel is not installed on
your system, this option is ignored. The environment variable VMDBABELBIN can also be used
to override this value when VMD is run.

• DEFDISPLAY (default=WIN)
The default display device to use when VMD starts up, if not set by the initialization file or
a command-line option. This can be WIN, CAVE, or TEXT.

• DEFDIST (default=-2.0)
The default value for the distance, in ‘world’ coordinates, from the origin to the display screen.
If this is zero, the origin of the coordinate system in which molecules are drawn coincides
with the center of the display. If it is < 0, the origin is located between the viewer and the
screen, while if it is > 0, the screen is located closer to the viewer than the origin. A value
< 0 puts any stereo image in front of the screen, aiding the three-dimensional effect; a value
> 0 results in a stereo image that is behind the screen, a less dramatic (but easier to see, for
some people) stereo effect when stereo display is in effect.
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• DEFHEIGHT (default=6.0)
This parameter, with DEFDIST, defines the size and distance of the display screen. DEFHEIGHT
is the default value for the screen height, which is the vertical size of the display screen in
‘world’ coordinates. Each molecule is initially scaled and translated to fit within a 2 x 2
x 2 box centered at the origin; so the height of the screen helps determine how large the
molecule appears initially. The default value is 6, and with the default value of DEFDIST this
allows the molecule to fill up most of the screen at the start. If VMD is being displayed
on a workstation monitor only, it is best not to change this value much. This parameter is
used mainly to configure the VMD display to the dimensions and position of a large-screen
display, such as a projector, that may be being used as a stereo display. See the “Customizing
VMD” section of the Installation Guide for more discussion about the DEFDIST and DEFHEIGHT
parameters.

• DEFHTMLVIEWER (default=Mosaic)
Online help information is provided by VMD by displaying a help file in HTML format, using
an external HTML viewer. This parameter sets the default name of the program to use to
view HTML files. The environment variable VMDHTMLVIEWER can also be used to override this
value when VMD is run.

• DEFTITLE (default=ON)
The default setting for the flag which indicates whether to display a title screen when VMD
starts up. This can be ON or OFF.

• DEFTMPDIR (default=/tmp)
The directory which VMD should use to store temporary files.

• INITFILENAME (default=.vmd init)
The name of the VMD initialization file.

• MAXSTRINGLEN (default=6)
The maximum number of characters which are considered when words in a text command
are processed. It determines how many characters maximum distinguish different words. It
is suggested to not change this value, which can be any positive integer.

• PROGVERSION
The current version number of the program.

• PROMPTSTRING (default="vmd >")
The string displayed as a prompt for text command input. This can be any string, and should
be enclosed in double quotes.

• STARTUPFILENAME (default=.vmdrc)
The name of the VMD startup command script.

13 Configuring the Makefile

Once all parameters have been properly specified, the configure script must be run to create a
Makefile for compiling and installing VMD. This Makefile is copied into the src and doc directories.
The syntax for running the configure script is:
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configure [<OSTYPE> [OPT1 [OPT2 ...]]]

where <OSTYPE> is a keyword specifying one of the operating systems mentioned below, and OPT1,
OPT2, ... are keywords specifying which optional VMD components should be included when the
program is compiled and linked. The total possible optional keywords are explained below. When
multiple options are specified and the list contains contradictory options, the last value specified in
the command is used. Each time configure is run, a copy of the list of parameters used is written
to the file configure.options; if simply the command

configure

is run, the values contained in configure.options will be used as the arguments. In this way, when
a “default” configuration has been established previously, and a new Makefile must be generated
for some reason, the user need only go to the main VMD working directory and type configure.
The file configure.options may be edited by hand to set the list of options to the required values,
after which the user may simply type configure.

13.1 Optional program components

Beyond the core capabilities of VMD, several additional features may be selectively included or
excluded from the program by specifying the proper keywords to the configure script and then
recompiling. As well, for some core features of VMD, a single value from a list of several possible
options must be selected. This helps reduce the size of the resulting executable for users who have
no need for certain options, and allows VMD to be compiled on architectures for which certain
options are not available (due, for example, to a missing library or a hardware limitation). The
following arguments to the configure script select these optional components; where multiple names
are given in a list separated by ‘or’ symbols (|), only ONE of the items in that list should be given.

• OPENGL | MESA | NOGRAPHICS (default=OPENGL)
This option determines which 3D graphics rendering library to use. OPENGL indicates to
use the OpenGL library on all workstations with support for hardware accelerated OpenGL
rendering. Finally, if for some reason no graphics capabilities are desired in the program at
all (perhaps if VMD is to be compiled to act only as a filter between PDB files and image
files), NOGRAPHICS indicates to not include any graphics display capabilities at all.

• FLTK | XFORMS | NOGUI (default=FORMS)
This option determines which GUI library should be used by VMD, if any. VMD uses several
separate user interface components, including the text console interface and the graphical
user interface (GUI). FORMS indicates to use the Forms library of Mark Overmars; If no GUI
is possible or desired, specifying NOGUI will not include any GUI library at all in VMD, and
all VMD actions will have to be performed via text commands.

• TCL | NOTCL (default=NOTCL)
Tcl is a script parser and interpreter language which provides the capability to have inter-
preted scripts including control loops, variable substitution, function and procedure calls, and
many other features. If the Tcl library is installed already on your system, VMD can use this
library to parse and interpret text command scripts. Specifying the TCL option configures
VMD to compile with this feature. If the Tcl library is not available on your system, NOTCL
should be specified, which indicates for VMD to parse all text commands itself.
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• REMOTE | NOREMOTE (default=NOREMOTE)
This option specifies to include (exclude) the capability to display and control molecular
dynamics simulations running on remote supercomputers or workstations. This is a key
feature for VMD, and the inclusion of this option is strongly encouraged. However, the
option to exclude it from the final executable is available for users who have no need or
interest in directly visualizing molecular dynamics simulations, or who wish to use VMD for
some other preferred visualization feature.

• VRPN | NOVRPN (default=NOVRPN)
Indicates to have VMD use (or not use) the VRPN Tracker library developed at the University
of North Carolina, Chapel Hill to access external 3D pointer devices. If VRPN is specified,
the VRPN Tracker library will be linked with VMD, and the program will be able to use
external spatial tracking devices such as a Polhemus Fastrak as a 3D pointer. Combined with
some form of 3D display equipment such as a stereo projector, this provides a complete 3D
environment for one or possibly several researchers. However, such equipment is not available
for all users, and the Tracker library is not available on all OS types, so support for using the
VRPN library may be omitted.

• CAVE | NOCAVE (default=NOCAVE)
The CAVE is a 3D display environment developed by the Electronic Visualization Laboratory
at the University of Illinois at Chicago. VMD supports the use of the CAVE as a display
device; VMD also supports the use of a CAVE-controlled spatial tracker as an input/control
device when the CAVE is used for graphical display (similar, but distinct from, the use of the
VRPN Tracker library for working with other spatial tracking equipment). If the CAVE option
is specified, VMD will include the capability to display molecules in a CAVE, and will link
with the CAVE library which must be available in the lib directory for the target operating
system. Some notes about the CAVE option:

– The CAVE option is currently only available for SGI workstations, and uses the OpenGL
library. This option implies the OpenGL option.

– Even if the CAVE option is included, VMD can still function normally using the work-
station monitor as the display device. A command-line switch is then used to specify
which display device to use.

– Of course, this option is only useful for users with access to a CAVE system, of which
there are admittedly very few. Please contact the VMD authors for information on who
to contact about questions on CAVE access and design.

• EXTERNAL | NOEXTERNAL (default=NOEXTERNAL)
An experimental capability of VMD is to use an external program for generation of text
commands, which are then sent via PVM routines to VMD for execution. The EXTERNAL
option enables this capability, and requires that PVM 3.3 or more recent be installed on your
system. It is suggested not to use this option unless you know what you’re doing.

• DEBUG | NODEBUG (default=NODEBUG)
VMD optionally may contain specific code to print debugging messages to the console during
execution, for testing and development. If this code is included (by specifying the DEBUG
option), user commands are available to turn on or off the printing of these messages, and to
set the level of detail for the debugging output. However, VMD runs excruciatingly slow when
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this debugging code is included, so it is recommended to exclude it unless a specific problem
is encountered that requires debugging output. By default, the DEBUG option is turned off,
and the debugging code in VMD is commented out when the program is compiled. This
option is mutually exclusive with the OPTIMIZE option described next. Including the DEBUG
option also indicates to use the -g flag to the compiler to include necessary symbolic debugger
information.

• OPTIMIZE | NOOPTIMIZE (default=NOOPTIMIZE)
If OPTIMIZE is specified, all files are compiled with the -O optimization flag. If it is not
specified, all files will be compiled with the -g flag, which includes symbolic debugger data
in the executable. OPTIMIZE is mutually exclusive with the DEBUG option.

• MAKE | NOMAKE (default=NOMAKE)
After configuration is complete, and a new Makefile has been generated and copied to the
proper directories, the configure script will change to the src directory and execute a “make”
command if directed. If this is done, no files are checked out, only a recompilation is done. If
MAKE is specified, this automatic execution of a make command is done; if NOMAKE is specified,
the make command is not executed, instead a warning message is issued and the configuration
script completes.

• SILENT | NOSILENT (default=SILENT)
Determines whether make commands are echoed to the screen as they are executed (NOSILENT),
or whether they are hidden (SILENT).

• ALL
Same as OPENGL FLTK TCL REMOTE CAVE VRPN OPTIMIZE.

13.2 Supported operating systems

Currently, VMD may be compiled on the following operating systems (the corresponding value for
<OSTYPE> for the configure script is given in parentheses):

• HP-UX 10.X (HPUX10), for version 10.20 or later.

• HP-UX 11.X (HPUX11), for version 11.0 or later.

• IRIX 5.X (IRIX5) or IRIX 6.X (use IRIX5 for both cases).

• IRIX 6.X (IRIX6)

• Linux (LINUX), RedHat 6.2 or later

• Solaris 2.x (SOLARIS2), for version 2.7 or later.

• Solaris 2.x (SOLARISX86), for version 2.7 or later.

Not all opiontal components are available for all architectures. Table 1 describes which optional
components may be used for each supported architecture. A dash indicates that the option is not
available, while the word ‘yes’ indicates that the option is allowed.
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14 Compiling VMD

Finally, after the proper Makefile has been generated, VMD may be compiled. In the main working
directory, after running configure, enter the following commands:

cd src
make clean
make depend
make

The first make command removes all old object files from the src directory, and the second make
command regenerates the source code dependencies (which are put in the file Makedata.depend).
It is necessary to do these two commands if the configuration has been changed in any way (e.g.,
some parameters have been changed, or a different set of optional features are being included).
Otherwise, if the most recent change since compiling is simply that a source code file has been
edited, the first two make commands are not necessary. Finally, make will compile and link the
VMD source code files.

Note for RCS users: If the RCS system is being employed, use the command make co instead
of make depend in the list above. This will check out up-to-date versions of all the files necessary
for the optional features requested. See the Programmers Guide for more information on using
RCS.

Option IRIX4 IRIX5 HPUX9

OPENGL yes yes yes1

FORMS - yes yes1

FLTK - yes yes1

TK yes2 yes2 yes2

TCL yes3 yes3 yes3

REMOTE - yes yes
VRPN yes yes -
CAVE - yes -
EXTERNAL yes4 yes4 yes4

3This option requires use of the Tcl library, which must be installed on the system. The Tcl/Tk
libraries are not included with the VMD distribution.
4This option requires used of the PVM 3.3 (or more recent) library, which must be installed on the
system. The PVM libraries are not included with the VMD distribution.

Table 1: Available options for architectures supported by VMD.

15 Makefile commands

Once the Makefile has been created by running the configure script, several useful Makefile com-
mands are available. A copy of the same Makefile is placed in the doc and src directories, however,
the following Makefile commands are useful only in the proper directories. The commands are
categorized by where they may be issued, src directory, doc directory, or either directory.
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15.1 src directory Makefile commands

The following Makefile commands may be issed while the src directory is the current directory:

• make [blank | all | default]
Completely compiles and links VMD. Copies of the proper files must be checked out from the
RCS directory, and the source code dependencies must be up to date (see make co and make
depend).

• make module.o
Compile a single source code file (module, with proper filetype extension).

• make install
This will install the VMD executables, documentation files, and data files into a particular
VMD library directory determined by setting configuration variables in the configure script
(see section 12). As well, utility programs and scripts necessary to run VMD will be copied
into a directory also specified in the configure script. This command should be run after the
Makefile has been generated, and VMD has been successfully compiled with the requested
options.

• make distrib
This creates a tarred and compressed version of the VMD working directory structure, which
is suitable for distribution to other users via FTP. The resulting .tar.Z file is placed in the
directory distrib in the VMD working directory. The distribution version contains all files
needed to compile and run VMD, as well as the documentation files. This command is not
needed by general users, it is used by VMD developers to generate the files which are made
available via anonymous FTP.

15.2 doc directory Makefile commands

The following Makefile commands may be issed while the doc directory is the current directory:

• make doc | make doc.all
Will run Latex on the VMD documentation files, and produce all the guides for VMD. The
following documents will be produced:

1. ig.dvi . . . the VMD Installation Guide.

2. pg.dvi . . . the VMD Programmers Guide.

3. ug.dvi . . . the VMD Users Guide.

• make doc.[ig | pg | ug]
Will run Latex and create the specified guide document, i.e., the VMD Users Guide if make
doc.ug is entered.

• make doc.book
This will format all the VMD documentation guides into a single document in book format,
with each individual Guide in a separate Part. The resulting file will be called vmd.dvi.
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15.3 Makefile commands for either directory

The following Makefile commands may be issued from either the doc or src directory:

• make co[.src | .h | .doc | .bin | .data | .extra]
Checks out sets of files from the RCS (but does not lock them). The particular files checked
out depend on which optional components were specified when the configure script was run
and the Makefile created. The first form, make co, checks out copies of all files, and then
does a make depend command (see below). The other options check out the following subsets
of files:

co.src . . . All .C and .c files, which are placed in the src directory.

co.h . . . All header (.h) files, which are placed in the src directory.

co.doc . . . All documentation files, which are placed in the doc directory. If just a single
documentation guide is to be created, the files required just for the installation, program-
mers, or users guides may be checked out with the command co.doc.ig, co.doc.pg, or
co.doc.ug, respectively.

co.bin . . . All utility programs and scripts, which are placed in the bin directory.

co.data . . . All data files, which are placed in the data directory.

co.extra . . . All other special files necessary to compile VMD, which are placed in the src
directory.

• make clean
Removes all object files, backup files, and other unnecessary files still remaining after compi-
lation has finished.

• make depend
The source code file dependencies are generated, when possible, using special compiler flags
(on SGI workstations, for example, this is done with the -M flag to the CC compiler). The
resulting dependencies are placed in the file Makedata.depend in the src directory, and
are included by the Makefile. Dependencies are determined based on the current optional
component configuration; if the configuration changes, or new files are introduced, or the list
of included files for a source code file changes, the dependencies should be recomputed. This
is done automatically when a make co command is issued. Every time the dependencies are
updated, a make version command is executed as well.

• make install | make install.exe
Installs the VMD executables and data files into the VMD library directory, and copies the
startup scripts and utility programs used by VMD into a user-specified directory. These
directories are specified by the configurable parameters INSTALLLIBDIR and INSTALLBINDIR
in the file configure.parameters.

• make install.doc
Copies the documentation guides into a directory doc within the VMD library directory,
where program executables and data files were previously installed. This is not necessary for
VMD to run, but may be useful to users.

• make install.all
Same as typing make install.exe install.doc.
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• make locks
Prints out a list of all RCS-locked files; the username of the person who locked each file is
indicated by the ownership of the file.

• make version
Creates two files, which contain data used by the compiler and by Latex to determine the
values of configurable parameters. These files are:

1. src/config.h . . . A C header file which contains the program name, and current date,
as a single string, and the values for several configurable parameters as set in the file
configure.parameters.

2. doc/vmd version.tex . . . A Latex file which contains the program name, version, and
current date as Latex macros.

16 Changing the configure script

The configure script is organized into four sections, which must be updated whenever new files or
options are introduced into VMD or a change in the Makefile must be made. Also, the settings of
VMD configuration variables must be changed to the proper settings for the user. For most users,
the only section that will need to be changed is the very first section, where parameters are set.
Developers of VMD will need to change all the sections of the configure script when code changes
are made.

The first section of the configure script is present simply to set the values for specific configu-
ration parameters, i.e., the directories to install VMD data files and utilities. See section 12 for a
description of these parameters. New configuration parameters should be introduced and initialized
in this section.

Following the parameters section, the configure script contains commands to parse the command-
line options to the script, and initialize internal variables which store the requested OS type and
list of required options. When new optional components for VMD are introduced, this section must
include commands to look for the command-line option requesting the new component, and must
initialize new variables to indicate the requested option.

The third section of the configure script, which is the largest part of the file, is the set of instruc-
tions used to write out the Makefile. This is accomplished by copying text embedded within the
configure script to the newly forming Makefile, substituting the values of configuration parameters
when necessary. Any changes to how the Makefile operates, or to specific make targets, should
be made by altering this section of the configure script. At the start of the Makefile are placed
general variable settings, based on the values of the configuration parameters set at the start of the
configure script. Following this, the names of all files which comprise the different components of
VMD are placed within the Makefile. For the different optional components, the corresponding sets
of filenames are included or excluded from the Makefile based on whether the option was included
or excluded. This part also includes the names of all documentation, data, etc. files. To conclude
the Makefile, the definitions of all make targets are copied over.

At the end of the configure script is a section which finishes up after a new Makefile has been
successfully created. This section copies the new Makefile to the proper subdirectories, saves the
settings used to create this Makefile to the file configure.options, and then if requested executes
a “make” command in the src directory. There is little need to change this part.
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16.1 Adding new configurable parameters

Initialize new configurable parameters at the beginning of the configure script, in the relevant
section (installation, or compilation). Later the settings for these parameters are written out to
the Makefile; new parameters should also be written out to this Makefile. If the parameter is to
be used as a macro within the source code, it should be written out to the file config.h, which
is done by the make version command after configure has been updated and a new Makefile has
been created.

16.2 Adding new configuration options

When a new option is added to the configure script, several things must be changed. It is best to
search through the file for occurrances of a similar option and add references to the new option as
well. Several things must be checked:

• The option should be mentioned in the usage message, and in the configure script header.

• The option should be parsed near the beginning of the script, and remembered if it has been
selected.

• The option should be written out to the file configure.options at the end of the script if
the run was successful.

16.3 Adding support for a new architecture

If a new OS type or machine architecture is to be supported, follow these steps:

1. Select a string name for it, upper-case if possible and specifying the OS version number, i.e.,
“IRIX5”.

2. Add this string as a configuration option in the OSTYPE category in the configure script.

3. When the Makefile is created, a section of settings are written out for the particular OS type
selected which specify the compiler name, compiler options, and names of utility programs
needed to do things such as file copy, etc. A new section must be entered into the configure
script for the new architecture, and this section should be written to the Makefile when the
respective OS type is selected for configuration.

4. The startup script used to run VMD must check for this OS type in order to run the proper
executable when VMD is launched. Edit the file vmd in the bin directory (this script is
entered into the RCS system) to check for the OS type.

Source Code Style Guide
The names of variables, functions, and object classes in VMD follow certain conventions in

their capitalization and syntax. Also, the files used for VMD code, documentation, and data are
formatted according to specific guidelines. This section describes these style guidelines.
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17 Naming conventions

17.1 Class names

Names of C++ classes should begin with a capital letter, and not contain any hyphens. Class
names comprised of multiple words should have each word capitalized. Example:

DisplayDevice

Classes derived from a base class should generally prepend a descriptive word to the base class
name, unless the new word begins with a number in which case the additional word should be
added to the end of the base class name. Examples:

CaveDisplayDevice

and

Displayable3D

17.2 Class member variable names

Names of variables which are members of C++ classes follow the same formatting rules as names
of classes, except variable names should begin with a lower case letter. Quite often, if the variable
is an instance of a particular class, the name of the variable is identical to the class name but with
a lower case initial letter.

17.3 Class member function names

Names of functions which are members of C++ classes should be in all lower case letters, and use
hyphens to separate distinct words in their names. Example:

void Scene::prepare draw(DisplayDevice * d)

17.4 Global variable names

The names of global variables in VMD follow the same rules as for variables which are members of
a particular class. It is recommended to use one of the following suggestions when naming a global
variable:

1. Choose a single-word name, and use all lower case.

2. Choose a name similar to the class name of the variable, and prepend “vmd” to the name.

3. If it is assured there should be only one instance of a particular class, and the instance should
be global, choose a name identical to the base class of the variable but with the first letter in
lower case.

Examples:

scene
moleculeList
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17.5 Global function names

Global functions, which are found mainly in the files utilities.C and Global.C, follow one of the
following two rules:

1. Functions in Global.C have the word VMD prepended, and contain no hyphens. Distinct words
in the name begin with a capital letter, except the first word after the VMD prefix.

2. Functions in utilities.C contain all lower case letters, and either contain no hyphens at all,
or contain hypens to separate words.

Examples:

void VMDinitUI() (in Global.C)
double time of day() ( in utilities.C)

17.6 Source code file names

Each C++ class, except for very small classes used by only a small number of other classes, should
be placed in a separate .h file, and if necessary a .C file as well. The base name of the files for the
class should be identical to the class name itself. Examples:

DisplayDevice.h and DisplayDevice.C
NameList.h (no NameList.C required)

C source code files should have a .c extension (that is, use a lower case c), while C++ files should
have a .C extension. ALL header files should have a .h extension, and any Fortran files should
have a .f extension. Latex files should end in .tex.

