
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

1

ECE 498AL

Lecture 18:
Performance Case Studies:
Ion Placement Tool, VMD

Guest Lecture by John Stone
Theoretical and Computational Biophysics Group

NIH Resource for Macromolecular Modeling and Bioinformatics
Beckman Institute for Advanced Science and Technology

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

2

Objective

• To learn design, implementation, and testing
strategies for GPU acceleration of existing software
using CUDA
– Identify performance-critical software modules
– Decompose identified modules into kernels which may

benefit from GPU acceleration
– Detailed examination of Coulombic potential map code
– Abstract the implementation of the computational kernel

so that caller need not worry about the low level details
– Software structures supporting GPU acceleration

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

3

Molecular Modeling: Ion Placement

• Biomolecular simulations
attempt to replicate in vivo
conditions in silico.

• Model structures are initially
constructed in vacuum

• Solvent (water) and ions are
added as necessary for the
required biological
conditions

• Computational requirements
scale with the size of the
simulated structure

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

4

Evolution of Ion Placement Code
• First implementation was sequential
• Repeated scientific methodological revisions improved results
• As the size of simulated structures increased, the performance

of the code became much more important
• Virus structure with 10^6 atoms would require 10 CPU days
• Tuned for Intel C/C++ vectorization+SSE, ~20x speedup
• Parallelized /w pthreads: high data parallelism = linear speedup
• Parallelized GPU accelerated implementation: Three GeForce

8800GTX cards outrun ~300 CPUs!
• Virus structure now runs in 25 seconds on 3 GPUs!
• Seems impossible until one considers how much faster GPUs

are for graphics than a general purpose CPU…
• Further speedups should still be possible…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

5

Ion Placement Algorithm

• Calculate initial Coulombic electrostatic potential map around
the simulated structure:
– For each voxel, sum potential contributions for all atoms in the

simulated structure: potential += charge[i] / (distance to atom[i])

• Place ions one at a time:
– Find the voxel containing the minimum potential value
– Add a new ion atom centered on the minimum voxel position
– Update the potential map adding the potential contribution of the newly

placed ion
– Repeat until the required number of ions have been added

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

6

Computational Profile of the Algorithm

• Over 99% of the run time of the algorithm is
consumed in the initial potential map calculation,
since the number of ions is always tiny compared to
the size of the simulated system.

• Direct summation of electrostatic potentials is “safe”
in terms of numerical accuracy, and is highly data
parallel

• Interesting GPU test case since coulombic potential
maps are useful for many other calculations

• Faster approximation algorithms currently in testing…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

7

Coulombic Potential Map Slice: Simplest C Version
GFLOPS? Don’t ask…

void cenergy(float *energygrid, dim3 grid,, float gridspacing, float z, const float *atoms, int numatoms) {
int i,j,n;
int atomarrdim = numatoms * 4;
for (j=0; j<grid.y; j++) {
float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float energy = 0.0f;
for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

}
}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

8

Algorithm Design Observations

• Voxel coordinates are generated on-the-fly
• Atom coordinates are translated to the map origin in

advance, eliminating redundant work
• Ion placement maps require ~20 potential voxels/atom
• Atom list has the smallest memory footprint, best

choice for the inner loop (both CPU and GPU)
• Arithmetic can be reduced by creating a new atom list

containing X, Q, and a precalculation of dy^2 + dz^2,
updated for each row (CPU)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

9

Observations and Challenges for GPU
Implementation

• The innermost loop will consume operands VERY quickly
• Straightforward implementation has a low ratio of floating

point arithmetic operations to memory transactions (for a GPU)
• Since atoms are read-only calculation, they are ideal candidates

for texture memory or const memory
• GPU implementation must avoid bank conflicts and overlap

computations with memory latency
• Map is padded out to a multiple of the thread block size,

eliminating the need for conditional handling at the edges

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

10

Plan for CUDA
Coulombic Potential Map Code

• Allocate and initialize potential map memory on host
• Allocate potential map slice buffer on GPU
• Preprocess atom coordinates and charges
• Loop over slices:

– Copy slice from host to GPU
– Loop over groups of atoms: (if necessary)

• Copy atom data to GPU
• Run CUDA Kernel on atoms and slice resident on GPU

– Copy slice from GPU to host
• Free resources

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11

CUDA Block/Grid Decomposition

• 16x16 thread blocks are a nice starting size with a
good number of threads

• Small enough that there’s not much waste if we pad
out the map array to an even number of thread blocks

• Kernel variations that unroll the inner loop calculate
more than one voxel per thread
– Thread count per block must be decreased to retain 16x16

block size
– Or, block size gets bigger as threads do more than one voxel

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

12

Version 1: Tex Memory
90 GFLOPS, 9 Billion Atom Evals/Sec

• Pros:
– Texture memory is large, enough capacity to hold millions

of atoms
– Most map slices could be computed in a single pass

• Cons
– Texture fetches aren’t as fast as shared memory or const

memory
• For this algorithm, it has proven a better strategy to

take advantage of broadcasting reads provided by
const memory or shared memory, since all threads
reference the same atom at the same time…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