17.7 Documentation file names

Documentation files, which are in Latex format, all contain a .tex extension and begin with a
prefix of one of the following: vmd, ig, pg, or ug. Files with a vmd prefix are used by all the Guides;
files with the remaining prefixes are used only by that particular Guide. For all files except the
main driver Latex files for the Guides and the Book, the filenames contain a hyphen after the prefix
and a concluding descriptive word. No capital letters are used. Examples:

vmd macros.tex
pg chapters.tex
ug.tex

18 Creating new files

When new files are to be added to VMD, for any of the different subdirectories, the following steps
should be followed:

1. Once an initial version of the file is ready, it must be formatted properly to conform to the
standards used by files similar to it, i.e., to be similar to other .h files if the file is a C/C++
header. The rules for formatting each type of file are given in the following section.
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2. If RCS is being used, then after formatting for almost all cases the file must be put in the
RCS system. The only type of files which should NOT be placed in the RCS are the following:

• Binary executable files, i.e., binary executable files which are in the bin directory.

• Image files used for the documentation, i.e., which are in the doc/pictures directory.
There is a single copy of these files, which cannot work with RCS due to the way RCS
stores files internally.

• Libraries, including the library archive file and the library header files. These should
all be in a single place, and all users should simply have a link from their working lib
directory to the single official VMD lib directory.

To put a file in RCS, follow the steps in section 10.

3. Once placed in the RCS, the configure script must be updated, if necessary, to include the
name of the new file in the appropriate list. For example, if a new C++ object is being added
and there are two new files newobj.C and newobj.h, the names of these files would go into the
lists of VMD C++ source code and header files in the configure script.

18.1 File formats

There are several types of files which may be added to the whole set of VMD working files. This
section describes how to format them, and where to put them.

Many types of files (particularly, C/C++/Fortran source code or header files, Latex documen-
tation files, and shell script files) require an RCS header at the beginning of the file. This header
should be placed at the very beginning, before any other text in the file. It consists of a set of
comment lines which describe the name, purpose, and history of revisions to the file. This is done
by using RCS keywords embedded in the comments, which are replaced by the proper values when
the file is checked out, and by having a section in the comments for a basic description of the
purpose of the file. Templates of RCS headers for each of the different file types which require
them are provided in the directory RCS. When a new file is created, a copy of the relevant header
template should be placed at the top of the file, and the file description inserted as comments in
the section of the template provided for this purpose. The descriptions below of how to format
each file also describe the name of the RCS template to use.

• Documentation text files
The documentation for VMD is in Latex, and files should have a .tex extension. The files
should all be placed in the doc directory, be put in the RCS, and have the RCS header
RCS/RCSheader.tex prepended.

• Documentation image files
Image files for the documentation should be placed in the directory doc/pictures, which
should be a link to a directory writable by all people working on VMD. These files are NOT
to be placed in the RCS, due to the problems with how RCS stores files.

• Source code files
All source code files, either C, C++, or Fortran, should be placed in the src directory, along
with all header files. These files should be entered into the RCS; a copy of the RCS template
RCS/RCSheader.h should go at the start of header files, and a copy of RCS/RCSheader.c
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should be placed at the start of C and C++ source files. Fortran files should begin with a
copy of the file RCS/RCSheader.f.

All header files should bracket their text between a #ifndef ... #endif pair, and define
a macro to indicate the header file has been processed. For example, right after the RCS
header should come the text

#ifndef DISPLAYDEVICE H
#define DISPLAYDEVICE H
...
#endif

• Shell script files
Files which are sh or csh scripts should be placed, most likely, in either the main working
directory or the bin directory. These should be entered into the RCS, and have the RCS
header RCS/RCSheader.make placed at the beginning. When adding such files to the RCS,
care must be taken to have the comment leader for the RCS file set properly. This is done by
using the command-line switch

-c"# "

added to the options to the rcs program (described in section 10).

• Data files
Files which contain data or configuration parameters needed by VMD should be placed in
the data directory, and be put in the RCS. In most cases, the "#" symbol is the comment
character, and so they can have the same type of RCS header as used for shell scripts. This
is true, for example, for the file data/.vmdrc, which is in the RCS.

Program Structure
VMD is written in C++ and uses an object-oriented methodology for all program components.

This greatly aids in making VMD modular and extensible to such things as new types of display
devices, new user interface libraries, and new molecular data file formats. As this chapter will
explain, VMD uses the inheritance and polymorphism features of an object-oriented design (in C++)
extensively. Users interested in extending or modifying VMD should have a good knowledge of
programming in C++; this Guide uses terminology and explainations which assume such knowledge.
Two excellent references for users interested in learning more about C++ are books by Lippman
and Strousop.

The VMD source code consists of sets of utility functions, independent and interrelated object
classes, and global variables. The classes are organized into a few logical program components,
e.g., the component responsible for displaying images, the user interface component, and others.
This chapter describes the structure of each of these components and mentions the objects which
the components contain. These components utilize several external libraries for such things as the
graphical user interface, control of external spatial tracking devices, and support for displaying
images in the CAVE display environment; the particular libraries which VMD uses are described
at the chapters conclusion.
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19 Program component descriptions

For each program component, a figure illustrates the classes which comprise the component, and
their relationship among each other. Objects are generally represented as rectangles labeled with
the class name. Classes which are derived from one or more parent classes have a solid arrow
pointing from the derived class to the parent class (an is a relationship). Classes which use some
capability of another class, but are not either derived from nor contain the other class, have a
dashed line pointing to the class which is being used (a uses a relationship). Classes which contain
one or more instances of another class indicate this by having the rectangle for the contained class
located within the containing class (a has a relationship).

VMD has a few important base classes, for which a single global instance is created either
during program initialization or as a result of a user request. For several of these base classes an
instance of a specialized class derived from the base class is created, and the address of the instance
assigned to a pointer of type base *, with the instance accessed through virtual functions. In the
figures describing each program component, important base classes are indicated in bold font. If a
global instance of a base class exists, the name of the global variable is shown in typewriter font
in parentheses below the name of the base class in the figure.

19.1 Utility objects

Figure 1 illustrates the utility objects used in VMD program development. Several of these objects
are C++ templates; instances of these classes are creates for different types, for example a Stack of
integers or a Stack of char * items. These template and the other global objects are each detailed
in section 23.

Utility ObjectsKey

Class

Class

Class
(global )

Class described in
this category

Class described in
another category

Class in this category
with a list of classes

An  is a  relationship
(i.e., inherited from)

A  uses a  relationship
(contains or acceses)

Class
Class template
in this category

Stack

ResizeArray

NameList

DLinkList

Tree

Matrix4

ConfigList

Tokenize

Timer

Inform
(msgInfo )
(msgWarn)
(msgErr )

(msgDebug)CaveResizeArray

Figure 1: Utility objects used in VMD, and a key describing the function of diagrammatic items
in these object description figures.

The Inform class is deserving of particular notice, since it is one of the most widely used objects
in VMD. This class provides a streams-like object which is used to print messages to the VMD
console. There are four global instances of this class, which are used for the following purposes:

• msgInfo
Used to display informative messages, which provide some data or message to the user which
is either requested or “typically” provided. For example, the messages describing the current
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status of the process of reading a molecule from a file or a network connection are printed by
sending text to the msgInfo instance of an Inform object.

• msgWarn
Used to display warning messages. These are messages which do not indicate a fatal program
condition, but which caution the user that things may not be going as they expect.

• msgErr
Error messages are displayed by sending text to the msgErr instantiation.

• msgDebug
Where debugging messages are printed. It is possible to exclude the source code lines which
print debugging messages when VMD is compiled, to produce a smaller and faster executable,
by eliminating the DEBUG compilation option.

To use an Inform object, text and data are given to object using insertion (<<) operators, i.e.,

msgInfo << "This is message number " << intVariable << "." << sendmsg;

The sendmsg manipulator ends the message; this will cause the message to be printed to the console,
prepended by a string indicating the type of messages, and appended by a newline.

There are also several utility functions which are not part of any class; these are described in
section 22.

19.2 Display objects

Figure 2 illustrates the structure and relationship of the many objects which are used by VMD for
storing and rendering graphical objects. These objects are described in detail in section 24. Images
are displayed through the use of four main objects (and subclasses thereof):

1. DisplayDevice objects, which are responsible for rendering a list of drawing commands to
a given device or file;

2. DispCmd objects, of which there are several subclasses; each DispCmd subclass represents
a single drawing command, such as a command to draw a line or to set the current color.

3. Displayable objects, which each represent a single graphical item with a list of drawing
commands that may be rendered to a DisplayDevice;

4. Scene objects, which store lists of Displayable objects. When requested, a Scene takes a
given DisplayDevice and requests the device to render each of the Displayable objects it
stores.

Device-Specific Rendering. DisplayDevice is the base class for objects which do the actual
rendering of a Scene. Each derived class of this parent must provide versions of virtual func-
tions which prepare the device for drawing (i.e., clear a screen or open a file), render a list of
drawing commands, and update the display after drawing, among many other functions. This
class is where library-specific drawing commands are encapsulated, for example there exists a
OpenGLDisplayDevice subclass which is used to draw images using OpenGL graphics hardware.
A DisplayDevice can also be defined which renders a Scene to a file instead of a monitor, i.e.,
to a postscript file, a raytracing program input script, or a bitmap image file.
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Figure 2: Display objects used in VMD.

Drawing Tokens. DispCmd objects are used by Displayable objects to construct a list of
drawing commands (tokens) in a format which can be processed by a DisplayDevice. When
rendering an image, a DisplayDevice does not work directory with a Displayable; instead, the
DisplayDevice is given a simple byte array into which drawing commands have been assembled.
Each Displayable contains one or more of these drawing lists; they are stored by the Scene and
processed by the render routine of a DisplayDevice. The DispCmd objects act to put the data
into these drawing lists in the proper format for the operation specified. Each DispCmd object
appends its data to the current end of a provided drawing list in this format and order:

1. Integer code specifying the drawing operation (codes are defined in the file DispCmds.h).

2. Integer stating the size of the command, in bytes (not including the code or this size count).

3. Data necessary for the drawing command (i.e., XYZ positions of the endpoints of a line or a
cylinder).

Why are things done this way? There are a few reasons:

• Speed – Once a compact display list has been created in a single block of memory, that block
may be read quickly by the DisplayDevice when drawing the object. Putting it all as a
contiguous block helps take advantage of cache memory.

• CAVE access – The CAVE programming paradigm now requires the drawing program to
fork into several different processes, including one process for each wall and an “update”
process. All these processes run on the same computer (a multi-headed SGI, i.e. a tower
Onyx) and use shared memory to communicate what to draw between the update process
and the drawing processes. Using a list of simple integer codes and copies of the coordinates
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for drawing lines, triangles, etc. instead of, say, a list of pointers to DispCmd objects helps
reduce the amount of shared memory required and simplifies the drawing processes. Drawing
in the CAVE then requires only a specialized CaveDisplayDevice and CaveScene to deal
with this shared memory requirement (along with a few other CAVE support routines).

Displayable objects. Each Displayble object contains a display list, as well as information
about the item to be drawn such as whether to display or hide the object, it’s current transformation
(how much to rotate, scale, and translate the object), whether it is a 2D or a 3D object, whether it
is fixed (set to ignore any requests to scale, translate, or rotate the object), and a list of children. A
Displayable registers with one or more Scene objects, so that the Scene then will contain a list
of all the Displayable objects which should be drawn when requrested. The Scene is responsible
for providing the physical memory storage for a display list, through a request by a Displayable.
Each molecule and other graphical item in VMD is a Displayable subclass. These derived objects
supply the methods to fill the object’s display list with drawing commands for the item to be drawn,
i.e., the commands to draw the points for each atom and the lines for each bond in a molecle.

A key feature of each Displayable is that it may contain any number of child Displayable
objects, and may also be a child of some other parent Displayable. Each child may be individually
translated, rotated, etc., and may be turned on or off individually; but operations to a parent such
as a transformation typically affect all the children of that parent as well. For example, if a parent
is currently being hidden, so will be all the children of that parent. Also, only Displayable objects
which have no parent register with a Scene; all children of a parent are drawn properly when the
parent is drawn, so it is only necessary for the very top-level parent to be stored in the Scene.

The Scene. Since it has been discussed quite a bit already, it is somewhat obvious at this point
that Scene objects are used to maintain a database on what should be drawn to a user-specified
DisplayDevice. A Scene contains routines for applying transformation such as rotate, scale, etc.
to all the (non-fixed) Displayable objects which have registered with it, and contains routines to
manage the memory used for display lists. Each Scene contains actually two categories of lists of
items, and in each category there are two lists, one for 2D objects and one for 3D objects. These
two types of lists are:

1. Pointers to all the Displayable objects which have registered with the Scene.

2. Pointers to the beginning of each display list (essentially treated as arrays of chars). There
may be more of these lists than there are registered Displayable objects, since each Dis-
playable (regardless of whether it is a parent, child, or both) provides the Scene object with
a copy of the pointer to its display list.

A Scene is the object primarily responsible for collecting all the objects that are to be drawn
and for giving these objects to a DisplayDevice for rendering. This is done as follows:

1. The routine scene->prepare(DisplayDevice *) is called by the user. The Scene will call
a routine for each registered Displayable that allows the object to prepare to be drawn.
This preparation may include, for example, changing which frame in an animation should be
shown, or updating the current position of a 3D pointer, or most anything else that needs to
be done each time the Scene is drawn.

2. The routine scene->draw(DisplayDevice *) is called by the user. This routine proceeds in
the following steps:
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(a) Prepare the DisplayDevice for drawing 3D objects.

(b) For each 3D display list stored by the Scene, call the routine display->render(void
*) with the pointer to the display list.

(c) If stereo is being used, repeat the following step for the other eye.

(d) Prepare the DisplayDevice for drawing 2D objects.

(e) For each 2D display list stored by the Scene, call the routine display->render(void
*) with the pointer to the display list.

(f) Update the DisplayDevice after all drawing is complete.

As shown in figure 2, there are many classes derived from Displayable, and actually in fact
from Displayable3D. Global Displayable objects of note are LightList, which contains a list of
Light objects; Axes, which displays a set of XYZ axes in a corner of the display; Stage, which
displays a checkerboard panel to one side of the objects in the Scene; VMDTitle, which displays
the VMD title credits and rotating letteres; and ColorList, which is described next. The Light
objects each represent one light used to illuminate the objects in a Scene which have defined
material characteristics for their surfaces.

Colors. Colors in VMD are handled mainly by the ColorList object. This maintains a list
of 16 unique colors in the VMD “colormap”, as well as a color scale of 1024 colors arranged in
a selectable pattern of blue→ green→ red or blue→white→ red. For each color there are two
versions, a solid color and a semi-transparent color. Each color may be changed through user
commands, and for each color there are corresponding material characteristics which are used when
solid objects are drawn and the Displayable drawing the solid objects requests that materials be
used. The ColorList also maintains several lists of names which are used to specify a color: using
the NameList template, a set of color categories are stored in the ColorList, and for each color
category there are any number of color objects, which consist of a name and index. For example, in
the color category “Stage” there are two objects, an “Even” object (for the even-numbered stage
checkerboard squares) and an “Odd” object (for the odd-numbered squares). The index for these
objects indicates which of the 16 VMD colors to use to color that square. Displayble objects
may request to have new categories created, and to add new color objects to each category. This
capability is provided by the ColorUser class, from which each Displayable is derived, thus all
objects can automatically access the colors through the functionality of the ColorUser class.

Picking Items. The action of picking graphical objects with a pointer, like clicking on an atom
with the mouse, is handled by the Display objects as well. Picking objects requires that VMD know
where all the points are in space that may be selected, where the pointer is located when a button
is pressed, and what to do once an item is picked. This is managed by objects derived from three
‘picking’ base classes: Pickable, PickList, and PickMode, which are discussed below.

Each Displayable object is derived from the Pickable base class; a Pickable is an object
which contains a drawing list with special DispCmd tokens which indicate “this is a point in
space which may be selected”. These picking tokens do not result in anything being drawn on the
screen; they are used by the void Displayable::pick(void *) routine to determine if a pointer is
over a selectable item. Each picking token contains also an integer tag, which is returned by the
picking routine when the pointer is found over an item. When a Displayable wants to put picking
tokens in its display list, and then wants to be have its display list be checked for pickable points,
it must register with a PickList object (described below). This is done by calling the routine
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void Pickable::register with picklist(PickList *)

in the constructor of the Displayable, using the pointer to the Scene in which the Displayable
is registered (this is because Scene is derived from PickList). There are several virtual functions
which must be provided by an object derived from Pickable, which will be discussed below.

There are two types of pointers which may be used to pick items, 2D or 3D. 2D pointers (i.e.
the mouse) report their position in ‘relative scaled coordinates’, that is, the X and Y position of
the mouse is provided to the rest of the program as values in the range 0 ... 1, so that the lower-left
corner of the graphics window is (0,0), and the upper-right corner is (1,1). The coordinates of
3D pointers, on the other hand, are given to the rest of the program as just the location of the
pointer in ’eye’ coordinates, i.e. the 3D position after it has been transformed by any internal
transformation matrix of the pointer. Each pointing device (the mouse, 3D spatial trackers, etc)
must be in a certain picking mode, which determines what action is done when an item is picked;
new modes can be easily added to a central source by any object that wants to extend the usability
of the picking mechanism. A picking operation consists of three phases:

1. Start: when a button is pressed by a pointer, a command is issued which checks to see if
something is under the current pointer position. If so, a new picking operation is started, and
continues until the button (or whatever the pointer is using) is released.

2. Moving: As the button is held down, if the start of the picking operation did indeed find
something under the pointer, commands are executed as the pointer moves to allow objects
to be continually manipulated by the pointer.

3. End: When the button is released, some final action may be required, and this is signaled by
a command to end the current picking session.

The effect on objects during these phases may be dependent on which button was pressed (two
buttons, left and middle, are assumed), and what the current mode was when the button was
pressed. PickMode objects are used to handle the different actions required for different picking
modes.

Each picking mode is embodied by a special derivation of the PickMode abstract base class.
An example, PickModeQuery, has been added which does the very simple job of just printing
out the name of the Pickable object when the picking is ended (and only if the pointer position
does not move much between the start and end). Each PickMode simply contains three virtual
functions:

1. int PickMode::pick start(DisplayDevice *, Pickable *, int button, int tag, int dim, float
*pos)
When a pick is successfully started (which means the tag of the point which was picked
has been determined), this routine is called for the PickMode object corresponding to the
current pick mode, to let that object perform some special action based on the selection. The
item selected is provided, as is the button pressed, the dimension (2 or 3) and position of the
pointer, and the DisplayDevice used to find the selected item (this is necessary to allow
access to routines which convert 2D screen positions to 3D world coordinates). Finally, the
tag of the point in the Pickable that was actually clicked on is provided (more on this later).

2. int PickMode::pick move(same args)
Again, called only for the PickMode object of the current mode for the pointer used; this is
called every time the pointer moves to a new position.
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3. int PickMode::pick end(same args)
Same as the others, just called when the pointer button is released.

A PickList object contains a list of all the current picking modes which the mouse may be
in; these all have unique id’s from 0 ... num modes - 1. The Mouse object (described in a later
section) gets this list and adds a submenu to the graphics window pop-up menu. When the mouse
is in a picking mode, the cursor changes to a crosshair. The Scene is derived from PickList; it
is the PickList which maintains all the coordinating data to manage all the objects which can be
picked, and all the different picking modes. The PickList maintains two lists:

1. All the Pickable objects which have registered themselves as items which contain points
which can be selected with a pointer.

2. All the PickMode objects which are used to provide different action capabilities to the same
pointer, in an extendible fashion.

The pointer objects call routines in PickList to get the current number of names of picking modes,
to check if the current pointer position is over a pickable point (and to find out which one), to tell
the program that the pointer is moving while an object is being picked, and to tell the program that
the button has been released following a picking operation. Thus, PickList is the “coordinator” for
all picking operations. PickList contains a routine similar to the draw routine, but which instead
checks for picked item and executes the proper action if one is found. The algorithm used is:

1. For each Pickable registered, check if it is interested in the current mode. If so, call int
Pickable::pick start(see later). If not, skip the Pickable and go to the next. 2) Then,
call int PickMode::pick start(f)or the PickMode object corresponding to the current
pick mode.

To set up a Displayable to operate properly as a useful Pickable, these things must be added
to the Displayable (see Axes.C and Axes.h for a good example of how to do these things).

• A version of the virtual routine int Pickable::want pick mode(int) must be supplied, which
returns TRUE if the given pick mode is one which the item is interested in. If no version
of this routine is supplied, the default is to return FALSE, which means the Pickable will
never be told when a pick starts, moves, or ends (this may actually be desirable, however, if
the PickMode object is to do all the work).

• If the Pickable will need to add new PickMode objects to the PickList (which is the same
as the Scene object which the Displayable is added to), or find the index for an existing
mode:

1. The routine int Pickable::add pick mode(char *, int) should be called to add a new
mode. The name given is used by this routine to check the PickList if the mode exists
already. If so, this returns the current index of that mode without creating a new
instance of the proper PickMode object. If the mode has not yet been added, the 2nd
arg is a code value given to the virtual function int Pickable::create pick mode(int),
which will create a new PickMode instance (the particular subclass based on the value
of the integer arg). This avoids unnecessary duplication of PickMode objects.

2. The index must be saved by the Pickable, and used by want pick mode to report if the
pointers current pick mode is one the Pickable is interested in.
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• In the constructor for the specialized Pickable, the routine int Pickable::register with picklist(PickList
*) must be called, to tell the PickList (Scene in this case, since Scene is derived from Pick-
List) that the Displayable can be picked.

• Also in the constructor go calls to add pick mode, if necessary.

• Pick drawing tokens must be placed in the draw list of the object.

• Finally, if the Displayable will be doing some action based on when it is picked and
moved (independent of action performed by PickMode’s during this same time), versions of
pick start, pick move, and pick end must be supplied. By default, these virtual functions
do nothing. Again, see Axes for an example (Axes actually only supplies a version of the
pick move routine, since no action is required by Axes at the start or end).

A key thing that may be needed during the pick move phase for both Pickable and PickMode
objects is the ability to convert a 2D screen coord (the relative scaled coords x and y, valued 0 ...
1) to a 3D world coordinate. The difficult of course is the abiguity in what the Z-axis coordinate
should be. The routine

DisplayDevice::find 3D from 2D(float *A3D, float *B2D, float *B3D)

takes a 3D world coordinate (at point A, A3D), and a 2D relative scaled coordinate (the screen
position of point B, B2D), and returns the 3D world coordinate for point B (B3D). This works
assuming the eye is looking along the Z axis. The coordinate returned is the point where the line
formed by the 2D’s projection back into 3D space intersects the plane parallel to the XY plane
which contains point A (i.e. the point will have the same Z-coordinate as the given point A).

19.3 Molecule objects

The objects used for displaying and rendering graphical objects in VMD are quite general, and can
be used to draw essentially anything. The objects used by VMD to create, store, and manipulate
molecules, which are illustrated in figure 3, are much more specific to the purpose of VMD, which
is to visualize to dynamic properties of biopolymers (in particular proteins and nucleic acids). The
heart of this category of object classes is the Molecule class, which is actually inherited from a
number of base classes and for which several subclasses exist. MoleculeList is an object which
maintains a list of all current molecules. There are also several helping objects which store data
about particular components of each molecule.

At the very top level of the Molecule hierarchy is the Animate class, which stores a list of
Timestep objects. Nothing is known about the molecule at this level other than the number of
atoms; a Timestep stores simply arrays of floating-point values for each of these atoms for each
discrete timestep in the trajectory of the molecule. The Animate class also maintains the current
frame in the trajectory, and the direction (i.e., fast-forward, reverse, pause) and speed of animation.
The Timestep objects, one for each frame of animation in each molecule, are stored simply as
pointers in a ResizeArray instance within the Animate object. A Timestep is currently quite
simple, and stores data as publicly-available floating point arrays which are allocated when a new
Timestep is created (or for some data which may be optionally stored for each step, by the users
request). This is done primarily for speed since this data is accessed quite often. It may be helpful
to improve this class in the future, by making a much more general method to store different types
of atomic data for timesteps which would not require a change to the Timestep class each time.
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Figure 3: Molecule objects used in VMD.

For example, the Timestep may just store a list of pointers to something like a TimeStepData
class instance, where each TimeStepData would store some number of floating-point values.

At the next level, the BaseMolecule object is inherited from the Animate object. This ob-
ject stores all the basic information which comprises the structure of the molecule. Data about the
coordinates are stored by Animate, while BaseMolecule stores how the atoms are connected,
what residues and segments exist, etc. When it is created, a BaseMolecule is empty, indicat-
ing no atoms or anything present. A virtual function int BaseMolecule::create() is used by
BaseMolecule and all other class derived from BaseMolecule; this function is called when a
new molecule is to be created, and derived classes do their creation tasks after which they call
create for the parent class. BaseMolecule does NOT contain any data or functions for the draw-
ing of the molecule, just for storing the structure. After a new molecule has been read in from
some files or from a network connection, the structure of the molecule is analyzed and stored in a
retrievable format. Several small classes help in this storage; they include the following:

• Atom
This object stores the data for one atom in a molecule, including the name, segment, type,
charge, mass, etc. A list of these Atom objects are stored in a BaseMolecule. Atoms are
numbered 0 . . . N-1, where N is the number of atoms in the molecule; a pointer to the nth
Atom object may be obtained through the routine Atom * BaseMolecule::atom(int n).
Bonds are not stored as separate objects; instead, in each Atom object there is noted the
number of bonds in which the Atom participates, and a list of the indices of the other atoms
to which it is connected. Note that a bond is effectively stored twice (to speed rendering of
the molecule), once for each atom which defines the bond.
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• Residue
Each residue such as an amino acid or nucleic acid is referenced by a single Residue ob-
ject, which stores the indices of the corresponding atoms and information about how the
residue is connected to other residues. A list of all the residues in a molecule is kept in the
BaseMolecule class.

• Fragment
A fragment is defined as a contiguous string of residues. This may be as short as one (i.e., a
water molecule), or as long as an entire protein from N-terminus to C-terminus. A Fragment
object stores a list of residues which form a fragment, noting their order and connectivity. A
BaseMolecule stores a list of all the fragments which are found within the molecule.

• NameList
A BaseMolecule also contains several lists of names which are basically NameList tem-
plates. They store the lists of unique names which occur in the molecule, i.e., the list of all
atom names. These lists are maintained as public data member for speedy access by other
parts of the program.

From BaseMolecule and from Displayable3D the DrawMolecule object is derived. This
level of the Molecule hierarchy stores all the information about how to draw the molecule. A
molecule in VMD is drawn as a composition of one or more representations of the molecule structure,
which are contained within a DrawMolItem object (described later). A DrawMolecule stores a
list of all the different representations (DrawMolItem) of the molecule that the user has selected,
and contains routines to add, change, or delete these representations. Since it is also a Displayable,
a DrawMolecule can specify its own display list, but currently all molecule drawing commands
are contained within DrawMolItem objects.

A DrawMolItem is also derived from Displayable3D; its function is to maintain the display
list with the proper drawing commands to render one specified representation of a molecule. When
a new DrawMolItem is created, it is given the molecule for which it is to render an image, and
instances of the following three objects which describe exactly what the representation is to be:

• AtomColor
Stores the color index number which is to be used for each atom in the molecule when it is
drawn; essentially, how to color the molecule. The coloring can be done in any number of
ways, for example each residue a different color, or shaded through the color scale from the
midpoint of the molecule outwards.

• AtomRep
Stores what shape to draw the molecule as; essentially, how to draw the molecule. For example,
bonds may be represented as thin lines, or solid cylinders, or not drawn at all.

• AtomSel
Which atoms to draw. This objects takes as input a text string with an atom selection
command, and determines from the string which atoms of the molecule the user wishes to
have drawn.

An instance of all three of these objects, taken together as a group, completely define how a repre-
senation of a molecule should be drawn, and so each DrawMolItem requires one of these objects
to allow it to construct the list of drawing commands for the representation. Each DrawMolItem
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is a child Displayable of the parent DrawMolecule, and may be independently turned on or off.
By doing it this way, a complex image of the molecule may be constructed by separate more basic
components, which may be separately manipulated, while the set of components are kept with the
same transformation (rotation, scaling, and centering) applied to the molecule as a whole.

The main base class Molecule is then derived from DrawMolecule. This is the level at which
most other objects in VMD work with molecules, as pointers to instances of a Molecule class. In
fact relatively little functionality is includes at this level. What this class does do, in fact, is provide
the routines for reading in or writing out of animation frames from or to different coordinate file
formats (i.e., PDB or DCD files). This is done through the use of a CoorFileData object, which
encapsulates the information on how to read/write such a coordinate file (this includes storing
which frames are to be read or written, the coordinate file format, and the current status of such an
operation). Since Molecule is a subclass of Displayable, it has a prepare virtual routine which
is called each time the Scene is to be drawn to the current DisplayDevice. Molecule uses this
call to prepare to read/write a single coordinate set from/to the current coordinate file, if one
is being processed. Thus, a coordinate file is not processed in one single operation, instead one
frame is processed each time the Scene is drawn. This allows VMD to continue to animate and
check for user commands while a coordinate file is being read or written. For the actual coordinate
file reading or writing, the CoorFile base class and derived ICoorFile and OCoorFile classes
abstract the action of taking a set of XYZ positions for a molecule and reading or writing a
trajectory file. Specific versions of these classes for PDB and DCD files are used, and any other
number of trajectory formats may be supported by developing new subclasses of ICoorFile and
OCoorFile, with also an update to CoorFileData.

Up to the point just described are all the classes necessary to store and manipulate a molecule.
However, there are several different ways for a molecule to be imported into VMD, and each method
has a specific subclass of Molecule to provide the functions to read in the proper data and store
it into the standard internal format of the Molecule class hierarchy. Currently, the following
subclasses of Molecule exist:

• MoleculeFile
Used to create a new molecule by reading structure information from a file, such as a PDB
or PSF file. This object provides routines which understand the format of these data files,
and which convert the data within the files to the internal molecular structure format used
by BaseMolecule. This action is done when the create routine is called; after reading in
the file and successfully creating the molecular structure, the create routine for Molecule
is called, which then calls create for DrawMolecule, . . .

• MoleculeRemote
This reads a molecular structure directly from a molecular dynamics simulation program
running as a separate process on the same or another computer. The data is transferred
directly over the network, without using any intermediate files, using sockets (see section 3).
Otherwise, it functions identically to MoleculeFile.

Thus, the steps in creating a new molecule in VMD are as follows:

1. Create a new empty Molecule object, by creating an instance of one of the subclasses in the
list above and assigning it to a Molecule * variable. This new molecule is empty, with 0
atoms, 0 bonds, etc.

2. Give information to this new object on how the molecule is to be created. Much of this data
is actually specified as arguments to the constructor of the special subclass used.
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3. Call the function create for the new Molecule, which will do most of the work in creating
the new molecule. During this process, the following actions are done:

(a) Data in the original format is read in from the proper source.

(b) Each atom is added one by one to the molecular structure via routines in BaseMolecule.
The lists of unique names for molecule components are constructed during this process.

(c) After all atoms are read, the bonds between atoms are stored. With the atoms and
namelists, this completely defines the basic structure of the molecule. This step may in-
volve finding the bonds through a nearest-neighbor search (necessary when the structure
is read from a PDB file).

(d) “Extra” data helpful in displaying the molecule is read, such as which atoms are hydrogen-
bond donors or acceptors.

(e) After all data is read and the basic structure defined, the create routine in BaseMolecule
analyzes the molecule and creates the lists of Residues, Fragments, and anything else
which helps define the structure.

(f) An initial representation of the molecule is created by DrawMolecule, and the display
list necessary to draw the molecule is constructed.

4. After it has been created, a request to read in any trajectory files is given to the new molecule
if necessary.

The object which keeps track of all the currently-loaded Molecule objects is MoleculeList, of
which there is exactly one in VMD assigned to the global variable moleculeList (although there
is no reason why there could not be more than one). MoleculeList is an important object: it
manages all the molecules, contains routines to allow an operation to be performed on a number of
molecules at the same time, and supplies information on how the molecules are related to each other.
MoleculeList is derived from Displayable as well: it is the top-level parent Displayable with
all Molecule objects as child Displayables. Thus, turning off the MoleculeList turns off all the
molecules, and similarly rotating or scaling the MoleculeList does so to all the molecules. There
are no drawing commands currently for the MoleculeList itself (although they could be added
for something which indicates relationships between the molecules). This is a useful trick in VMD:
have a container class which is derived from Displayable, but which has no drawing commands
of its own; instead, have it contain several child Displayable objects which form components of
the complex object which is to be drawn. By applying rotations, translations, etc. to the container
class, all the child components are similarly transformed, and they may be separately altered or
turned on or off.

19.4 Remote connection objects

To create, maintain, and access a connection to a molecular dynamics simulation running on a
remote computer (which may just happen to be the same computer running VMD), the objects
illustrated in figure 4 are used.

The Remote object is used to encapsulate the functionality for initializing, accessing, and con-
trolling a remote simulation. This object contains all the data necessary to create a new simulation
or to attach to an already-running simulation. It also contains member functions for querying
whether a simulation may be run on another computer, for retrieving the list of available MD
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Figure 4: Remote simulation access and control objects used in VMD.

programs or jobs on that computer, for obtaining and modifying parameters necessary to start a
new job, and for actually starting, attaching to, or stopping an MD simulation.

There are three phases in the task of displaying a molecule in VMD which is being simulated
by a separate MD process; they must be accomplished in this order:

1. Select a computer for the MD simulation, and connect to it to retrieve the list of running
jobs there and the list of available MD simulation packages. When this is done by a Remote
object, the lists are stored and may be retrieved by other objects in VMD. If the proper
daemon process is not running on the selected computer, this step will fail.

2. If the user is to connect to a job which is already running, this phase is skipped; if the user
wishes to start a new job, this phase is where the parameters for the job are retrieved from
the remote computer and modified to the users requirements. This requires first selecting
which one of the possible MD simulation programs the user wishes to run, and then having
the Remote object retrieve the list of optional and required parameters for that program.
This list is stored Remote, which also supplies routines to query and change these settings.
Once this is accomplished, a routine in Remote is called to start a new simulation (a similar
routine exist to attach to an already-running job). After this is called, the simulation starts,
loads its data, and this connection procedure proceeds to the final phase.

3. Once a connection is made to a running application (as opposed to the state for the earlier
phases where a simulation was being initialized), the molecular structure is transferred from
the remote process to VMD, and coordinate sets are then sent over as they are calculated. The
structure sent via the network is stored in an internal format in the Remote object (basically,
as a struct; this data is then given to a MoleculeRemote object (described later) and used
to create a Molecule in VMD. The Remote object also has routines for changing the state
of the simulation after it is running, and for disconnecting from the simulation (which leaves
it running, and in a state where VMD can attach to it again later if preferred) as well as for
killing the simulation process.

As mentioned, once the connection is established and the structure sent over the network to
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VMD, a new Molecule can be created. At the very beginning of the procedure just outlined
for creating a connection, an instance of a Remote is created to proceed through the phases.
After this is complete and the connection is successful, the Remote instance is given to a new
MoleculeRemote object, which uses the data in Remote to construct a new molecule in VMD
just as if the data were being read from a file. If another simulation is to be started or attached to,
another Remote instance must be created. Any number of simulations may be attached to by VMD
during a single session, even all the same time. However, there can only be one Remote object
being used to initialize a new connection at any one time. Thus, there is one global instance of a
Remote object, referred to by the global variable remote; this is used for setting up a simulation,
and if the setup is successful the instance is used to create a new MoleculeRemote, after which
a brand new instance of a Remote is created and assigned to remote.

MoleculeRemote acts very much like a MoleculeFile, except structure data is retrieved from
the provided Remote instance. It also provides a version of the prepare virtual routine (originally
defined in the Displayable class). When prepare is called, the MoleculeRemote checks for and
processes any new data is available from the remote connection (i.e., new coordinate sets recently
computed by the simulation). It also maintains any special items used for graphical display of the
simulation, for example the DrawPatch object. DrawPatch is a Displayable, and is used to
graphically depict the shape and status (via different coloring schemes) of the volumes of space in
which the molecule moves in the simulation. This acts very much like DrawMolItem, by being a
child Displayable to the MoleculeRemote which creates it.

The final object used specifically for remote simulation control is the RemoteList, which func-
tions very much like a MoleculeList but which instead keeps a list of MoleculeRemote pointers.
If a molecule is read from just some data files, it is stored by the MoleculeList but not the Re-
moteList (since it is not from a remote connection). If the molecule is from a remote simulation,
the pointer to the molecule is stored by both MoleculeList (as a Molecule * pointer) and Re-
moteList (as a MoleculeRemote * pointer). This allows VMD to distinguish which molecule
is part of a presently or previously active simulation. Even if the simulation is terminated, the
reference in RemoteList is maintained since the molecule was at some point part of a simulation.

19.5 User interface objects

A major design point for VMD is to make it relatively easy to add completely different user interface
(UI) methods, and allow for each interface to provide a means for accomplishing tasks that may
also be accomplished by using the other interfaces as well. Figure 5 illustrates the objects which
are used to realize this design. There are four main or base-class level objects used in this category:

• Command objects, which each represent a single task which may be accomplished in VMD;

• CommandQueue, which maintains a queue of Command instances and which requests
these Commands to be executed;

• UIObject objects, each of which represent one UI component.

Since there are to be several different UI components, there needs to be a way to avoid du-
plication of the code required to carry out the tasks requested by the user manipulating the user
interface. This is the purpose of the Command object: each subclass of Command represents a
single operation or tasks which the user may request to be done via a user interface of some form.
These Command objects may take parameters to tell them exactly how to perform the task, but
are designed to be rather specific about exactly what they should do. For example, CmdMolNew
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is the Command subclass which contains all the code necessary to create a new molecule via the
algorithm described earlier, while the CmdRotate object knows how to apply a specified rotation
to the current Scene. Each Command has a unique code, defined in the file Command.h, and
requires derived classes to do the following things:

1. In the constuctor, the data necessary to perform the command must be given to the class
and stored for the time when the command will be executed.

2. In a virtual function void Command::create text(), use a streams output technique to
place within the protected variable “ostrstream *cmdText” a string which is the text command
equivalent of the requested operation. For example, for CmdRotate, if deg is the amount
specified to rotate the scene, the function contains lines such as these:

*cmdText << "rot " << axis;
*cmdText << ( byOrTo == CmdRotate::BY ? " by " : " to ");
*cmdText << deg;
*cmdText << ends;

3. Provide a version of the protected virtual function int Command::do execute(), which is
called when the Command is requested to perform the actions it must do. More completely,
to execute a Command the routine int Command::execute() is called, which then calls
do execute.

Since the Command will contain a text version of the requested action, it is relatively simple
to create a text log of a VMD session: each time a Command is executed, the string for that
command is simply written to a file.

There are many many actions which need to be done each time through the main execution
loop of VMD (section 20). The CommandQueue object is used to queue and execute all the
actions that need to be done. This is essentially a FIFO queue, and there is just one instance
of this in VMD (stored in the global variable commandQueue). This object also contains routines
for logging a VMD session. New Command objects are added to the queue via the routine

43



void CommandQueue::append(Command * ), and are appended to the end of the queue; the
routine void CommandQueue::execute( ) then executes the top Command in the queue, and
then deletes the Command instance. After the Command is executed, but before it is deleted,
CommandQueue informs the UIObject’s (described later) that the action was done (why this
is so is also described later). Since the Command is deleted after it is executed, an instance of the
Command must be created via new, and then left to CommandQueue to be deleted. This is done
because due to the asynchronous nature of this method of executing commands, it is not known
exactly when the data in the Command will be needed, and thus it is unknown when the storage
space may be freed up for other use. The only object which knows this is CommandQueue, and
so it must be given new copies of these Command objects which it must delete when done.

The objects which create these Command objects are derived from the UIObject base class.
This base class forms the heart of all the different types of UI components which VMD provides.
For example, the text console UI (UIText), the mouse interface (Mouse), and all the GUI forms
(FormsObj and derivations thereof) are derived from UIObject. All the UIObjects, when they
are initialized, register with a CommandQueue object, which maintains the list of all UIObjects
and can work with them as a group. The UIObject is given a unique ID code when it registers,
which it uses to identify later if any actions being done were a result of a request from itself.

Each UIObject basically works with a subset of all the possible Command objects which VMD
contains. Typically a UI component displays some graphical feedback or status of the current state
of the program, such as displaying via a slider or lighted button what the value of some variable is.
When an action is performed the UI components must be informed because this graphical status
must be updated to reflect any changes. Any number of different UI components may require such
an update, but since the number of Commands which can result in a change to the particular
graphical display of each UIObject is much smaller than the total number of available actions,
it would be very inefficient to have every UI component notified when each action is performed.
Instead, the UIObjects each maintain a list of the integer codes for the Commands in which
they are interested. When a Command is executed, the Commandqueue notifies only those
UIObjects which have indicated they are interested in the Command. However, a UIObject
can create any available Command instance, and give it to the CommandQueue to be executed.
When a new Command is created, the ID of the UI which is creating it is also given to the
Command, so that later when the UI components are notified of the action they can tell who
requested the activity.

The purpose of each UIObject is to provide a means for the user to input commands, and to dis-
play to the user the current status of the program. The virtual routine int UIObject::check event()
is called once for each UI during the main execution loop to allow the UI component to check for
user events (such as keyboard entries, mouse button presses, or manipulations of GUI components
such as buttons or sliders). If such an event is found, a new Command is created for the event
(events are simply derived from Command, and contain the data specifying the type of event) and
put on the CommandQueue. After all UIObjects are checked for events, the CommandQueue
is told to start executing its queued actions, continuing until the queue is empty. When an event
action is processed, typically it results in some other form of Command to be requested, which
is done by creating the proper special derivationof Command for the action and giving it to the
CommandQueue. Eventually all events are processed, and the actions requested by them are
then processed, and finally the queue is empty. As each Command is processed the requested
action is done and all the UIObjects which expressed an interest in the action are notified, which
allows them to update their display. When the queue is empty, VMD proceeds to then redraw the
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Scene. This execution loop is summarized in section 20.
It is relatively simple to create a new UIObject; each on-screen menu is a separate UIObject

as is the mouse, the text console (which almost never needs to be updated due to a command being
executed), and the 3D UI. Each UIObject can contain the ability to execute as many or as few
actions as is desired. New UIObjects should be new’ed in the VMDinitUI routine, after the and
CommandQueue global instance are created.

19.6 Tracker objects

The objects responsible for controlling the external spatial tracking devices, and for displaying and
using the 3D pointers, are currently in the experimental stage, and will be described later when
their design is closer to being final.

20 Main VMD execution loop

After the program starts up and initializes all global objects as well as processing any startup data
files, an execution loop is entered which continues until the user requests to quit VMD. This loop
is mainly contained in the routine VMDupdate (in the file Global.C), which is called continuously
by the main routine of VMD. The algorithm for this loop is:

1. The VMDupdate routine requests each UIObject to check for any events such as mouse
button presses or GUI button/slider/browser/whatever presses. These events are entered
into the CommandQueue objects queue as Command object instances.

2. All commands in the CommandQueue are processed until the queue is empty. Typically,
the processing of an event will result in one or more new Command object being created
and placed at the end of the CommandQueue. The CommandQueue will just continue
processing each command until the queue is complete empty, which will deal with all the
events found in the previous step, as well as any other commands generated while processing
the events.

3. Each UIObject is told to do any update that needs to be done each cycle through the
execution loop. This accomplishes such things as updating the current frame in the form
used for molecule trajectory animation.