13

Version 1 Inner Loop Structure

Full source for CUDA potential map slice kernels:
http://www.ks.uiuc.edu/Research/vmd/projects/ece498/

…….
float energyval=0.0f;
for (atomid=0,tx=0,ty=0; atomid < numatoms; ty++) {
for (tx=0; tx < TEXROWSIZE && atomid < numatoms; tx++, atomid++) {
float4 atominfo = texfetch(tex, tx, ty); // Bad, no latency hiding, not enough
float dx = coor.x - atominfo.x; // FP ops done per texfetch(),
float dy = coor.y - atominfo.y; // not taking any advantage of 2-D
float dz = coor.z - atominfo.z;
energyval += atominfo.w * (1.0f / sqrtf(dx*dx + dy*dy + dz*dz));

}
}

……

http://www.ks.uiuc.edu/Research/vmd/projects/ece498/

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

14

Version 2: Const+Precalc
150 GFLOPS, 16.7 Billion Atom Evals/Sec
• Pros:

– Less addressing arithmetic (compared to texture version)
– Pre-compute dz^2 for entire slice
– Inner loop over read-only atoms, const memory ideal
– If all threads read the same const data at the same time, performance is

similar to reading a register

• Cons:
– Const memory only holds ~4000 atom coordinates and charges
– Potential summation must be done in multiple kernel invocations per

slice, with const atom data updated for each invocation
– Host code has a lot more book keeping to do, but not too big of an issue

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

15

Version 2: Kernel Structure
…
float curenergy = energygrid[outaddr]; // start global mem read very early
float coorx = gridspacing * xindex;
float coory = gridspacing * yindex;
int atomid;
float energyval=0.0f;
/* Main loop: 9 floating point ops, 4 FP loads per iteration */
for (atomid=0; atomid<numatoms; atomid++) {
float dx = coorx - atominfo[atomid].x;
float dy = coory - atominfo[atomid].y;
energyval += atominfo[atomid].w *

(1.0f / sqrtf(dx*dx + dy*dy + atominfo[atomid].z));
}
energygrid[outaddr] = curenergy + energyval;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

16

Version 3: Const+Precalc+Loop Unrolling
226 GFLOPS, 33 Billion Atom Evals/Sec

• Pros:
– Although const memory is very fast, loading values into registers costs

instruction slots
– We can reduce the number of loads by reusing atom coordinate values

for multiple voxels, by storing in regs
– By unrolling the X loop by 4, we can compute dy^2+dz^2 once and use

it multiple times, much like the CPU version of the code does

• Cons:
– Compiler won’t do this type of unrolling for us (yet)
– Uses more registers, one of several finite resources
– Increases effective tile size, or decreases thread count in a block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

17

Version 3: Inner Loop
…
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx1 - atominfo[atomid].x;
float dx2 = coorx2 - atominfo[atomid].x;
float dx3 = coorx3 - atominfo[atomid].x;
float dx4 = coorx4 - atominfo[atomid].x;
energyvalx1 += atominfo[atomid].w * (1.0f / sqrtf(dx1*dx1 + dysqpdzsq));
energyvalx2 += atominfo[atomid].w * (1.0f / sqrtf(dx2*dx2 + dysqpdzsq));
energyvalx3 += atominfo[atomid].w * (1.0f / sqrtf(dx3*dx3 + dysqpdzsq));
energyvalx4 += atominfo[atomid].w * (1.0f / sqrtf(dx4*dx4 + dysqpdzsq));

}
…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

18

Version 4:
Const+Shared+Loop Unrolling+Precalc

235 GFLOPS, 34.8 Billion Atom Evals/Sec

• Pros:
– Loading prior potential values from global memory into shared memory

frees up several registers, so we can afford to unroll by 8 instead of 4
– Using fewer registers allows more blocks, increasing GPU “occupancy”

• Cons:
– Even with shared memory, still uses 21 registers
– Only a net performance gain of ~5% over version 3
– Higher performance should still be possible
– Bumping against hardware limits (uses all const memory, most shared

memory, and a largish number of registers)
• Need more experience or a different strategy in order to go

beyond this level of performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

19

Version 4: Kernel Structure

• Loads 8 potential map voxels from global memory at startup,
and immediately stores them into shared memory before going
into inner loop

• Processes 8 X voxels at a time in the inner loop
• Sums previously loaded potential values and stores back to

global memory
• Code is too long (and ugly) to show even in a snippet due to

the large amount of manual unrolling of loads into registers
• Various attempts to further reduce register usage didn’t yield

any benefits, so a different approach is required for further
performance gains on a single GPU

• See full source example “cuenergyshared”