4. The current Scene is rendered to the current DisplayDevice.

21 External library descriptions

There are several libraries used by VMD for the different optional components. These libraries are
either located in the lib subdirectory of the VMD working directory, or are located in standard
system directories. This section describes the purpose, usage, and location of these libraries. Note
that in the following, the list item headers contain the library name and associated header files in
parentheses; also, the word ARCH refers to the name of the Unix version for which VMD is to be
compiled (i.e., IRIX5 or HPUX9). For almost all cases, the listed libraries are used when a specific
configuration option is used to add an optional component into VMD (e.g. the FORMS or the TCL
options).
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• libgl s (gl/gl.h, gl/device.h, gl/sphere.h)
Configuration option: OpenGL.
Expected library location: system directory, typically /usr/lib.
Expected header file location: system directory, typically /usr/include.
Purpose: this is the graphics library developed by Silicon Graphics. It is used when VMD is
being compiled for a workstation with hardware accelerated graphics. This library is needed
by all the FormsObj base- and sub-classes, as well as all classes which begin with the word
OpenGL or Cave (i.e., OpenGLRenderer, CaveDisplayDevice).

• libforms (forms.h)
Configuration option: FORMS.
Expected library location: lib/forms/lib ARCH.
Expected header file location: lib/forms/include.
Purpose: this is the FORMS library from Mark Overmars; it provides an easy to use set of
buttons, sliders, dials, etc. for use as components of a graphical user interface.

• libtcl (tcl.h)
Configuration option: TCL.
Expected library location: must be already installed on your system.
Expected header file locaton: must be already installed as well.
Purpose: This library is used to parse and interpret text command scripts, including the
capability to have variable substitution, control loops, procedure and function definitions,
etc. This library is used by the UIText object.

• libcave (cave.h)
Configuration option: CAVE.
Expected library location: lib/cave/lib ARCH.
Expected header file location: lib/cave/include.
Purpose: this is the CAVE library, used to display images in the CAVE virtual environment. It
is used by all objects and files with the word Cave in their names, i.e., CaveDisplayDevice.

• libtracker, libquat (tracker.h)
Configuration option: UNC.
Expected library location: lib/unc/lib ARCH.
Expected header file location: lib/unc/include.
Purpose: used by the UNCTracker object to access an external spatial tracking device
connected to the graphics workstation running VMD. It uses a configuration file .tracker to
simplify configuation of these spatial trackers, and allows VMD to use a variety of different
devices without recompilation. It has been developed at the University of North Carolina,
Chapel Hill.

Function and Class Descriptions
This chapter provides descriptions of most of the major objects and utility functions in VMD.

Since VMD uses an object-oriented design, the descriptions here offer a good detailed look at how
the program components are interfaced together. Not all objects used in VMD are documented
here, however. Only widely-used classes, as well as important base classes, are listed. For each
category of objects, a table lists the names of all the objects in that category, and indicates which
ones are documented in this chapter.
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The first part of this chapter (section 22) describes important utility functions used throughout
the program. The remaining sections describe the important classes used in each category of objects
in VMD.

22 Utility functions

Generally useful utility functions are located in the file utilities.C, with an associated header
file utilities.h. These functions include:

• char *stringdup(char *)
Creates a duplicate of the given string.

• char *stringtoupper(char *)
Converts the given string to upper case; returns pointer to the same string.

• int strupcmp(char *a, char *b)
Compares string a to string b in a case-insensitive manner. Otherwise acts like a call to
strcmp.

• int strupncmp(char *a, char *b, int n)
Like strupcmp, but only considers the first n characters.

• void breakup filename(char *s, char **p, char **n
Takes the filename in string s and breaks it into the file name n and directory d. Space is
allocated for both the name and path strings.

• char *command tokenize(char *s, int *argc, char **argv)
Breaks the command string s into tokens, provides as pointers to the different token strings
in argv (argv should be an array of pointers to char with enough items to hold a pointer
for each token in the given string). argc is set to the total number of tokens found. Tokens
are only searched for in the string until a # character is reached; the rest of the string s is
then skipped if this comment character is found. If the first non-whitespace character is a #
symbol, the routine returns NULL. A command string is a string of the form

<keyword> = <string>

If the equal sign is not present as the second token in the string, this routine returns NULL.

• char *str tokenize(char *s, int *argc, char **argv)
Similar to command tokenize, without the restriction of having the string in the format of a
command string, instead s may be any string.

• double time of day(void)
Returns the elapsed time, in seconds, from some reference time (which may vary between
different versions of Unix). Best used for calculating time differences, not for finding the
“current” time.

• char *username(void)
Returns a pointer to a string with the username of the person running the program.
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• int str2bool(char *s)
Returns 1 if the string s is any type of string indicating “yes” in some form, or 0 if the string
indicates “no” in some form. If the routine cannot determine if yes or no was indicates, this
returns -1.

• float *cross prod(float *x1, float *x2, float *x3)
Calculates ~x1 = ~x2 × ~x3, and returns a pointer to x1. The array x1 must be different than
the storage used for x2 and x3.

• float dot prod(float *x1, float *x2)
Returns the value of ~x1 · ~x2.

• float *normalize(float *x)
Normalizes the vector ~x; returns a pointer to x.

• float norm(float *x)
Returns the norm (length) n of a vector ~x: n =

√
~x · ~x.

• void add(float *x1, float *x2, float *x3)
Computes quickly ~x1 = ~x2 + ~x3.

• void subtract(float *x1, float *x2, float *x3)
Computes quickly ~x1 = ~x2− ~x3.
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23 Utility objects

The following objects are useful utility objects used throughout the program. Items which have a
specific section listed for them are explained in detail in that section.

Class Name Section Files
CaveResizeArray - CaveResizeArray.h and .c
ConfigList - ConfigList.h and .C
Grid - Grid.h and .c
Inform 23.1 Inform.h and .C
NameList 23.2 NameList.h and .c
ParseTree - ParseTree.h and .C
ResizeArray 23.3 ResizeArray.h and .c
Stack 23.4 Stack.h and .c
SymbolTable - SymbolTable.h and .C
Tokenize - Tokenize.h and .C

Table 2: VMD utility objects.
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23.1 Inform

Files: Inform.h, Inform.c
Derived from: none
Global instance (if any): msgInfo, msgWarn, msgErr, msgDebug
Used in optional component: Part of main VMD code

Description

A streams-like utility object used to format messages for display at the console or other selectable
ostream object. Messages are given to an Inform object via insertion operators (<<), and the
messages are printed out to a provided ostream device, prefixed by a certain string. A special
manipulator ‘sendmsg’ is used to signal when a mesage should be printed.

Each Inform object has a current ‘message level’, which is also indicated when the messages
are printed out. Routines are provided to set the current level of the Inform object, so that only
messages with a level smaller than or equal to the current output level are printed. Levels range
from 1 (most likely to be printed) to 10 (very unlikely to be printed). The main use of this feature
in VMD is in conjunction with debugging messages, where the level of debugging information can
be changed via text commands.

There are four global instances of Inform which are available to the entire program (as long as
they include the file Inform.h):

• msgInfo – Generally informative messages.

• msgWarn – Special warning messages, which do not signal an error but warn of some possible
problem with the current state.

• msgErr – Error messages.

• msgDebug – Debugging messages. The macro MSGDEBUG() exists which should be used when
printing messages to msgDebug; if the macro VMDDEBUG is set during compilation, the debug-
ging messages will be included in the executable. An example of use:

MSGDEBUG("This is a debug message" << sendmsg)

Constructors

• Inform::Inform(char *name, int ison=1)
The name argument is the name of the instance of this object; when messages are printed
out they are profixed with the name, the message level, and a right paren, i.e.

Info 1) Info message.

The ‘ison’ argument determines if messages should be printed or not at the start. Besides
the message levels, each Inform object can be on or off. When off, message are not printed,
otherwise they are if the message level is set properly.
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Enumerations, lists or character name arrays

Inform contains several manipulators used to determine how the message is printed or to do
actions. They are:

• sendmsg – used to signal that the message is complete, and should be printed. So, this should
be that last item inserted into the Inform stream.

• level1 ... level10 – sets the output level of the current message to X, where X is the
digit at the end of this name (1 ... 10).

Internal data structures

• char *name – name of the instance. Used to print message prefix.

• ostrstream *msg – character stream used to hold the message string to be printed.

• ostream *msgDest – destination stream, where the message will be printed. This could be
the console (cout), or also a file.

• int On – whether the object should print out its messages.

• int needNewline – before the message is actually printed, sometimes a newline must be
printed, and sometimes not. This flag tells whether to print a newline. Once a message is
printed, this flag is cleared. The member function need newline may be used to set this flag.

• int outputLevel – the current output message level of the instance. This level is compared
with the level of the message currently being requested to be printed; if the level of the
message is less than or equal to the current message level of the Inform object, then the
message is printed, otherwise it is just ignored.

• int msgLevel – the current output level of the message that is to be printed. This may
be changed anytime during the construction of the message; the level at the time when the
request to print the message is made is the one used.

Nonvirtual member functions

• void on(int) – set the object to be on or off.

• int on(void) – return the current on/off status.

• output level(int) – set the current output level.

• int output level(void) – return current output level of the Inform object.

• msg level(int) – set the current level of the next message to be printed.

• int msg level(void) – return the current message output level.

• void need newline(int) – set the current flag for whether a newline is needed or not.

• int need newline(void) – return current newline print status.
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• void destination(ostream *) – give the provided destination stream to the Inform object
as a place where to print messages.

• ostream *destination(void) – return destination to where messages will be printed.

• send(void) – prints the contents of the current message buffer to the destination stream, if
necessary.

• operator<<(various types) – overloaded insertion operators which are used to put data
into the current message buffer. These are used just like regular stream insertion operators,
and when the message is complete, either the routine send should be called, or else the
sendmsg manipulator should be inserted into the stream. Newline characters may be put in
the stream, Inform will print out each newline-separated line with the proper prefix.

Method of use

As stated, there are four global instances of Inform which should be used for printing all messages
in VMD. They are used just like a stream, except the manipulator sendmsg is used instead of endl
to signal that the string should be printed. An example:

msgWarn << level3 << "This is a level-3 warning." << sendmsg;

In this case, if msgWarn is on, and it’s output level is greater than or equal to 3, then this message
will be printed, otherwise it will be ignored.

For debugging messages (printed to msgDebug), make sure to use the MSGDEBUG macro, so that
these debugging messages can be conditionally excluded from the executable.

Suggestions for future changes/additions

Right now, only the debug Inform object takes advantage of the message level facility, all other
messages (information, warning, or error) are all level-1 messages. More messages should be printed
out by VMD, but at different levels of verbosity and content, and text commands should be put in
to control the current output level of msgInfo, msgWarn, and msgErr.

Text commands should be added to allow the message text to be sent to a file, or to the console
(right now, they are always sent to the console). This would not be very difficult, a new text
command would need to be added which would open a file, and call the destination routine with
the respective ostream pointer.
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23.2 NameList

Files: NameList.h, NameList.c
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

This is a template class which implements a simple associative array. A NameList consists of N
items, where each item has a name, an index, and an associated data value (the type of which is
determined by the type given to the template).

Constructors

• NameList::NameList(void)

Internal data structures

• ResizeArray<char *> names – the array of names, each of which has a data value associated
with it.

• ResizeArray<T> Data – the data associated with each name. The size of this array is the
same as the size of names.

• ResizeArray<int> sortedOrder – an array of integers which indicates the sorted order for
the names array. It is the same length as names and Data.

• int Num – the number of items in these lists.

Nonvirtual member functions

• int num(void) – return number of items in the NameList.

• int add name(char *, const T&) – adds a new name to the list, with the given data of
type T associated with it. This returns the index (also called typecode) of the name in the
list. If the name already exists in the list, this just returns to index of the existing name, and
does not change the data stored.

• char *name(int) – return the name of the Nth item.

• char *sort name(int) – return the name of the Nth sorted item, i.e. the Nth highest name
when they are put in sorted order.

• int typecode(char *, int = -1) – return the index for the given name. If the second
argument is greater than 0, it is used as the max length of the names to check for a match.
If it is negative, an exact match must be found. If no match is found, this returns -1.

• int sort typecode(int) – return the actual index of the Nth sorted item.

• T data(char *, int = -1) – return a copy of the data for the given name, in the same way
as for typecode(char *, int).
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• T data(int) – return the data for the Nth item.

• void set data(int, const T&) – changes the data value associated with the Nth name to
the given value.

Method of use

This is a template used to associate sets of data of any type with character strings (names). Names
and data are added with add name, and the other routines are used to query info about these names.
Many objects in VMD use NameLists, for example the colors are all stored this way.
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23.3 ResizeArray

Files: ResizeArray.h, ResizeArray.c
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

A template class which implements a dynamically-growing, automatically resizing array of data of
a given type. Elements in the array may be accessed via the [] operator. When new data is added
to the end of an array, the size of the array is automatically increased if necessary.

A ResizeArray has two sizes that are important:

• The internal size, which is currently allocated size of the array. This is almost always larger
than the total number of items stored in the array. A larger-than-necessary buffer is kept so
that data may be easily put at the end of the array without having to always reallocate and
copy the existing array storage.

• The external size, which is the largest index in the array which has been accessed by the user
(either by reading from that index, or writing a value at that index. This is what the user
would consider the ‘size’ of the array.

Constructors

• ResizeArray::ResizeArray(int = 10, float = 2.0)
The first argument is the initial internal size of the array, i.e. the initial number of elements
for which to allocate memory (although the initial external size of the array will be zero).
The second argument is the resizing factor: when an element of the array beyond the size the
internal array is accessed, the array will be made larger by multiplying the current internal
size by the rescaling factor. This must be larger than 1.

Internal data structures

• T *data – the current array of data, which will be made larger as the array grows.

• int sz – the internal size of the array.

• float resizeFactor – factor by which the number of elements in data is increased when
the array grows too large. sz will be made larger by sz *= resizeFactor.

• int currSize – the external size of the array, that is, the largest index into data which has
been accessed. This is always less than or equal to sz.

Nonvirtual member functions

• int num(void) – return the external size of the array.

• T& item(int N) – return (as an lvalue) the Nth item in the array. If N is larger than the
internal size of the array, the size of the array will be automatically increased by the current
resize factor.
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• T& operator[](int N) – same as item, just a nicer form (this really makes it look like a
regular array. In fact, you can have 2D and 3D resizing arrays by using this operator, and
declaring a template of a template).

• int append(const T&) – append the given data at the end of the array, resizing it if neces-
sary. Returns the index of the item.

• int insert after(int, const T&) – inserts the given data in the location following the
given index. If the given index is less than 0, this puts the item at the beginning of the array.
If the given index is larger than the external size, this puts the item at the end of the array.
Returns the index of the item.

• int insert before(int, const T&) – inserts the given data in the location just before the
given index. If the given index is less than 0, this puts the item at the beginning of the array.
If the given index is larger than the external size, this puts the item at the end of the array.
Returns the index of the item.

• void remove(int M= -1, int N= -1) – removes the items with index M ... N, with all items
in array positions below this region moved up to fill the resulting hole. If both arguments are
negative, this removes ALL the array items. If the second argument is negative, only item M
is removed.

• int find(const T&) – scans the array for an element which matches the given argument,
and returns the index of the first matching item found. If no match is found, this returns -1.

Method of use

A ResizeArray is created by specifying the type of data to store, i.e.

ResizeArray<char *> stringArray;

Once created, it looks just like an array, and you can use the [] operator to get and set data. For
example:

stringArray[3] = "Some text.";

or

cout << stringArray[3] << endl;
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23.4 Stack

Files: Stack.h, Stack.c
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

A template class which implements a simple stack of arbitrary data. Items are pushed onto and
popped off of the stack, or may just be copied from the stack.

Constructors

• Stack::Stack(int s)
The argument s is the maximum size of the stack.

Internal data structures

• T *data – array storing the actual data in the stack.

• T *curr – pointer to the current ’top’ item in the stack.

• int sz – maximum number of items which the stack can hold.

• int items – current number of items on the stack.

Nonvirtual member functions

• int stack size(void) – return number of items on the stack.

• int num(void) – same as stack size().

• push(const T&) – copies the given item onto the top of the stack, moving all other items
down one.

• push(void) – moves all items down one, keeping a copy of the previous top item on the top
of the stack.

• T& pop(void) – returns the top item on the stack, while also removing it and moving all the
other items up one.

• t& top(void) – returns a reference to the top of the stack, but does not change anything.

Method of use

You instantiate a stack by telling it how large it can grow, and then just push and pop data on/off
the stack. If the stack gets too large or small, warning messagea are printed.
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24 Display objects

The following objects are used mainly for the purpose of displaying images to the screen. Items
which have a specific section listed for them are explained in detail in that section.

Class Name Section Files
Axes - Axes.h and .C
CaveDisplayDevice - CaveDisplayDevice.h
CaveScene - CaveScene.h and .C
ColorList 24.1 ColorList.h and .C
ColorUser 24.2 ColorUser.h and .C
DispCmd (many) 24.3 DispCmds.h and .C
DisplayDevice 24.4 DisplayDevice.h and .C
Displayable 24.5 Displayable.h and .C
FileRenderList - FileRenderList.h and .C
FileRenderer - FileRenderer.h and .C
GLDisplayDevice - GLDisplayDevice.h and .C
GLRenderer - GLRenderer.h and .C
Light - Light.h and .C
LightList - LightList.h and .C
Matrix4 24.6 Matrix4.h and .C
NormalScene - NormalScene.h and .C
POVDisplayDevice - POVDisplayDevice.h and .C
PickList - PickList.h and .C
PickMode - PickMode.h and .C
PickModeDrag - PickModeDrag.h and .C
PickModeMolLabel - PickModeMolLabel.h and .C
PickModeQuery - PickModeQuery.h and .C
Pickable - Pickable.h and .C
R3dDisplayDevice - R3dDisplayDevice.h and .C
RayShadeDisplayDevice - RayShadeDisplayDevice.h and .C
Scene 24.7 Scene.h and .C
Stage - Stage.h and .C
VMDTitle - VMDTitle.h and .C

Table 3: VMD display objects.
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24.1 ColorList

Files: ColorList.h, ColorList.C
Derived from: Displayable3D
Global instance (if any): colors
Used in optional component: Part of main VMD code

Description

Contains a list of all the items which have an assigned color, and the list of all the different
color categories which exist. VMD uses a colormap made of 16 base colors (plus black), and a
colorscale made of 1024 colors in user-definable gradient (e.g., red-green-blue, or red-white-blue).
Color categories are used to contain the names of items which are related and which may have their
colors changed; an example of a color category is ‘Axes’, which contains the colors for the ‘X’, ‘Y’,
and ‘Z’ axes. The categories contain just a list of names and the associated colors assigned to these
names (an integer, from 0 ... 16). Other objects in VMD which are derived from ColorUser can
add new color categories (or can query if one of a specific name already exists), and can add new
names to an existing color category. The colors assigned to the named items in each category can
be changed via the Color menu, or through the color text command. Once a category is created by
some ColorUser object (or, if it already exists, has been obtained by the object from ColorList),
the ColorUser can use the category to retrieve the proper color to use for whatever purpose it
needs it (i.e., creating the object’s display list if it is a Displayable).

Constructors

• ColorList::ColorList(Scene *)

Enumerations, lists or character name arrays

There are three different ways to set the colorscale:

• RGB: red – green – blue.

• RWB: red – white – blue.

• BLK W: dark grey – light grey.

There are sixteen colors in the colormap, along with black, for seventeen total colors. They are:
blue, red, grey, orange, yellow, tan, silver, green, white pink, cyan, purple, lime, mauve, ochre,
iceblue, and black.

Internal data structures

• NameList<int> colorNames – a list of all the different colors, and their corresponding col-
ormap index.

• float colorData[MAXCOLORS][COLOR ITEMS] – the data which define each color, including
all the colormap colors and the colorscale colors.
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• NameList<NameListIntPtr> categories – a list of all the color categories. Each category
has a name, and an associated list of named items (so, first the right category is found by
looking up a name in categories, and then the right color is found by looking up a name in
the list associated with the given category name).

Method of use

VMD contains one global instance of this class, colors. It is used by all objects derived from
ColorUser, which includes all Displayable objects as well as DisplayDevice. An object which
wishes to allow the user to be able to change its colors goes through these steps:

1. call int ColorList::add color category(char *) ; this adds a new category with the given
name and returns a unique index for that category, or else returns the index of the category
if it already exists. This index should be saved for later use.

2. once a category exists, names should be added to the category that correspond to all the
components that can be configured, with default colors. This is done by doing the following:

(colors->color category(catIndex))->add name("item name", defaultColor)

3. When the colors have been added, they may be retrieved later when creating a display list
by doing the following:

(colors->color category(catIndex))->data("item name")

This will return the index of the color assigned to the given item name.
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24.2 ColorUser

Files: ColorUser.h, ColorUser.C
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

Simple base class for objects which will be needing to use a ColorList for colors. This class provides
routines for being given a ColorList object, and for being informed of when colors are changed.
The user can create new categories of colors in the ColorList, and add specific color objects to the
category with an identifying name. The user can edit these colors via commands.

Constructors

• ColorUser::ColorUser(void)

Internal data structures

• ColorList *colorList – a pointer to a ColorList object for this object to use. The Col-
orList is the object which keeps the global lists of color categories.

Virtual member functions

• virtual void use colors(ColorList *) – this function is used to set up this object to use
the specified ColorList to store and retrieve data. By default, it will save the pointer and
then call do use colors.

• virtual void color changed(ColorList *collist, int c) – after a color has been changed
via the GUI or a text command, the ColorUser must be notified of the change so that it
can update any internal state. This routine is called when color c in the specified ColorList
is changed. By default, this just calls the virtual function do color changed.

• virtual void do use colors(void) – this is called after a new ColorList object is pro-
vided. It is a protected function, and by default does nothing. It should only be defined if the
derived class needs to do something special when a new ColorList is given, such as create a
new color category.

• virtual void do color changed(ColorList *collist, int c) – this is called after a color
in the given category is changed. It is a protected function, and by default does nothing. It
should only be defined if the derived class needs to do something special when a color is
changed, such as rebuild a display list or recalculate some data.

Method of use

ColorUser is a base class designed to be specified as a parent for some class which desires to use
a ColorList to maintain categories of colors associated with names, and to make these names be
customizeable to the user via the VMD user interfaces. All Displayable objects are derived from
ColorUser, as are all DisplayDevice objects.
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ColorList describes how to create new categories and how to access them. If a new class wishes
to use these features, it should derive from ColorUser, and define versions of the protected virtual
functions do use colors and do color changed. This first is designed to be only called once,
right after the object is created – it should create new categories, and add the necessary names
to these categories. The second is designed to be called every time a particular color changes.
The do color changed should check to see which color was modified, and then update itself if
necessary.
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24.3 DispCmd

Files: DispCmds.h, DispCmd.C
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

DispCmd is a base class for a large number of objects which are used to create the display lists
in Displayable objects. Each subclass represents a particular drawing primitive, such as plotting
a line, changing the current color, or applying a rotation. These objects take the data required for
the particular primitive they represent (for example, the endpoints of a line, or the index of a color)
and append this data to the end of the display list for a given Displayable. Routines are available
to permit a DispCmd to be used more than once, and also to have the DispCmd remember the
location where the data was most recently appended so that new data may be copied over existing
data in a display list.

Constructors

• DispCmd::DispCmd(int code, int size)
code is a special index used to distinguish what type of DispCmd this is; it is supplied by
the derived class, and should be one of the enumeration values listed at the top of the file
DispCmds.h. size is the number of bytes that the data will occupy when placed into the
display list; it is also supplied by the derived class. It can be zero.

Enumerations, lists or character name arrays

At the beginning of DispCmds.h is an enumeration with entries for all the different DispCmd-
derived classes. These names are used by the render routine in each DisplayDevice to determine
what the commands are in a display list. When new drawing primitives are added, a new name
should be put in this list, and that name should be specified in the DispCmd base class constructor.

Following this are enumerations describing the different types of spheres that may be drawn,
and the different types of lines.

Internal data structures

• int cmdCode – the unique integer ID of the command; this is one of the names in the main
enumeration described above.

• int cmdSize – the number of bytes which the data will occupy when copied into a given
display list.

• void *Data – a block of cmdSize bytes which stores the data to be copied into a given display
list.

• void *dataLoc – a pointer to the last place into which the bytes in Data were copied. If it
is NULL, the data has not yet been copied. This is stored so that the reput command can
copy new data over previously-stored data, instead of just appending the data to the end of
a display list.
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Nonvirtual member functions

• void put(Displayable *dobj) – This is the main function in each DispCmd object. It
copies the values stored in Data to the end of the specified Displayable object’s display list.
As well, the integer code indicating which primitive this is is copied into the list, and also the
size of the data (in bytes). The order of copying data is as follows:

1. cmdCode (one integer)

2. cmdSize (one integer)

3. Data (cmdSize bytes)

• reput(Displayable *dobj) – Same as put, except that if the same DispCmd has had
the put routine called, this command will copy the data into the same location as was used
previously. This can be used to copy data over previously-copied data. A particular example is
in Displayable, which uses reput to replace the matrix data in the multiply-transformation-
matrix command used at the beginning of each Displayable’s display list. If put has NOT
been called prior to calling reput, then reput does exactly the same thing as put.

Method of use

Each class derived from DispCmd should have two constructors:

• A default constructor, with no arguments - this will just initialize all the internal storage to
default values.

• A data constructor, which takes arguments with the data necessary for the command. This
will copy the arguments into the internal data storage of the object.

If a derived class does not require any arguments (for example, the PUSH command, which just
signals to push the top transformation matrix, but does not require any data itself), only the default
constructor is used. Otherwise, each derived class should also provide two new functions;

• void putdata(args, Displayable *dobj) – This should copy the data specifed in args,
and then call put(dobj). This is used when an instance of this class is created with a default
constructor, and the instance is to be used more than once. Each time the instance it used,
putdata is called to append new data to the end of �dobj’s display list.

• void reputdata(args, Displayable *dobj) – Same as putdata, but it should call reput
after copying the given data instead of put.

Within the put and reput functions, DispCmd uses several routines in Displayable to start
the action of writing a new command to the end of the display list, to copy over the data itself,
and to signal the data is copied.

Suggestions for future changes/additions

At present, most Displayable objects contain instances of these commands as private members,
which are used to create their internal display lists. This is not really necessary, it would probably
be better if there were one global instance of each different DispCmd, available for use by the
Displayable objects. This would decrease the memory used, and the time for construction of the
Displayable using the global instances instead of a local copy.
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24.4 DisplayDevice

Files: DisplayDevice.h, DisplayDevice.C
Derived from: ColorUser
Global instance (if any): display
Used in optional component: Part of main VMD code

Description

DisplayDevice is one of the main classes in VMD. It is a base class for all the objects which are
responsible for drawing the current scene, either to an on-screen graphics window, or to a file. It
is also responsible for encapsulating the window-manager-specific routines which are different for
each type of windowing environment (e.g., X-Windows-based window management and OpenGL
rendering, etc.). Finally, it is used to determine which item a pointer is currently selecting when
a pointer button is pressed, either by a 2D mouse or by a 3D pointer. There are a large number
of virtual functions which each subclass may define (if relevant). The DisplayDevice base class
provides default versions for all the virtual functions, however, so that by default a bare Display-
Device acts as an “empty” device, which essentially does nothing but which still functions to the
rest of the program as a working DisplayDevice.

The main DisplayDevice instance used by VMD is also responsible for checking for and
reporting window events, such as when the window is resized, or when a mouse button is pressed,
etc. The main graphics window has one main popup menu (which could be implemented as a
pulldown menu if required), which the DisplayDevice must be able to create and acquire events
from.

There are two types of subclasses of DisplayDevice used in VMD:

• On-screen rendering devices, which manage a graphics display window on the workstation
monitor, and which define new versions for basically all virtual functions in DisplayDevice.

• Image-file rendering devices, which are used to render the current scene to an image file, or
to create an input script for some post-rendering processor (such as a ray-tracing program
or the Raster3D application). These subclasses are designed to be used to create a new file
each time the render routine is called. Since file-rendering DisplayDevice’s do not have to
manage a window, deal with picking objects with a pointer, etc., they are much simpler and
do not define new version of many of the virtual functions. For file rendering devices, many
of the internal variables, enumerations, and functions are irrelevant and may be ignored when
new file rendering subclasses are written.

Constructors

• DisplayDevice::DisplayDevice(char *)
The argument given is the name of the DisplayDevice.

Enumerations, lists or character name arrays

• DisplayEye lists the different locations for the viewers eye: NOSTEREO if the display is not
in stereo, LEFTEYE or RIGHTEYE if the view from either eye is being used.
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• Buttons lists the different input buttons which are assumed to be available. B LEFT,
B MIDDLE, and B RIGHT are for the three buttons on a mouse, while B F1 through B F12
are for 12 function keys, and B ESC is for the ‘esc’ key of the keyboard.

• EventCodes lists the different types of window events which are assume to be possible. These
are all prefixed with ‘WIN ’, and include redraw, mouse and keyboard button events, as well
as events for when mouse focus changes or the window is exposed.

Internal data structures

• int colorCat – the index of the color category which holds the ‘Background’ color item.
DisplayDevice is derived from ColorUser, and creates a new category ‘Display’ which
holds the names used for coloring items in DisplayDevice. The background color is accessed
through this category, when the display is cleared.

• long xOrig, yOrig, xSize, ySize – the position of the lower-left corner of the graphics
window, and the size of the window, in pixels.

• float backColor[3] – the color of the background, as should be used the next time the
display is cleared. When the background color is changed via user commands, the virtual
function do color changed gets called and the value of backColor gets updated.

• int Dim – the current dimension of the display, 2 or 3. Note that presently 2D drawing still
needs work.

• Stack<Matrix4> transMat – the transformation matrix stack for this display. The top matrix
is the matrix used to transform ‘world’ coordinates to pre-projection coordinates. It can be
pushed and popped with the push() and pop() virtual routines in DisplayDevice. Some
devices may wish to use some other matrix stack, for example the OpenGL matrix stack.

• int lineStyle, lineWidth, sphereRes, sphereMode – the current settings for these draw-
ing characteristics. They may be modified through DisplayDevice calls, but are most often
changed via drawing command in a display list created by a Displayable.

• float eyePos[3], nearClip, farClip, vSize, zDist, Aspect, cpUp, cpDown, cpLeft,
cpRight – these describe the current viewing geometry, by specifying where the viewer’s eye
is located, how far from the eye to the near and far clipping planes, and how large the screen
is vertically and how far it is from the origin. When these values have been given, the routine
calc frustrum() is used to calculate the current aspect ratio, and the location of the corners
of the viewing frustrum (the pyramid-shaped view formed from the eye (located at the tip of
the pyramid) to the screen (located at the base of the pyramid).

• int inStereo, stereoModes – the current stereo mode; 0 always means the display is not in
stereo, while values greater than 0 indicate one of the display’s available mode. stereoModes
indicates how many different modes are available. Each DisplayDevice must set this to
indicate if it has stereo capabilities.

• char **stereoNames – a pointer to an array of names used to indicate the different stereo
modes available. There should be stereoModes number of names in this list. Note that
‘stereo off’ counts as one mode, and is the default. So, if a new DisplayDevice cannot
display stereo, it should not change this variable, or stereoModes.
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• float eyeSep, eyeDist, eyeDir[3], upDir[3], eyeSepDir[3] – these describe the cur-
rent stereo viewing geometry. Along with the eye position, these define vectors describing
where the eye is looking, where the ‘up’ direction is, and a vector along the line formed be-
tween the two eyes. These also describe how far apart the eyes are, and how far from the
current eye position to the viewing focal point.

• int lightDefined[], lightOn[] – flags indicating whether data for the light sources has
been provided (via a drawing command), and whether the light sources are currently on or
off.

• float lightColor[][3], lightPos[][3] – the RGB color, and XYZ position, of each light
source.

• int matDefined[], materialsActive, materialOn – flags indicating whether data for ma-
terial characteristics has been provided (via a drawing command), whether material charac-
teristics should be used or not when drawing polygons, and the current material index that
should be used to draw the next polygon (if materialsActive is true).

• float matData[][] – the color, emissitivity, specularity, transparency, etc. of each material
that has been defined.

• pickRegion – how large an area to use as the search region when a pointer is attempting
to select an item. When picking items, the graphics window is assumed to be in ‘relative
scaled coordinates’, that is, it is assumed to have coordinates 0 ... 1 in both the X and Y
directions, with the origin in the lower left corner. Having a pickRegion == 1.0 means the
entire screen. A typical value for this is 0.01.

Virtual member functions

• virtual void queue events(void) – Indicate to the event manager that windowing and
mouse movement events need to be reported. The actual commands executed through this
function will be different based on the window manager used, and the GUI library being used
(basically, it depends on who is handling events, which is different when just using straight
GL, when using the FORMS library, when using just Xlib, when using ... ack).

• virtual int test events(void) – Check and see if there is an event pending, but do not
get the event yet.

• virtual int read event(long &, long &) – Check for an event; return true if one was
found, and return the code and value for the event in the arguments.

• virtual int x() – The current X position of the mouse, measured in pixels from the lower-
left corner of the screen.

• virtual int y() – The current Y position of the mouse, measured in pixels from the lower-
left corner of the screen.

• virtual int button down(int) – Check if the specified button is currently being pressed.

• virtual void set stereo mode(int = 0) – Changes to a new stereo mode.
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• virtual void abs screen loc 3D(float *, long *) – Given a point in 3D ‘world’ coor-
dinates (the first arg), this routine converts the point to absolute 2D ‘screen’ coordinates, i.e.
the location measured in pixels from the lower-left corner of the screen.

• virtual void rel screen loc 3D(float *, float *) – Given a point in 3D ‘world’ coor-
dinates (the first arg), this routine converts the point to ‘relative, scaled’ 2D coordinates,
which are 0 ... 1 inside the graphics display window in each X, Y dimension, and undefined
outside this region.

• virtual void find 3D from 2D(float *A, float *B, float *C) – Given a point A, and
a 2D relative screen position point B, this computes the 3D point corresponding to the position
of the 2D point. Since the 2D point is not sufficient to determine the 3D position in space
for that point, the point A is given to serve as a ‘reference’ point. Currently, the algorithm
only supports the simple case where the eye is looking directly along the Z axis.

• virtual void push() – pushes the top matrix on the transformation matrix stack; the top
matrix is unchanged, but is saved one level down on the stack.

• virtual void pop() – pops the matrix stack, restoring a previously pushed matrix state.

• virtual void loadmatrix(Matrix4 &) – copies the given 4 x 4 matrix into the top matrix
on the stack, destroying the previous matrix value there.

• virtual void multmatrix(Matrix4 &) – premultiplies the top matrix on the stack by the
given 4 x 4 matrix.

• virtual void prepare2D(int = true) – get the display ready to draw 2D objects, by set-
ting the proper projection matrices and viewport. The argument indicates whether to clear
the screen.

• virtual void prepare3D(int = true) – get the display ready to draw 3D objects, by set-
ting the proper projection matrices and viewport. The argument indicates whether to clear
the screen.

• virtual void clear(void) – erase the current display window, setting the background to
the proper color.

• virtual void left(void) – prepare to draw the left eye image when in stereo. Note that
when drawing in stereo, the left eye should always be drawn first.

• virtual void right(voivd) – prepare to draw the right eye image when in stereo. Note
that when drawing in stereo, the right eye should always be drawn last.

• virtual void normal(void) – prepare to draw a non-stereo image.

• virtual void update(int = true) – after drawing is complete, this routine ‘cleans up’,
by doing any actions which only need to be done once at the end of drawing (for example,
swapping buffers which drawing using double buffers). The argument indicates whether to
actually perform a buffer swap.

• virtual void reshape(void) – refresh the display after it has been reshaped or exposed.
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• virtual void render(void *) – the most important routine in DisplayDevice: this rou-
tine takes the given display list (created by some Displayable, and goes through the list
executing the drawing commands as they are listed. Each DisplayDevice subclass must
provide a version of render, to do the actions required to draw a scene.

• virtual int pick(int, float *, void *, float &) – pick objects based on given list of
draw commands, and determine which (if any) item in the list of drawing command was
under the given pointer position. The arguments are the dimension of picking (2 or 3), the
position of the pointer, draw command list, and returned distance from object to eye position
(this last argument is set to the distance from the object to the current eye position, which
can be used to determine which item is closest when multiple objects are under the pointer).
This function returns the ID code (’tag’) for the item closest to the pointer, or (-1) if nothing
was picked. If an object is picked, the eye distance argument is set to the distance from the
display’s eye position to the object (after its position has been found from the transformation
matrix). If the value of the argument when pick is called is negative or zero, a pick will be
generated if any item is near the pointer. If the value of the argument is positive, a pick will
be generated only if an item is closer to the eye position than the value of the argument. For
2D picking, the pointer coordinates are the relative position in the window from the lower-
left corner (both in the range 0 ... 1). For 3D picking, the pointer coordinates are the world
coordinates of the pointer. They are the coordinates of the pointer after its transformation
matrix has been applied, and these coordinates are compared to the coordinates of the objects
when their transformation matrices are applied.

Method of use

Once a DisplayDevice has been defined, and an instance created, a simple sequence of rou-
tines are used to have the device render a scene. This sequence is implemented by the void
Scene::draw(DisplayDevice *display) routine. A Scene object maintains a list of display lists
and Displayable objects which create those lists (see section 24.7). The draw routine uses the
DisplayDevice as follows:

1. display->prepare3D()

2. Set the stereo mode to the left eye, or just normal, using the command display->left() or
display->normal()

3. For each Displayable in the Scene, the prepare routine is called to make that object ready
to be drawn.

4. For each display list maintained by the Scene, the command display->render(displist)
is called.

5. If the display is in stereo, display->right() is called and the previous step repeated.

6. display->update()

Drawing to a file instead of the screen is almost identical, with the following exceptions:

• At present, only non-stereo file rendering is supported.

• The routine int Scene::filedraw(char *method, char *filename, DisplayDevice *display) is
used instead of draw, since a specific filetype and filename must also be given.
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Suggestions for future changes/additions

Most of the intended future improvements previously listed here have already been completed.
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24.5 Displayable

Files: Displayable.h, Displayable.C
Derived from: ColorUser, Pickable
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

The Displayable base class is the parent class for all items which need to be drawn to a Display-
Device. For example, the set of axes which appear in the corner of the VMD display screen are
maintained as a Displayable, and each Molecule is one as well. The Scene (section 24.7) object
maintains a list of all the Displayable’s that are to be drawn to the screen. Each Displayable
consists of the following components:

• A transformation matrix which describes how the graphical object represented by the Dis-
playable is transformed (via translations, rotations, and scaling).

• A display list which contains a set of drawing tokens, in a device-independent format. The
display list is used by a DisplayDevice to actually draw the object.

• A parent Displayable, which acts as an ‘owner’; transformations applied to the parent are
also applied to its children. If an object does not have a parent, it is a top-level Displayable.

• A set of child Displayable objects.

The Displayable class is the fundamental building block for all items which want to draw some-
thing to the screen. Consequently, it is a rather complicated beast.

Constructors

• Displayable::Displayable(TransMethod, char *, int, Scene *, int)
TransMethod is an enumeration value indicating how the objects transformation matrix
should affect the matrix of the DisplayDevice (either it should multiply the matrix (MULT),
replace it (LOAD), or it should be ignored altogether (NONE)). The following arguments are
the name of the object, the dimension (2 or 3), the Scene with which this object should
register, and the initial size of the display list storage (in kilobytes).

• Displayable::Displayable(TransMethod, char *, int, Displayable *, int)
This is the same as the first constructor, but instead of specifying a Scene to register with, a
parent Displayable is given. The new Displayable will become a child of the given parent,
instead of registering with a Scene.

Enumerations, lists or character name arrays

TransMethod is a public enumeration which is used to indicate the method of use of the objects
transformation matrix. It is one of the following:

• MULT: multiply the DisplayDevice’s transformation matrix by this object’s matrix when the
object is drawn.
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• LOAD: replace the DisplayDevice’s transformation matrix by this object’s matrix when the
object is drawn.

• NONE: do not use the object’s transformation matrix when rendering.

Internal data structures

• Displayable *parent – each Displayable has a parent, which may be null. The parent is
in charge of collecting children and displaying them as a single entity with separate display
lists. Operations which are applied to the parent are also applied ot the children, such as
rotations, commands to turn the item on or off, etc. Note that the reverse is NOT true:
operations applied to children are not applied to their parent. Thus, if you rotate a parent,
all the children will rotate in the same way, but it is possible to rotate each child separately.

• ResizeArray<Displayable *> children – the list of children for this object. This is quite
often empty. But other Displayable’s have many children, for example MoleculeList has
as its children all the Molecule objects.

• void *cmdListBeg – the start of the display list for this object

• void *cmdListPos – the location in the display list where the next drawing command should
be placed

• Scene *origScene – each Displayable must register itself with a Scene object, and this
item stores a pointer to that Scene

• ResizeArray<Scene *> sceneList – if the Displayable is registered with more than one
Scene, they are stored here

• Matrix4 tm – the current transformation matrix. This is a public variable so it may be
accessed quickly. The transformation matrix is actually just four different matrices multiplied
together; these matrices are centm, rotm, globm, and scalem. The order of multiplication is
as follows:

tm = globm * rotm * scalem * centm

When a vector is multiplied by tm, the operations these matrices represent are:

– centm – a centering translation. When tm multiplies a vector, this centering translation
is applied first.

– scalem – scales the vector. This is done after the centering translation, so the ’units’ for
the centering are in the same units as used for the ‘world’ coordinates.

– rotm – rotates the vector. This follows the scaling operation (although the two may be
done in either order).

– globm – a ’global’ translation, which is the last operation done to the vector. Since this
is done after the scaling, the units are in post-scaled world coordinates.

Displayable contains many routines which add to or set the values of these matrices.

• char *name – the name of the object
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• TransMethod transMethod – the method for use of the transmforamtion matrix. At the
beginning of each display list is placed commands to either multiply the current DisplayDe-
vice’s trans matrix, or to replace it, or to not modify it at all. This variable indicates how
this should be done. In almost all cases it should be MULT

• doCent, doRot, doGlob, doScale – flags indicating whether this object should obey com-
mands to modify the respective transformation components. Routines exist to toggle them
on or off

• int *displayObj, *isFixed, *Dim – flags indicating whether to draw the object, whether
to keep it fixed (so that it does not respond to any transformation commands), and of what
dimension it is (2 or 3). These values are actually stored at the beginning of the display list,
and these pointers reference those locations

Virtual member functions

• virtual void prepare(DisplayDevice *) – this should be supplied by each derived class
that needs to do some preparation before drawing. It is called by the Scene right before the
scene is to be rendered. By default, it does nothing.

Method of use

A Displayable must either be registered with a parent (i.e. be a child of some parent), or it must
be registered with a Scene (in which case it cannot be the child of any other Displayable). To
create a new class derived from Displayable, you need to provide two constructors, one taking a
Scene pointer, one a Displayable pointer.

Once created, then in the derived-class-provided prepare routine, the display list of for the
Displayable must be set up. If this display list will never change during the program, it can be
done just once in the constructor and no prepare is necessary. The display list is created by using
DispCmd objects.

The display list for each Displayble must be given to a Scene, regardless of whether it is child
or parent or both. It is these display lists which are given to the DisplayDevice to be rendered.
The Scene keeps a list of registered Displayable’s as well so that it can prepare them for drawing.
When a parent is prepared for drawing, it also prepares all its children, so only top-level parents
need to be registered with the Scene.

Since this class is derived from Pickable and ColorUser, there are several virtual functions
which may need to be supplied in order for the derived Displayable to be picked by the pointers,
or to have access to the color database. See the descriptions of these objects for more info.

One note about the display lists: the reason they are done in the current scheme is that the
CAVE requires the use of shared memory to hold the information for the rendering processes to
draw, while a separate update process keeps track of updating the information in shared memory.
Since the shared memory cannot have pointers to non-shared memory locations, the display lists
are designed to ONLY hold integer and floating-point data. When drawing in the CAVE, a special
CaveScene supplies shared memory blocks for the Displayable’s to use for their display lists.

Suggestions for future changes/additions

Right now every item is redrawn each time through the VMD event loop. However, there are times
when nothing changes, and no redraw is necessary. The prepare routine might be modified to have
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it return TRUE if a redraw is needed, so that if none of the current Displayable’s need a redraw,
that extra work is avoided.

Also, this class is kind of a mess, but most of it is necessary ...
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24.6 Matrix4

Files: Matrix4.h, Matrix4.C
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

A 4 by 4 matrix of floats, used primarily for the transformation matrix of Displayable and Dis-
playDevice objects. Along with general routines to rotate, translate, and scale the matrix, this
also contains overloaded operators for = (copy, either a matrix or a scalar), *= (multiply, by either
a matrix or a scalar), and += (add a matrix).

There are many functions in this class to simply add or multiply the matrix, to take the inverse
of the matrix, or to apply rotations, translations, etc. Most importantly, functions exist to take a
3- or 4-vector, and multiply (transform) it by this matrix.

Constructors

• Matrix4::Matrix4(void) – creates a 4 by 4 identity matrix.

• Matrix4::Matrix4(float) – creates a 4 by 4 matrix with all elements set to the given
constant.

• Matrix4::Matrix4(float *) – creates a 4 by 4 matrix, copying the given array of 16 floats
into the matrix (in row-major format).

• Matrix4::Matrix4(const Matrix&) – creates a 4 by 4 matrix identical to the matrix given.

Internal data structures

• float mat[4][4] – the matrix data itself.

Method of use

The many functions in this class are not listed here. The most common use of this is to maintain
a transformation matrix for transforming 3D vectors from one coordinate space to another, i.e. to
rotate, translate, and scale them. Once a 4 by 4 matrix ‘M’ has been set up, then a vector ‘V’ is
tranformed and placed in the view vector ‘VT’ as:

M.multpoint3d(V, VT)
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24.7 Scene

Files: Scene.h, Scene.C
Derived from: PickList
Global instance (if any): scene
Used in optional component: Part of main VMD code

Description

The Scene maintains and organizes a database with all the Displayable objects which are to be
drawn by a DisplayDevice. It contains routines to add new Displayable’s to its database, and to
draw them to the screen or to a file. It is derived from PickList, and so maintains the information
about what diffent picking modes are available, as well routines to pick an item with a pointer.

There are two different sets of lists stored by the Scene, with each list kept for both the 2D
case and the 3D case. The lists are:

• Registered Displayable’s; this list is used to prepare items to be drawn. Only top-level
Displayable objects are kept in this list. When a Displayable is created, it registers itself
with a Scene, and so gets added to this list.

• Registered display lists, the lists of drawing tokens created by Displayables. This list is used
to actually draw the graphics, each item in this list represents one display list and is given to
a DisplayDevice to be rendered.

This object also contains routines to apply a constant rotation to all Displayable’s each time
they are drawn, as well as to apply general transformations to all the items in the scene. The most
important function of Scene is, however, to draw the scene to a display or to a file.

Constructors

• Scene::Scene(void)

Internal data structures

• int numDisplayable2D, numDisplayable3D – the number of 2D and 3D Displayable’s
which have registered. Derived classes maintain the actual lists.

• int numCmdLists2D, numCmdLists3D – the number of 2D and 3D display lists have been
registered. Derived classes maintain the actual lists.

Virtual member functions

• virtual void prepare(DisplayDevice *) – goes through all the registered objects and
prepares them for drawing. This should be called before draw.

• virtual void draw(DisplayDevice *) – actually draws the scene, using the given Dis-
playDevice. If this display is in stereo, this will first draw the left eye view, then the right.

• virtual int filedraw(char *, char *, DisplayDevice *) – very similar to draw, ex-
cept this draws the scene to a file-based DisplayDevice. The first two arguments are the
format, and the filename. The different formats and file-rendering objects are maintained by
a global instance of the object FileRenderList.
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Method of use

A Scene is created at the start of the program, and all Displayable objects should be added to
that scene (or to another Displayable as a child). It is used in the primary event loop to prepare
and draw all the Displayable’s. It is also used to pick items with a pointer. The global routine
VMDupdate contains an example of using a Scene object.

There are two derived classes from Scene:

• NormalScene – this is the basic version, which is used for every case except when the CAVE
display device is being used. It uses standard memory allocation routines to create storage
for display lists, and to store the lists of Displayables and display lists.

• CaveScene – this uses shared memory to store the display lists, so that the CAVE processes
can all see the same data for rendering the scene.

Suggestions for future changes/additions

As mentioned for Displayable, the prepare routine could be modified to return a flag indicating
whether anything has changed in the Displayable objects which would require a redraw. If nothing
changed, then a redraw could be avoided.
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25 Molecule objects

The following objects are used to store and represent the molecules in VMD, including their static
data as well as their dynamic data. Items which have a specific section listed for them are explained
in detail in that section.

Class Name Section Files
Animation 25.1 Animation.h and .C
Atom 25.2 Atom.h
AtomColor - AtomColor.h and .C
AtomRep - AtomRep.h and .C
AtomSel - AtomSel.h and .C, AtomParser.h
BaseMolecule 25.3 BaseMolecule.h and .C
CoorDCD - CoorDCD.h and .C, ReadDCD.h and .C
CoorFile - CoorFile.h and .C
CoorFileData - CoorFileData.h and .C
CoorPDB - CoorPDB.h and .C, ReadPDB.h and .C
DrawMolItem - DrawMolItem.h and .C
DrawMolecule 25.4 DrawMolecule.h and .C
DrawPatch - DrawPatch.h and .C
Fragment - Fragment.h
Geometry - Geometry.h and .C
GeometryAngle - GeometryAngle.h and .C
GeometryAtom - GeometryAtom.h and .C
GeometryBond - GeometryBond.h and .C
GeometryDihedral - GeometryDihedral.h and .C
GeometryList - GeometryList.h and .C
GeometryMol - GeometryMol.h and .C
GeometryTug - GeometryTug.h and .C

Table 4: VMD molecule objects, part 1.
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Class Name Section Files
MolAction (many) - MolAction.h and .C
Molecule 25.5 Molecule.h and .C
MoleculeFile - MoleculeFile.h and .C
MoleculeFilePDB - MoleculeFilePDB.h and .C
MoleculeFilePSF - MoleculePSF.h and .C
MoleculeFileRaster3D - MoleculeFileRaster3D.h and .C
MoleculeList - MoleculeList.h and .C
MoleculeRemote - MoleculeRemote.h and .C
MoleculeSigma - MoleculeSigma.h and .C
Residue - Residue.h
Timestep 25.6 Timestep.h and .C

Table 5: VMD molecule objects, part 2.

25.1 Animation

Files: Animation.h, Animation.C
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

Animation is a base class for all Molecule objects in VMD. It is responsible for storing the
dynamic data for molecule – those items which vary with time, instead of remaining constant.
Animation stores an animation list, and has controls to add new data to the end of the list, as
well as to position a current frame pointer in the list. Each time a Molecule is prepared (by calling
it’s virtual prepare routine since Molecule is derived from Displayable), the current position in
the animation list is updated.

The Animation consists of basically an array of Timestep objects. Each Timestep contains
the data for the molecule for a single step in the trajectory of the system.

Constructors

• Animation::Animation(void)

Enumerations, lists or character name arrays

The AnimDir enumeration lists the different directions in which the animation can be moving:

• FORWARD: Animation proceeds continually forward each update.

• FORWARD1: Animation goes to the next step, then is PAUSEd.

• REVERSE: Animation proceeds continually backward each update.

• REVERSE1: Animation goes to the prev step, then is PAUSEd.

• PAUSE: Updates to not change the current position in the list.
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The AnimPos enumeration lists different positions in the list to which the animation position
can jump, or can have new elements inserted or deleted:

• END: The end of the animation list.

• START: The start of the animation list.

• BEFORE: The frame before a specified frame.

• AFTER: The frame after a specified frame.

• DELETE: Unused.

• WRITE: Unused.

The AnimFrames enumeration lists the different ways in which frames can be added or deleted.
It is either ALL, or SELECTION.

The AnimStyle enumeration lists the different ways in which animation can be done:

• ONCE: When the animation gets to the end or beginning, it will then pause.

• LOOP: When the animation gets to the end or beginning, loop around to the other end and
continue through again in the same direction.

• ROCK: When the animation gets to the end or beginning, reverse direction and continue ani-
mating.

Internal data structures

• double lastTime – the clock time when the last position was determined. This is used to
determine if the animation should proceed to a new frame, to control the speed.

• int frameChanged – whether the animation has changed to a new frame recently.

• int needSetFrameChanged – when this flag is set, then the frameChanged flag should be
changed the next time it is possible to do so.

• ResizeArray<Timestep *> tsList – the frames themselves.

• int currFrame – the current frame, an index into tsList.

• int frameSkip – if we are jumping to a new frame, this indicates the frame to jump to.

• float Speed – the animation speed, from 0 (slowest) to 1 (fastest).

• AnimPos appendPos – the method to use the next time a frame is to be appended.

• int appendFrame – if we are inserting frames, the frame which we are to append before or
after.

• AnimDir animDir – the current animation direction.

• AnimStyle animStyle – the method for doing animation.

• int moveTo – if this is not negative, this indicates a frame to which we are to jump the next
time the animation position is updated.

• float currTime – the time which has elapsed since the beginning of the animation.
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Nonvirtual member functions

• int num(void) – returns current number of frames in the list.

• int frame(void) – returns the current frame number.

• int is current(void) – returns whether there is a current frame.

• Timestep *current(void) – returns the current frame itself, or NULL if there is none.

• Timestep *item(int) – returns the Nth frame.

• void goto frame(int) – jump to the specified frame.

• int has frame changed(void) – returns whether the current frame has been changed re-
cently.

• void delete animation(void) – deletes all the currently stored frames.

• void delete frame(int) – delete the Nth frame.

• int append frame(Timestep *) – adds the given frame to the end of the animation list (or
wherever has been previously determined for it to be placed).

• int anim update(void) – updates the current position of the animation in the list, based on
the current animation mode, and returns the index of the new current frame. Also sets the
flags indicating whether the frame has changed. This is called during each call to prepare in
the Molecule object.

• void append end(void) – indicate to append the next frame at the end of the list.

• void append start(void) – indicate to append the next frame at the start of the list.

• void append after(int) – indicate to append the next frame after the specified frame.

• void append before(int) – indicate to append the next frame before the specified frame.

• void skip(int) – set the current frame skip rate (the increment by which the current frame
pointer is changed).

• int skip(void) – return the current frame skip rate.

• void anim dir(AnimDir) – set the current animation direction.

• AnimDir anim dir(void) – return the animation direction.

• void anim style(AnimStyle) – set the animation method.

• AnimSTyle anim style(void) – return the animation method.

• float speed(float) – set the speed of the animation.

• float speed(void) – return the current animation speed.
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Method of use

Adding new frames: To add new frames, do the following:

1. Set the method for appending, either at the end, or beginning, or before or after some current
frame.

2. Call the append routine.

Updating the current position: The anim update routine changes the current position based
on the current animation direction and style. It also sets flags indicating whether the current frame
was changed any. It will return the index of the new current frame, which can be used to get the
actual Timestep object for that frame.

Suggestions for future changes/additions

Right now, this is very top-level base class for Molecule, even higher than the BaseMolecule
level. The functionality here could probably be rolled into BaseMolecule, so that a single class
would have info about the structure and size of the molecule is was storing dynamic data for.
Basically, it’s backwards to have Animate above BaseMolecule.
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25.2 Atom

Files: Atom.h
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

An Atom object stores the data for a single atom in a molecule. Each atom has the following
information:

• Mass

• Charge

• Atom name

• Atom type

• Residue name

• Residue ID number

• Chain identifier

• Segment name

• List of bonds

Each BaseMolecule contains a list of these Atom objects.

Constructors

• Atom::Atom(int, float *, float *, char *, char *, char *, char *, char *, char *)
The first argument is the index of the atom; the rest are the names used to distinguish this
atom (as mentioned in the list above).

Enumerations, lists or character name arrays

Each atom has a set of ‘extra’ data values, other than it’s position. The codes used as indices for
these extra data values are:

• ATOMCHARGE

• ATOMMASS

• ATOMBETA

• ATOMOCCUP

• ATOMRAD

• ATOMEXTRA – the number of ‘extra’ data items.
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The BackboneType enumeration lists the different types of backbone bonds which may exist:

• NORMAL – used if nothing else special about the backbone bond can be determined.

• PROTEINBACK – used for protein backbone bonds.

• NUCLEICBACK – used for nucleic acid backbone bonds.

The ResidueType enumeration lists the different classes of residues which this atom may be a
part of:

• NOTHING – not in a residue of any noted special group.

• PROTEIN – a standard protein residue, i.e. an amino acid.

• NUCLEIC – a standard nucleic acid resiude, i.e. A,T,G,C, or U.

• WATERS – a solvent residue, most likely water.

Internal data structures

• int index – the index of this atom, as provided in the constructor.

• int bonds – the total number of bonds which this atoms participates in. Note that a bond
will be stored twice, once for each of the atoms it connects.

• int uniq resid – a unique integer indicating which residue this atom is in. This is not the
same as te residue ID, since that is not necessarily unique in a given structure (particularly
if the structure contains more than one segment or chain).

• int fragment – which fragment this atom belongs in.

• int bondTo[MAXATOMBONDS] – the indices of the other atoms to which this atom is bonded.
An atom can bond to a maximum number of other atoms before an error occurs, this maximum
is currently 8.

• BackboneType bondType[MAXATOMBONDS] – lists what type of bond each to the bonds to this
atom are.

• BackboneType atomType – indicates if this atom is part of the backbone, and if so what kind
of backbone.

• ResidueType residueType – what type of residue this atom is a part of.

• float pos[], extra[] – position and ‘extra’ data values for this atom. These are initial,
or ‘default’, values for the atom when no other coordinates or extra values are known.

• char namestr[], int nameindex – the atom name, and the index of that name in the
unique atom name array in the BaseMolecule which created the Atom object.

• char typestr[], int typeindex – the atom type name, and the index of that name in the
unique atomtype name array in the BaseMolecule which created the Atom object.
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• char resnamestr[], int resnameindex – the residue name, and the index of that name in
the unique residue name array in the BaseMolecule which created the Atom object.

• char residstr[], int residindex – the residue ID, and the index of that name in the
unique residue ID array in the BaseMolecule which created the Atom object.

• char segnamestr[], int segnameindex – the segment name, and the index of that name
in the unique segment name array in the BaseMolecule which created the Atom object.

• char chainstr[], int chainindex – the chain ID, and the index of that ID in the unique
chain ID array in the BaseMolecule which created the Atom object.

Nonvirtual member functions

• float radius() – return the atom radius.

• float mass() – return the atom mass.

• float charge() – return the atom charge.

• float beta() – return the atom beta value.

• float occup() – return the atom occupancy value.

• void add bond(int, BackboneType) – add a new bond to this atom, which connects this
atom and the specified atom, of the given bond type.

• int bonded(int a) – return TRUE if this atom is bonded to the specified atom.

Method of use

To create a new Atom, you specify all the names in the constructor, and then add the bonds to
the atom one at a time using the add bond routine. Later, when the molecular structure has been
analyzed, the flags indicating the residue type, fragment index, etc. must be set (they are currently
public members, so they can be accessed directly).
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25.3 BaseMolecule

Files: BaseMolecule.h, BaseMolecule.C
Derived from: Animation
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

BaseMolecule is the second-highest level in the class hierarchy for Molecule objects; it is de-
rived from Animation, and is used to store the static information for the molecule, which is the
basic information about the structure and contents of the system which do not change with time.
BaseMolecule has no ability to read in this information itself, instead it provides routines which
derived classes call in order to add new molecules, bonds, etc. to the molecule. BaseMolecule has
no responsibility for graphically displaying the molecule, either; that is left to the DrawMolecule
class, which is derived from BaseMolecule and Displayable.

You do not ever create a BaseMolecule instance directly, instead you create an instance of
a class derived from Molecule, for which BaseMolecule is a base class (among others). When
initially created, a new BaseMolecule is empty, with zero atoms and zero bonds. The derived
classes contain the actual code to read in the molecular structure from a file or from a network
connection, and they add the components to the internal storage via routines in BaseMolecule.
When all the structure is completely read in, then routine are called in BaseMolecule to analyze
the structure, and calculate such things as what atoms are in what residues, how many residues
there are, what are the backbone bonds, etc. In fact, a molecule contains these structural features
which are either directly added to BaseMolecule, or calculated by BaseMolecule after the basic
structure is read in:

• N atoms, which are added to the system as they are read in from some source. Each atom has
associated with it several names, which help to distinguish the atoms and make it possible
for the VMD atom selection mechanism to choose subsets of atoms. These names are:

– The atom name, which is usually a standard chemical nomenclature name. For example,
alpha carbons in proteins have the name CA.

– The atom type, which for some molecular data files is a name from a much smaller set
of total names, used to classify atoms into small sets which are more manageable. For
example, PSF files use atom types to simplify the parameterization of the atoms for
molecular dynamics simulations. If the atom type is not known from the input files, it
is just set to be the same as the atom name.

– The residue name, a three-letter code which is usually quite standard. All glycine amino
acids, for example, are in residues with the name GLY.

– The residue ID, a numeric value assigned to the residues in a molecule, quite often in
increasing order from one end of a linear chain to another. Particular useful in proteins,
which are unbranched polymers.

– The chain ID, a single-letter code used to distinguish atoms among different subcompo-
nents of a molecule. If it is unknown for an atom, it is given a default value of ‘X’.

– The segment name, similar to the chain ID but allowed to be up to four characters. This
is not as standard as the chain ID, and if it is unknown it will be given a default value
of MAIN.
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• N bonds, which are added to the system as they are read in or calculated by a derived class.
The bonds are not stored directly in a list, however; instead, each atom stores a list of the
bonds it participates in, which makes it much faster to display the molecule.

• N protein backbone bonds, and N nucleic-acid backbone bonds, which are determined by
BaseMolecule after the atoms and bonds are added.

• N residues, where each residue is a collection of atoms and bonds which form some subunit.

• N segments, which each consist of a collection of atoms in a functional substructure within the
molecule. For example, quite often a protein is a segment, and surrounding water molecules
are another segment.

• N fragments, where each fragment is a collection of connected residues. If a system consists of
three disconnected alpha helices, for example, then each helix would be a separate fragment.
There are lists of protein fragments as well as nucleic acid fragments.

After the atoms and bonds are added to the BaseMolecule, then the connectivity is analyzed
and the names of the atoms are used to find the backbone bonds, the residues in the system, and
the fragments. Atoms, bonds, residues, and other components are numbered 0 ... N-1 in their
respective lists.

One other item which BaseMolecule stores is the unique molecule ID number, which is assigned
when the molecule is created. Each new molecule in VMD gets assigned an integer ID. The assigned
ID values increase by one as each new system is loaded. The commands used to affect the molecules
use these ID numbers to determine which molecule the command should affect. The name of the
molecule displayed in the Molecule on-screen menu form has this ID number appended to the end
of it.

Constructors

• BaseMolecule::BaseMolecule(void)

Enumerations, lists or character name arrays

The MoleculeType enumeration lists the different type of molecules which VMD understands.
When the structure is analyzed, the type of molecule is determined. The types are:

• UAPROTEIN

• EHPROTEIN

• UAPROTDNA

• EHPROTDNA

• NUCLEIC

• ORGANIC

• INORGANIC
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Internal data structures

• MoleculeType type – type of this molecule (from above list).

• int nAtoms – number of atoms in this molecule. Can be zero.

• int nBonds – number of bonds in this molecule.

• int nBackProtein – number of protein backbone bonds.

• int nBackDNA – number of nucleic-acid backbone bonds.

• int nResidues – number of residues.

• int nSegments – number of segments.

• int ID – molecule integer ID number.

• int maxAtoms – maximum storage currently allotted to store the atoms (i.e. size of atomList
array, which may be larger than the actual number of atoms stored there).

• Atom **atomList – array of Atom objects.

• NameList<int> atomNames – list of unique atom names in this molecule.

• NameList<int> atomTypes – list of unique atom types in this molecule.

• NameList<int> resNames – list of unique residue names in this molecule.

• NameList<int> resIds – list of unique residue ID’s in this molecule.

• NameList<int> chainNames – list of unique chain ID’s in this molecule.

• NameList<int> segNames – list of unique segment names in this molecule.

• ResizeArray<Residue *> residueList – list of which residues are connected to which.

• ResizeArray<Fragment *> fragList – list of connected residues, which form fragments.

• ResizeArray<Fragment *> pfragList – list of connected protein residues which form pro-
tein fragments. A protein fragment is a single chain from N to C.

• ResizeArray<Fragment *> nfragList – list of connected nucleic acid residues, which form
nucleic acid fragments. A nucleic acid fragment is a single chain from 5’ to 3’.

Nonvirtual member functions

• void init atoms(int) – initializes storage to store data for N atoms. This only allocates
memory, it does not store anything in that memory. This should be called when constructing
a new molecule, when the number of atoms has been determined but before the atom data
itself is stored into the BaseMolecule structures.

• int add atom(char *, char *, char *, char *, char *, char *, float *pos, float
*extra) – add a new atom to the molecule, with the specified names, and given starting x,
y, z position (pos) and given starting extra data (such as beta value and occupancy).
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• int add bond(int, int, Atom::BackboneType = Atom::NORMAL) – add a new bond be-
tween the atoms specified as the first two arguments, where the bond is of the specified type.
See the description of Atom for a list of the different bond types.

• int find backbone(void) – determines which bonds are backbone bonds, and stores this
data in the Atom objects stored in the atomList member. Returns the number of backbone
bonds found.

• int find residues(void) – find which atoms are in which residues, and store this data.
Returns the number of residues found.

• int find waters(void) – Find the waters, based on their residue name, and return the
number found.

• int find segments(void) – Find the segments in the molecule, and store this data. Return
the number round.

• int find fragments(void) – Find the fragments in the molecule, and store this data. Re-
turn the number found.

• int find atom in residue(char *nm, int r) – find the index of the first atom in the spec-
ified residue with the given name, or return -1 if none is found with that name.

• int id(void) – return the ID of the molecule.

• Atom *atom(int) – return the Nth Atom for the molecule.

• char *atom full name(int, char * = NULL) – return a string containing the full name
specification for the Nth atom. If the second argument is not NULL, the name will be placed
in the given character array. Otherwise, an internal static buffer will be used to hold the
name. The name is of the form:

<mol ID>:<atom index>

This name is guaranteed to be unique for each atom.

• char *atom short name(int, char * = NULL) – the same as for the full name, except the
name returned is of the form:

<residue name><residue ID>:<atom name>

This form is nicer to read, but is not generally unique for a given atom.

• float default charge(char *) – returns a default partial charge to use for the specified
atom name. Used when this information is not supplied by the source of molecular structure.
The following routines also supply default data based on a given atom name.

• float default mass(char *)

• float default radius(char *)

• float default occup(char *)

• float default beta(char *)
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Virtual member functions

• virtual int create(void) – the main virtual routine provided by this class. This is used
after a new Molecule subclass has been created (with the required information for reading
the molecule given in the constructor). Initially the Molecule is empty; to initialize it, the
create() routine is called which will then start the actual process of reading in the data.
Each version of create() supplied by the derived classes should, after doing it’s own creation,
call the create() routine in the parent class. This routine returns the success of the creation
operation.

• virtual float scale factor(void) – returns (possibly calculating first) the scaling factor
required to scale the coordinates for the current timestep to fit in a box from -1 ... 1 in all
dimensions.

• virtual void cov(float &, float &, float &) – return the position of the center of vol-
ume of the current coordinate set.

Method of use

A new molecule is first created by using ‘new’ with the proper subclass of Molecule (Molecule
is the ‘standard’ class to use for all molecule objects in VMD; classes derived from Molecule are
specialized to read in data from different sources, while classes above the Molecule level only deal
with some of the information required to store and display and animate a structure.). Then, after
the new instance is assigned to a Molecule pointer, then the create() virtual function should be
called. This will actually result in all the action being done, for example data files will be read
or network connections will be established. The version of create() in BaseMolecule should be
called after the molecule has been read in by the derived classes. It analyzes the structure and finds
the backbone bonds, fragments, etc. When create() is finished, the molecule is ready to go. If
create() does not return TRUE, however, the creation failed (i.e. the files could not be opened),
and the new molecule will still be empty.
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25.4 DrawMolecule

Files: DrawMolecule.h, DrawMolecule.C
Derived from: BaseMolecule, Displayable
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

DrawMolecule is derived from BaseMolecule, and is the next level in the Molecule class
hierarchy. It embodies the level of control and functionality responsible for creating a graphical
image of the molecule. It is derived from Displayable (actually, from Displayable3D), and so
will be part of the Scene that will be drawn by a DisplayDevice.

Each DrawMolecule keeps a list of DrawMolItem objects; each DrawMolItem is also a
Displayable, and is responsible for a single representation of the molecule. Each representation
contains a display list used to draw a single view of the molecule. To define a single representation,
each DrawMolItem contains one instance each of the following objects:

• AtomColor – defines how to color each atom in the representation.

• AtomRep – defines what shape to draw the components of the representation.

• AtomSel – determines which atoms out of all the ones in the molecule are to be drawn in
that representation.

When a new DrawMolecule is created (i.e. when a new Molecule is created), it is added as a
child Displayable to a global MoleculeList object. Thus, you can rotate just the MoleculeList,
and this will rotate all the molecules at the same time. When a molecule is first displayed, it is
scaled and translated to fit within a -1 ... 1 size box centered around the origin. In order to have
all the molecules be the proper size in relation to each other, and to preserve the spatial position
of the molecules, only one molecule is used to determine the scaling and translation positions, and
the others then use those same scaling and translation values.

Each DrawMolItem added to this object are added as child Displayable objects of Draw-
Molecule, and so scaling and rotating the molecule will do so to all the DrawMolItem objects
at the same time.

Constructors

• DrawMolecule::DrawMolecule(Scene *)
Specifies the Scene to which to add this object. Should only be used if no MoleculeList is
being used.

• DrawMolecule::DrawMolecule(Displayable *)
Specified a parent Displayable to which to add this object as a child. This is the main form
used in VMD, as all Molecule objects are added to a global MoleculeList.

Internal data structures

• int active – is this molecule an active one? This is used by MoleculeList.
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• int needRedraw – a flag indicating whether this item needs to reconstruct its display list
during the prepare routine. After the display list is remade, this flag is cleared.

• ResizeArray<DrawMolItem *> repList – the list of representations.

Nonvirtual member functions

• int atom displayed(int) – returns TRUE if any of the representations are currently dis-
playing the given atom.

• int components(void) – returns the number of representations in the molecule.

• DrawMolItem *component(int) – return a pointer to the Nth representation.

• int del rep(int) – delete the Nth representation, and return the success.

Virtual member functions

• virtual void set name(char *) – used to change or set the name of the molecule. Called
during the create phase of molecule construction.

• virtual void create cmdlist(void) – regenerates the display list, which contains the list
of primitive drawing commands necessary to draw the object.

• virtual int create(void) – the version of create for DrawMolecule ... this is called by
derived classes after they have read in and initialized the molecule. The DrawMolecule
version of create will then call the BaseMolecule’s create routine, and finally then construct
the initial version of the display list.

• virtual void prepare(DisplayDevice *) – provided since this is a Displayable object.
This determines if the display list needs to be reconstructed, and if so it does the reconstruc-
tion.

• virtual int add rep(AtomColor *, AtomRep *, AtomSel *) – requests for a new repre-
sentation to be made, using the given objects to describe what the representation should be.
Returns success.

• virtual int change rep(int, AtomColor *, AtomRep *, AtomSel *) – changes the Nth
representation to use the new settings specified in the given objects.

Method of use

The user should never create a DrawMolecule directly; it should instead be used as a base class
for Molecule.
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25.5 Molecule

Files: Molecule.h, Molecule.C
Derived from: DrawMolecule
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

This is the class used generally throughout VMD to represent and access a molecule. It is de-
rived from several base classes which provide the storage and control over the molecule’s structure
(BaseMolecule), animation list (Animation), and graphical display (DrawMolecule). It still
does not contain the abilities to read in new molecular data from different sources, instead these
are in classes derived from Molecule. This class is used as the basic class that all other parts of
VMD are aware of, since once a molecule is read in from some source, it acts just like any other
molecule.

The one level of extra functionality which is provided directly by the Molecule class is the
ability to read in new coordinate frames from an external coordinate file, either a PDB or a DCD
file.

Constructors

• Molecule::Molecule(char *, Scene *)
The first argument is the source of the data, it is a string indicating either a file, or some
remote computer, or perhaps some other source. The second argument is the Scene to which
this molecule should be added. This version of the constructor should only be used if no
MoleculeList is being used.

• Molecule::Molecule(char *, Displayable *)
Same as above, except a parent Displayable is specified instead of a Scene. This is the
version that should be used mainly in VMD, with the global MoleculeList object specified
as the parent Displayable for the molecule.

Internal data structures

• char *source – the source of the molecule structure data.

• ResizeArray<CoorFileData *> coorIOFiles – data on which files containing atomic co-
ordinates are to be read in by this object. Each CoorFileData instance contains data on
which file to read, what type of file it is, and which frames to read from the file. The same
data is stored in the case where a file is to be written instead of read.

Nonvirtual member functions

• int read coor file(char *, int, int=(-1), int=(-1), int=(-1)) – request to read in
the specified file. The second argument is the type, and the remaining are the beginning
frame, ending frame, and frame skip values. If any are not specified or are ¡ 0, default values
are used.
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• write coor file(char *, int, int=(-1), int=(-1), int=(-1)) – same as above, but
requests to write out a file.

Virtual member functions

• virtual void prepare(DisplayDevice *) – does any preparation necessary before redraw-
ing. If data files are being read, this will read the next frame from them.

Method of use

New molecules are created in VMD in the CmdMolNew object, which is a particular Command-
derived object. When a new molecule is to be created, the type of molecule source and necessary
data are specified (such as filenames, remote computer names, etc) and given to the constructor of
a specialized subclass of Molecule. The resulting (empty) molecule is assigned to a Molecule *
pointer variable, and then the virtual create routine is called. After this, the molecule is added to
the MoleculeList, and any extra actions are taken such as requesting for more coordinate files to
be read, etc.
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25.6 Timestep

Files: Timestep.h, Timestep.C
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

The Timestep class is used to hold the dynamic data for a Molecule for a single step in a
trajectory. It hold the coordinates, velocities, energies, etc. that vary with time. As each new
Timestep is read in from some source (a file, or from a network connection) it is added to the
animation list for the associated molecule; this list is maintained by the Animation object, from
which each Molecule is derived.

Almost all the items in this class are public, so they may be retrieved quickly by other objects
in VMD. This is not such a great design, however; see the notes below about future changes.

Constructors

• Timestep::Timestep(int n, float DT, float *newdata = NULL)
The first argument is the number of objects (atoms) for which dynamic data will be stored.
The second is the time which has elapsed between generation of this step a previous step (for
example, for a molecular dynamics simulation, this would be the integration timestep). The
final argument is the data to store in this step, if it has already been allocated. If not, new
space will be allocated by Timestep.

Enumerations, lists or character name arrays

There are a number of globally defined macros in this class which are used as indices into the data
arrays stored by this object. They are:

1. Energy Data Indices:

• TSE BOND – index to bond energy value.

• TSE ANGLE – index to angle energy value.

• TSE DIHE – index to dihedral energy value.

• TSE IMPR – index to improper dihedral energy value.

• TSE VDW – index to van der Waal energy value.

• TSE COUL – index to Coulomb energy value.

• TSE HBOND – index to hydrogen-bond energy value.

• TSE KE – index to total kinetic energy value.

• TSE PE – index to total potential energy value.

• TSE TOTAL – index to total energy value.

• TSE TEMP – index to temperature value.

2. Per-Atom Data Indices:
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• TSP X – x coordinate.

• TSP Y – y coordinate.

• TSP Z – z coordinate.

3. Per-Patch Data Indices:

• TSP XLEN – length of patch in x direction.

• TSP YLEN – length of patch in y direction.

• TSP ZLEN – length of patch in z direction.

• TSP LOAD – computational load on the patch.

• TSP ATOMS – number of atoms in the patch.

• TSP NODE – node which contains the patch.

Internal data structures

• int needDataDelete – flag for whether we need to delete the storage space for the data
array when this object is deleted.

• int num – number of atoms in this Timestep.

• float *pos – coordinates of all the atoms. This array has 3 * num elements, arranged as ([x1
y1 z1] [x2 y2 z2] ...).

• float *data – for each atom, there can be ‘extra’ data, which Timestep does not not know
the contents of. This is the data provided as the last argument in the constructor.

• float energy[] – energy values for this timestep. By default, they are zero unless they are
explicitly changed by the creator of this timestep.

• int numPatches – the number of patches stored in this step. It may be zero (and definitely
is zero for data which did not come from a network connection).

• float *patchData – data stored for each patch (the size, location, atoms per patch, etc.).

• float minpos[], maxpos[], mindata[], maxdata[], etc – the minimum and maximum
values found in this Timestep for the various data quantities. Several parts of VMD need
to know the range of data values some quantity takes in a Timestep.

• float COV[] – the x,y,z position of the center of volume.

• float scale factor – the amount by which you would need to scale the coordinates in this
step in order to fit them in a box in the range (-1 ... 1) in all dimensions.

• float dt – the time required to compute this timestep. If this is unknown, it is set to zero.

• int Initialized – has this been initialized? If so, then all the data items have been placed
into the proper arrays, and the max and min values have been calculated.
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Nonvirtual member functions

• float *create patch storage(int) – allocates internal storage to store data for the given
number of patches. The number of patches is stored internally as well. Returns a pointer to
the newly-allocated array.

• void init(void) – after all the data has been placed into a new Timestep instance, this
routine calculate the max/min values for all the quantities, and anything else required based
on atom coordinates, etc. Used for scaling and translating purposes.

Method of use

A new Timestep is created each time new coordinate data needs to be added to the end of the
animation list. Use the following steps:

1. Create a new instance:

Timestep *ts = new Timestep(atoms, dt);

2. Copy coordinate and energy data into the proper arrays, by accessing the public data items
described above.

3. If there is patch data, first call create patch storage with the number of patches (to allocate
storage), and then copy the patch data into the array which is returned by the function.

4. After all data is entered, the last step is to call the init routine. This goes through all
the stored quantities (x, y, z position, atoms/patch, etc) and calculates the maximum and
minimum values. It also finds the position of the center of volume, and the proper scaling
factor.

Suggestions for future changes/additions

This could perhaps benefit from having a NameList store the different quantities, with a specific
name associated with each quantity. Then, instead of having to hard-code into Timestep what
data is being stored, you could just have a routine to add new items with a given name to the
object, and other routines to access data by providing the proper name and index (or maybe just
provide the name, and have returned the proper array storing the data).
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26 Remote connection objects

The following objects are used to allow VMD to connect to a remote MD simulation program, and
display the results of that simulation as they are calculated. The objects responsible for remote
simulation connection and control are currently in the experimental stage, however, and will be
described later when their design is closer to being final.

Class Name Section Files
DrawPatch - DrawPatch.h and .C
MoleculeRemote - MoleculeRemote.h and .C
Remote - Remote.h and .C
RemoteList - RemoteList.h and .C

Table 6: VMD remote simulation control objects.
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27 User interface objects

The following objects are used to implement the user interface modules in VMD, including the
text interface, the 2D mouse interface, the GUI interface, and (eventually) the 3D interface. Items
which have a specific section listed for them are explained in detail in that section.

Class Name Section Files
Buttons - Buttons.h and .C
Command 27.1 Command.h and .C, Cmd*.C and .h
CommandQueue 27.2 CommandQueue.h and .C
FormsObj - FormsObj.h and .C, *FormsObj.h and .C
Mouse 27.3 Mouse.h and .C
UIObject 27.4 UIObject.h and .C
UIText 27.5 UIText.h and .C
UIVR - UIVR.h and .C

Table 7: VMD user interface objects.
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27.1 Command

Files: Command.h, Command.C, Cmd*.h, Cmd*.C
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

This is a base class for all the objects used in VMD to peform actions (commands) on the molecules
or program state. Each time a request is to be made to do some command (i.e. rotate the current
scene, load a new molecule, change a color, etc), an instance of a class derived from Command is
created, and given to a CommandQueue object. The queue will then call virtual routines within
Command to perform the action it knows how to do. There are a large number of relatively
small classes derived from Command, each one used to perform a particular type of action. These
objects are all in the files with names starting with ’Cmd’, for example CmdDisplay.h and .C.

Each class derived from Command has these characteristics and abilities:

• A unique integer code, which must be one of the items in the enumeration Cmdtype located at
the top of the Command.h file. The code for the particular subclass of Command is passed
to the Command constuctor, and available via the gettype() function.

• The data necessary to perform the required action. This data must be given to the object
via the constructor when it is created.

• A textual equivalent of the command. This is created after the object is instantiated, based
on the particular data given to that instance. This string is used to echo commands to the
console or to a file.

• The ability to perform the command itself. The virtual function execute() is used to request
the Command object to do its stuff.

The basic philosophy behind the use of Command is that each action that the user may possibly
request to do should be encapsulated within a class derived from Command. Each subclass should
know also how to create a text equivalent of the command. User interface objects in VMD (those
derived from UIObject must use these Command’s to do the actions requested by the user, by
creating new Command instances and giving them to a CommandQueue object to execute.

Constructors

• Command::Command(Cmdtype, int)
The first argument specifies the type code for the command, while the second argument is
the ID of the user interface object which created this Command instance (see section 27.4).

Enumerations, lists or character name arrays

There is one large enumeration �Cmdtype in Command, which contains a set of unique ID’s for
each derived class of Command. This is done as an enumeration here so that other objects in the
program (notably UIObjects) .. can be written with explicit codes to allow them to check what
type of command they may be working with. When a new Command object is being written, a
new value must be added to this list.
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Internal data structures

• Cmdtype mytype – unique code for this derived class.

• int textExists – whether or not the text equivalent of this command has been created yet.
This only needs to be done at most once, and sometimes not at all (if commands are not
being logged to a file or the screen, for example).

• int hasTextCmd – whether or not this command even HAS a text equivalent ... some com-
mands do not, for example Event’s.

• char cmdtextbuf[256] – character buffer to hold the text equivalent string. This can be at
most 256 characters.

• ostrstream *cmdText – character stream used to format the text equivalent.

Nonvirtual member functions

• void check and create text(void) – when called, this routine will create the text equiva-
lent of the command, if necessary (that is, when the command HAS a text equiv and the string
has not yet been created). This will be done by calling the virtual function create text().

• int execute(void) – execute the command; this will call the virtual function do execute(),
and return whether the action was successful.

• int has text(void) – return whether or not the command has a text equivalent (if not, the
text equivalent is an empty string).

• char *text(void) – return the text equivalent. This will call the routines to create the
string if necessary.

• Cmdtype gettype(void) – return the type code for this object.

• int getUIid(void) – return the ID number of the UIObject which created this Command
instance.

• friend ostream& operator<< – an overload of the ¡¡ operator to allow a Command to be
easily printed to an ostream.

• friend Inform& operator<< – the same, to send the text equivalent of the Command to
an inform object. For example:

Command *cmd = new CmdAck(); msgInfo << *cmd;

Virtual member functions

• virtual int do execute(void) – the ‘heart’ of each class derived from Command. This
function performs the required task (if possible), and returns TRUE if successful, FALSE if
there is an error. When errors occur, messages should be printed to msgErr in this function,
and preferrably NOT within the lower-level objects (i.e. the Molecule or DisplayDevice
objects).

• virtual void create text(void) – formats the text equivalent of the command, writing
the text to the cmdText stream.
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Method of use

Using a Command object: Whenever an action is to be performed, you create a new instance
of the particular Command derivative with a ‘new’ operation:

Command* cmd = new CmdTranslate(x, y, z, 0);

Then, the command is queued, by adding it to a CommandQueue object, by appending it to the
queue:

commandQueue->append(cmd);

When doing this in a UIObject, there is a member function addcommand(Command *) to do this
more easily.

Once queued, the command will be executed during the main event loop in VMD, and then
the instance will be deleted after it is done executing. Do NOT queue a static Command object,
it must have been created using new. (But see the description of the runcommand function in
CommandQueue, section 27.2.)

Developing a new class derived from Command: The following ‘checklist’ should be followed
when creating a new type of command:

1. Identify the ‘type’ of command ... to affect the display, the molecules, the on-screen forms,
or whatever. There are several Cmd* files, find one where it belongs, or create a new one of
the form CmdXXXX.h and .C

2. Create a text equivalent of the commands. Text commands in VMD consist of one or more
words separated by whitespace, and terminated by a newline. The first word of the command
should be an ‘identifying’ word to indicate the general type of action to be performed, and
the other words should be arguments to describe exactly what action to do in the general
category.

3. Put a new code in the Cmdtype enumeration in Command.h

4. Create the class definition in CmdXXXX.h. The only functions that are needed are the con-
structor/destructor, and the virtual functions do execute and create text. If the command
does not have a text equivalent, you do not need to provide a version of the latter.

5. Put the member functions in the file CmdXXXX.C. The easiest thing to do is to follow the
patters in the Cmd*.C files.

6. All commands must be understood by the text parser (UIText). The parser reads in new
commands, looks at the first word, and calls a text callback function to process that command.
If the new command is just a variant of another existing command (i.e. the first word of
this new command is the same as some existing command), then it should be put in an
existing Cmd* file, and the function ’text cmd WWWW’ at the top of the respective .C file
(where WWWW is the first word of the command) should be updated to understand the
new command. Add code to look for the proper strings, to create a new instance of the new
command, and to add it to the given CommandQueue. If this command contains instead
a new word for the VMD vocabulary, go on the next step, otherwise the next step can be
skipped.
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7. For commands which contain a new starting word, so that they are placed in new files
CmdXXXX.h and .C, two things must be done to allow VMD to be aware of the text versions
of these commands and to be able to execute them:

(a) At the beginning of CmdXXX.h and .C, a new function ‘text cmd WWWW(int argc,
char **argv, CommandQueue *cq, int id)’ must be defined and written. This routine
must know how to examine the text command (as provided in token form in argc and
argv) and create instances of the proper Command object to be added to the command
queue. Other Cmd* files contain examples.

(b) In the file UIText.C, there is a section where all the words that are at the beginning of
VMD commands are ‘registered’, with the callback function to call when that word is
seen. Add a line similar to the others in this section, to register the new word and to
specify the new function ‘text cmd WWWW’.

8. If other user interfaces (other than the text interface) are to have the ability to execute this
same command, add this ability to them as well.

9. Finally, update the on-line help file vmd help.html, and the User’s Guide.

Suggestions for future changes/additions

The printing of error message is right now very uneven. Some commands do so in the do execute
routine, others leave it to the objects being operated upon to do the error message printing. It
would be best if all error messages were printed (if possible) in do execute routines, with the
underlying objects just returning error codes to allow do execute to tell what is going wrong.
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27.2 CommandQueue

Files: CommandQueue.h, CommandQueue.C
Derived from: none
Global instance (if any): commandQueue
Used in optional component: Part of main VMD code

Description

CommandQueue maintains a queue of Command’s, and will go through this queue and execute
them when requested. The queue is first-in first-out. This object also has the ability to log
commands to a file.

There is one global instance of this class in VMD, called commandQueue. It is used by all the
user interface objects (UIObject classes). Each time a new action is requested by the user or some
other part of VMD, a new Command instance is created and added to the CommandQueue.
Within the main event loop of VMD, after each UIObject is checked for new events, the commands
in the queue are all executed until the queue is empty (since the execution of one command may
result in the queuing of a new command, this process continues until the queue is empty). Each
time the queue is checked, the following occurs:

• The next Command instance at the top of the queue is fetched to be executed.

• If commands are being logged to a file, the text representation of the command is written to
that file.

• The command itself is executed, and the return code (success of the command) is stored.

• After it is executed, each UIObject active at that time is informed about the command, and
are given both the pointer to the command, and it’s success flag. This is done so that user
interfaces can update their visual display or internal state to reflect the fact that something
has changed. In this way, even though a single user interface component may do some
action, ALL user interface’s can know when to update their state to reflect the changes in
the program.

• After this, the Command instance is deleted. There is one routine which does this differently,
‘runcommand’ (see below).

Constructors

• CommandQueue::CommandQueue(void)

Internal data structures

• ResizeArray<Command *> cmdlist – the queue of commands.

• int loggingCmds – flag indicating whether commands are being logged to a file.

• FILE *logfile – pointer to the FILE strcture for the output log file, if one is being used.
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Nonvirtual member functions

• int do execute(Command *) – executes the given command, echoing it to the log file if
necessary and informing all the UIObjects. This will NOT delete the Command; this
routine is called by other routines in CommandQueue.

• void delete current(void) – deletes the command which is at the top of the queue, and
moves all the other commands up. This is called by ‘execute’ after the command has been
run.

• int logging(void) – return TRUE if logging of commands is turned on.

• void log on(char *) – turns on logging of commands, to the given file.

• void log off(void) – turns off logging, closes the open log file if necessary.

• int num(void) – return number of commands in the queue.

• int append(Command *) – puts the given command instance at the end of the queue. This
will not execute it; commands are not executed until one of the following three routines are
called. This returns TRUE if the command could be added.

• int execute(void) – executes just the first command in the queue, by calling do execute
and then delete command. Returns the success code of the command, or FALSE if not
command is available.

• void execute all(void) – just calls execute until the queue is empty.

• int runcommand(Command *) – this routine executes the given command, but without adding
it to the queue. It should be used when you definitely know that a command should be done
immediately, and can be done out-of-order with respect to the other commands which might
be in the queue. When the command is done, it is deleted. This returns the success code of
the command.

Method of use

When objects other than UIObjects wish to execute a command, they should use the global object
commandQueue, and append the command:

commandQueue->append(new CmdReshape());

This command will not actually be run until the main event loop in VMD is run. If a command
needs to be executed immediately, use runcommand:

int success = commandQueue->runcommand(new CmdReshape());

When UIObjects are adding commands, there are special funcions in UIObject to make
this faster, ‘addcommand’ and ‘runcommand’. Each UIObject is given a pointer to a Com-
mandQueue object, and so the ‘addcommand’ routine will take a command and add it to that
queue. For example, in UIText there might be:

addcommand(new TextEvent("text command", id()));

Most commands have as their last argument an id code for the UIObject which created them.
This is that so UIObjects can tell, when they are told that the command has executed, who
started it all.
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Suggestions for future changes/additions

There should be a version of runcommand that allows for executing a command without ’new’ing
it. At least, there should be an argument to runcommand to allow this possibility.
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27.3 Mouse

Files: Mouse.h, Mouse.C
Derived from: UIObject
Global instance (if any): mouse
Used in optional component: Part of main VMD code

Description

The Mouse class provides all the capabilities to provide a 2D pointer for a particular DisplayDe-
vice. Mouse will use virtual functions with DisplayDevice to determine when a mouse button
has been pressed, and where it is located. Based on this, the Mouse will rotate, translate, or scale
the objects in the current Scene. It can also be used to ‘pick’ items, by clicking one of the mouse
buttons while the cursor is positioned over the item. Finally, it is used to activate and choose from
a pop up menu. Mouse is derived from UIObject, and is one of the main user interface methods
in VMD (along with the text console, the GUI, the 3D pointers, and any external command input
programs).

It is assumed the Mouse has three buttons, left, middle, and right. The right button is always
used to active the pop-up menu, while the other two are used to apply transformations to the
current Scene. The left and middle buttons are also used to select items. For some things, you
can only click on them (press button + release) for something useful to happen. For other things,
you can select them (press button), pull them (move the mouse while the button is held down),
and release. The Mouse will issue commands to do the button presses, mouse motion, and button
releases associated with picking objects.

The Mouse is always in one of several modes, which are changed by various means (text
commands, pop-up menu options, or keyboard shortcuts). These modes are:

• Rotation mode: When held down, the left button will rotate things about the X or Y axis
as the mouse is moved, in a ‘virtual trackball’ method. The middle button is used to rotate
about the Z axis (perpendicular to the screen).

• Translation mode: The left button will move the objects in the X-Y plane; the middle button
will move things in the Z direction (toward or away from the viewer).

• Scaling mode: The left button, when held down and the mouse moved left-right, will enlarge
or shrink the scene. The middle button will do the same thing, but with a larger scaling
factor (so the left is for fine tuning, the middle is for coarse-grain scaling).

• Light mode: This acts just like rotation mode, but instead of rotating all the displayed objects,
the mouse will only rotate the position of one of the light sources. When setting this mode,
you also select which light to rotate (0 ... 3).

• Pick mode: While the mouse can be used to select certain items while it is in the other
modes, there are certain special pick-and-drag operations in VMD which can only be done if
the pointer is put in a special picking mode. By default there are five picking modes, which
are numbered 0 ... N-1, in this order: query, select atom, select bond, select angle, or select
dihedral. Picking on an object when in a non-picking mode does not allow you move the
mouse around any while the item is selected; in that case, when the button is pressed, if an
item is selected it acts just as if the button were immediately released. But if the mouse is
in a special picking mode, then when the button is pressed and an item is selected, you can
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move the mouse around while the button is held down and have extra actions be taken during
the motion. For example, there are special modes which are used to add perturbative forces
to atoms; to to do this, the mouse must be placed in the atom-tug mode. When setting the
mouse into a pick mode, you also must select which mode it is to be.

Note that clicking on an item with the left button while the mouse is NOT in a pick mode is
equivalent to clicking-and-releasing the button with the mouse in the atom select mode. Clicking
on an item with the middle button in these same situations is the same as using the left button,
but instead the picking operation is done as if the mouse were in the bond selection mode.

Finally, the Mouse contains the ability to check the keyboard for special events as well as the
2D pointing device. The Mouse maintains a list of user-customizable keyboard shortcuts, which
associate a specific keypress (i.e. ’A’ or ’r’) with a text command. When that key is pressed while
the Mouse is in the graphics display window, the associated text command is executed as if the
entire command had been entered at the console prompt.

There is one global instance of the Mouse class, mouse. It is created after the global Display-
Device, and CommandQueue objects are created. Note that if a ‘default’ DisplayDevice is
created, the Mouse will not be able to check for events, determine a pointer position, etc, and so
will do nothing.

Constructors

• Mouse::Mouse(CommandQueue *, DisplayDevice *)
The first argument is the CommandQueue object which this class should use when creating
new Commands to be executed, and the second argument is the DisplayDevice which this
class should be a 2D pointer for. The DisplayDevice must provide all the device-specific
information for the Mouse, such as the X,Y location of the pointer, the state of the mouse
buttons, and the ability to post and activate a pop-up menu.

Enumerations, lists or character name arrays

The MoveMode enumeration lists the possible mouse modes. These are:

• ROTATION.

• TRANSLATION.

• SCALING.

• LIGHT.

• PICKING.

Internal data structures

• DisplayDevice *dispDev – display to use for device-specific functionality, such as checking
for events, determining the pointer position, etc.

• MoveMode moveMode – current mode the mouse is in.

• int activePickMode – if the current mode is PICKING, this variable indicates which pick
mode is active.
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• int pickInProgress – if this is zero, no picking operation is currently in progress (which
means that it is NOT that case that a mouse button has been pressed and selected something,
with the mouse button still left down). If something is currently being selected with the
mouse and the button is still down, this flag indicates which button is being used. In fact,
pickInProgress = pick-button + 1.

• int moveObj – if the current mode is LIGHT, this variable indicates which light to rotate.

• int currX, currY, oldX, oldY – current and previous positions of the pointer, measured
in pixels from the lower-left corner of the global display screen.

• float transInc, rotInc, scaleInc – the amount of change to apply each time a transla-
tion, rotation, or scaling operation is requested.

• float xRotVel, yRotVel, zRotVel – current angular velocity of the scene; when the system
has angular velocity, even if no event is generated by the Mouse, the current scene will be
rotated by the angular velocity amount.

• NameList<NameList<char *> *> userMenuList – a list of NameList objects which hold
the definitions of user menus. Each name in userMenuList is the title of a submenu to be
added to the main pop-up menu, with an associated list of names which define the submenu.
This is used to store the user-defined pop-up menu commands.

• <NameList<char *> *mainUserMenu – this is the one user-controlled menu which is always
added to the main menu. The user can add two types of items to the main menu:

– Single commands, which are put into the mainUsermenu list.

– Submenu commands, which are put into a new submenu with a specified name that is
added to the main menu. This allows for grouping of related commands under a separate
submenu in the main menu.

• NameList<char *> userKeys – in a manner very similar to adding new menu items, the user
can assocate keyboard shortcuts (or hotkeys) with a specified text command. This list stores
the keystrokes, and the text commands associated with those keystrokes.

Nonvirtual member functions

• int mouse moved(int b1Down, int b2Down) – performs the necessary action when the mouse
is moved while a button is pressed. The arguments indicate which buttons are currently down.

• void create key commands(void) – creates the initial list of keyboard shortcuts; this is only
done when the Mouse is initialized.

• void stop rotation(void) – sets the current angular velocity to zero.

• int x(void) – returns the current x position of the Mouse, as measured from the lower-left
corner. This just calls a similar (but virtual) function in DisplayDevice.

• int y(void) – as as x(), but for the vertical position.

• int button down(int) – returns the current state of the given button.
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• int move mode(MoveMode, int = 0) – sets the current mouse mode. If the new mode is
PICKING or LIGHT, the second argument must be given to indicate which picking mode or
light. Otherwise, the second argument is ignored.

• MoveMode curr move mode(void) – returns current mode.

• char *move mode name(MoveMode) – returns a string describing the specified mode.

• int curr pick mode(void) – returns current picking mode, or -1 if the current mouse mode
is not PICKING.

• int picking(void) – returns TRUE if somthing is being pickied, or FALSE otherwise.

• int create user menu(char *label) – indicates that a new user-customizable submenu
should be added to the main menu, with the given label. The new menu will be initially
empty.

• int add user menu item(char *text, char *txtcmd) – adds a new user menu item to the
main user submenu ... the name in the menu will be ‘text’, and the command executed when
that menu option is chosen is ‘txtcmd’.

• int add user menu separator(void) – puts in a separator at the current end of the main
user submenu.

• int add user submenu item(char *submenu, char *text, char *txtcmd) – adds the com-
mand ‘txtcmd’ to the submenu ‘submenu’, under the name of ‘text’ in that submenu.

• int add user submenu separator(char *submenu) – adds a separator to the end of the
given submenu.

• int add user key command(char, const char *) – adds a new keyboard shortcut (or re-
places a previous one), for the given key.

Virtual member functions

• virtual void reset(void) – resets the user interface to the initial state it was in when it
was created.

• virtual int act on command(int, Commmand *, int) – this is called each time a Com-
mand is executed that the Mouse has expressed interest in hearing about. This will be
when a mouse event occurs, such as a mouse button press.

• virtual int check event(void) – calls the necessary routines in DisplayDevice to de-
termine if a button has been pressed. If not, then any angular velocity is used to rotate the
current scene.

Method of use

Once it is created and given the proper CommandQueue and DisplayDevice, Mouse only
needs to have its virtual function check event() called regularly. This is done in the main event
loop of VMD.

The Command objects which have the word ‘user’ as their first word control the customization
of the pop-up menu and keyboard shortcuts.
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Suggestions for future changes/additions

When a new DisplayDevice is eventually developed to use X-Windows and OpenGL, there will
also need to be included routines there to post and activate the pop-up menu and for all the virtual
functions in DisplayDevice which the Mouse uses. If this is done successfully then Mouse
should be completely device-independent. It may be necessary (or preferred) to convert to the use
of a pull-down menu in the X-Windows case.
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27.4 UIObject

Files: UIObject.h, UIObject.C
Derived from: none
Global instance (if any): none
Used in optional component: Part of main VMD code

Description

UIObject is the base class for each object in VMD which provides some form of user interface.
There is a UIObject subclass for dealing with the text console, for the 2D pointer interface (the
Mouse), and for the 3D user interface (currently in development). Also, each of the different GUI
forms which appear on the screen are a separate UIObject.

VMD contains many different UIObject, each for the most part independent of the others. A
UIObject has the ability to get input from the user on what that would like to do, and convert these
into particular commands to do that action. These commands (embodied by different subclasses of
the Command object) are put in a queue for execution. Each UIObject must also present some
form of visual representation of the state of VMD to the user, which changes as different actions
are performed. As commands are executed, each UIObject must be informed of what the action
was, in order to update its display. No user interface component is capable of executing ALL the
commands available in VMD, however, and conversely no user interface component is interested in
hearing about all the different possible actions in VMD.

Each UIObject has the following characteristics:

• A list of the particular Command objects which are interesting to the UIObject. When it
is initialized, each UIObject must call particular functions which store the list of commands
which will require some change to the user interface when they are executed. This is usually
done in the specialized constructor for the class derived from UIObject.

• A unique ID code, which is provided by the CommandQueue object with which the UIOb-
ject registers when it is created.

• A CommandQueue variable which is used by the UIObject to have Commands queued
and executed.

The main UIObjects in VMD are all created in the routine VMDinitUI, in the file Global.C.

Constructors

• UIObject::UIObject(char *, CommandQueue *)
The arguments are the name of the object, and the CommandQueue which this should use
to register and queue Command objects for execution.

Internal data structures

• char *name – the name of the object; this is public so that it can be accessed by other objects
in VMD.

• int myID – the ID code for this object, as returned by the CommandQueue.

• int uiOn – whether this object is active; if not, it will not check for events from the user.
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• int maxCmds – the total number of commands which this object can possibly be interested
in.

• char *doCmd – an array of flags which are used to indicate if a command is wanted or not.

• CommandQueue *cmdQueue – the CommandQueue that this object should use to queue and
execute commands.

Nonvirtual member functions

• int addcommand(Command *) – adds the given Command instance to the end of the com-
mand queue. Returns success.

• int runcommand(Command *) – have the command queue execute the given command im-
mediately. Returns the success of the command, or -1 if the command was queued for later
execution.

• void command wanted(int) – sets the proper flag in the doCmd array to indicate that the
given command code is a command the UIObject is interested in.

• void command not wanted(int) – opposite of command wanted.

• int id(void) – return the ID of this UIObject.

• int want command(int) – return whether the given command is one this object is interested
in.

Virtual member functions

• virtual int is menu(void) – return whether this object is an on-screen menu form, or
another type.

• virtual int is on(void) – return whether the object is currently active.

• virtual void On(void) – turn on the UIObject.

• virtual void Off(void) – turn off the UIObject.

• virtual void move(int, int) – moves the UIObject the the given X,Y position on the
screen, where X and Y are in pixels measured from the lower-left corner of the display. This
may not be applicable to all UIObject’s, if not is is ignorned.

• virtual void where(int &, int &) – return the position of the UIObject, if applicable.

• virtual void init(void) – initialize the user interface. This is called once at the beginning
of VMD, after all the UIObjects have been created.

• virtual void reset(void) – resets the user interface object, forcing an update of all the
informative displays, etc.

• virtual void update(void) – updates the display, for example for some visual items which
much change each time the scene is redrawn. This is called in the main loop of VMD after
all queued Commands have been executed, before the scene is actually rendered.
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• virtual int act on command(int, Command *, int) – this is called after a command is
executed, and it is seen that this UIObject is interested in that command. The first argument
is the command code, the second the Command itself, and the third is the success of the
command. This routine should check what the code is, and based on that update any visual
or other such representation of the program to reflect the change caused by execution of
the given command. Returns TRUE if this UIObject actually did something due to this
command being executed.

• virtual int check event(void) – checks whatever external interface is necessary to see if
a new command from the user has been entered. If so, this routine creates a new Command
object, and adds it to the queue.

Method of use

To create a new UIObject, you must do the following:

• In the constructor for the new class, call the routine command wanted to indicate the com-
mands you are interested in.

• Provide versions of at least the routines init, reset, update, act on command, and check event.

• Add code to the VMDinitUI routine to have the UIObject created at startup.
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27.5 UIText

Files: UIText.h, UIText.C
Derived from: UIObject
Global instance (if any): uiText
Used in optional component: Part of main VMD code

Description

The particular UIObject which is responsible for getting text commands from the user, parsing
them, and executing them. Each time it is requested to do so, this object will check to see if the
user has entered a line of text at the VMD prompt, and if so, this will read in the command, break it
up into the individual words, and determine what action is being requested. Every action in VMD
which the user can request to have performed has a corresponding Command object associated
with it, and a text command representation.

Each text command consists of N separate words separated by whitespace, with the first word
in the command used to distinguish between different types of commands. With each word there is
an associated callback function which is called when a text command is read in and the first word
is found in the list.

This object can also be directed to read commands from a file, and to echo text commands to
the console.

UIText is able to use the Tcl library, if available, to parse the text commands and to provide
sophisticated interpreted script capabilities such as control loops, variable substitution, if-then-else
constructs, and user-defined subroutines and functions. If Tcl is not available, this object will still
function, but only the basic VMD commands will be understood.

Constructors

• UIText::UIText(CommandQueue *)

Internal data structures

• NameList<TextCallback *> textProcessors – a list of all the words which this object
understands as the first word in a specific command, and the callback function to call when
a command with the starting word is entered. TextCallback is a typedef for the callback
function, as defined in the file Command.h.

• int needPrompt – whether or not the prompt needs to be printed the next time it is possible
to do so.

• Stack<FILE *> input files – a stack containing the FILE structures for the files to read
commands from. When a new file is opened for reading, the currently open file is pushed
down on the stack and the new file is put at the top of the stack. When the end of the file is
reached, the stack is popped and reading from the new top file is resumed. In this way files
may be read in a nested fashion. When the stack is empty, input is read from standard input.

• int doEcho – flag to indicate if text commands should be echoed back to the console after
they have been entered (even if from a file or from the console).
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• Inform txtMsgEcho – the Inform object to use for echoing commands.

• float delay – the amount of time to wait (in seconds) before attempting to read the next
command. Once the waiting period is over, this is set to zero.

Nonvirtual member functions

• int num commands(void) – the number of words which this object understands as the first
word in a command.

• char *word(int) – the Nth word that this object understands as the first word in a command.

• void add command(char *, TextCallback *) – adds a new word to the UIText vocabu-
lary, and registers the given function as the callback for that word. If the word is already
known, this does nothing.

• int process command(int argc, char **argv) – given a tokenized text command (one
that has been broken up into ‘argc’ individual words, with the words in the ‘argv’ array), this
routine checks the first word to see if it is understood, and calls the proper callback function
or prints an error message.

• void read from file(char *) – instructs this object to read text commands from the given
file until the end-of-file is reached.

• void wait(float) – instructs this object to wait for the given number of seconds before
attempting to read in the next text command.

• int echo(void) – returns the current echoing status.

• void echo(int yn) – turns on/off echoing of text commands.

Virtual member functions

• virtual int check event(void) – checks to see if a text command has been entered at the
console or is available from a file. If so, this reads in the string, and queues a ‘TextEvent’
command (which is a subclass of Command) containing the string.

• virtual int act on command(int, Command *, int) – called after a text event command
is executed. This will take the text command string in the text event, break it into tokens,
and if the first word is understood this will call the proper callback function. If this first
word is not understood, or the callback function returns an error code, this will print an error
message.

Method of use

In the constructor for this object, first the code for the ‘TextEvent’ command is registered as a
command this object is interested in, and then all the words this object can understand (with their
callback functions) are added to the object’s internal list. Each time a new word is added to the
VMD vocabulary, a new line must be added in this section to add the callback function (see the
discussion of Command, section 27.1). The callback functions themselves should be declared in
the Cmd*.h files, and defined in the Cmd*.C files.

116



When a text command is actually to be executed, is it broken into an argc, argv tokenized
format, and given to the process command routine. This searches for the first word in the in-
ternal list of known words, and calls the callback function with the argc, argv pair, and also the
CommandQueue object to use for queuing new commands as well as the ID of this UIObject.

In the case where Tcl is being used, there is a slightly different order to these events. After a
string is read, it is given to the Tcl evaluation routine, which checks it for special Tcl commands or
for VMD commands. When VMD commands are seen, Tcl will tokenize the command itself and
call a particular Tcl-tailored callback function. This callback function is registered with Tcl for
every word in the VMD vocabulary. In this Tcl callback function, the first word is checked, and
the regular text callback function is called.

Suggestions for future changes/additions

The reading of commands from files should be converted from the stdio style I/O to the use of
the streams library.
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28 Tracker objects

The objects responsible for controlling the external spatial tracking devices, and for displaying and
using the 3D pointers, are currently in the experimental stage, and will be described later when
their design is closer to being final.
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