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

20

Calculating Potential Maps in Parallel

• Both CPU and GPU versions of the code are easily
parallelized by decomposing the 3-D potential map
into slices, and computing them concurrently

• For the ion placement tool, maps often have 200-500
slices in the Z direction, so there’s plenty of coarse
grained parallelism still available even for a big
machine with hundreds of CPUs/GPUs

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

21

Parallel GPUs with Multithreading:
705 GFLOPS /w 3 GPUs

• One host thread is created for each CUDA GPU
• Threads are spawned and attach to their GPU based on their

host thread ID
– First CUDA call binds that thread’s CUDA context to that GPU for life
– Handling error conditions within child threads is dependent on the

thread library and, makes dealing with any CUDA errors somewhat
tricky, left as an exercise to the reader…. ☺

• Map slices are computed cyclically by the GPUs
• Want to avoid false sharing on the host memory system

– map slices are usually much bigger than the host memory page size, so
this is usually not a problem for this application

• Performance of 3 GPUs is stunning!
• Power: 3 GPU test box consumes 700 watts running flat out

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

22

Multi-GPU CUDA
Coulombic Potential Map Performance

• Host: Intel Core 2 Quad, 8GB
RAM, ~$3,000

• 3 GPUs: NVIDIA GeForce
8800GTX, ~$550 each

• 32-bit RHEL4 Linux
(want 64-bit CUDA!!)

• 235 GFLOPS per GPU for
current versoin of coulombic
potential map kernel

• 705 GFLOPS total for
multithreaded multi-GPU
version Three GeForce 8800GTX GPUs

in a single machine, cost ~$4,650

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

23

Never Trust Compilers
(With apologies to Wen-mei and David)

• When performance really matters, it is wise to distrust
compilers by default and to read their assembly output to see if
you’re getting what you had hoped for
– Compilers often miss “easy” optimizations for various reasons
– By reading intermediate output, e.g. PTX, you can find ways to coax the

compiler into doing what you want
– PTX still isn’t the final word, as it gets run through another optimization

pass, but it’s the first place to look until better tools are available
• Test on microbenchmarks representative of inner loops before

integrating into real code
– Small benchmark codes facilitate focused experimentation
– MUCH easier to isolate bugs and performance issues in a small code

than a large one

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

24

Early Experiences Integrating
CUDA Kernels Into VMD

• VMD: molecular visualization and
analysis

• State-of-the-art simulations
require more viz/analysis power
than ever before

• For some algorithms, CUDA can
bring what was previously
supercomputer class performance
to an appropriately equipped
desktop workstation

• Early results from a variation on
the work already done for the ion
placement tool Ribosome: 260,790 atoms

before adding solvent/ions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

25

VMD/CUDA Integration Observations
• Single VMD binary must run on all hardware,

whether CUDA accelerators are installed or not
– Must maintain both CPU and CUDA versions of kernels
– High performance requirements mean that the CPU kernel

may use a different memory layout and algorithm strategy
than CUDA, so they could be entirely different bodies of
code to maintain

– Further complicated by the need to handle both single-
threaded and multithreaded compilations, support for many
platforms, etc…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

26

VMD/CUDA Integration Observations (2)

• Graceful behavior under errors or resource exhaustion
conditions becomes trickier to deal with:
– CPU kernel becomes the fallback
– What to do when the CPU version is 100x slower than

CUDA on the GPU?!?

• All of these software design problems already existed:
– Not specific to CUDA
– CUDA just adds another ply to the existing situation for

codes like VMD that employ multiple computation
strategies

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

27

VMD/CUDA Resource Management
• Must choose the best kernel/strategy at runtime,

depending on availability of CPU/GPU resources,
combined with user preferences and system policies

• Examples:
– Good for VMD to use all CPUs and CUDA GPUs on a

workstation not shared by multiple users
– Bad for VMD to use all 1024 processors on a shared

supercomputer by default (e.g. running remotely in text
mode for batch analysis)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

28

VMD/CUDA Resource Management (2)

• Dynamically changing load on CPUs/GPUs:
– Interference from other apps multitasking on the same set of

CPUs/GPUs
– A “benchmark” run at startup can become invalid for

selection of kernel strategy if CPU/GPU load changes
during the course of a long-running execution (e.g.
overnight analysis job running at the same time as an
interactive visualization, both vying for the CPUs/GPUs…)

– Perhaps the computation strategy should be periodically re-
tested/evaluated as load conditions change

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

29

VMD/CUDA Code Organization

• Single header file containing all the CUDA kernel
function prototypes, easy inclusion in other src files

• Separate .cu files for each kernel:
– each in their compilation unit
– no need to worry about multiple kernels defining const

buffers etc…

• As new CUDA kernels augment existing CPU
kernels, the original class/function becomes a wrapper
that dynamically invokes the CPU/GPU version at
runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

30

VMD/CUDA Code Organization (2)

• A C++ wrapper class to hold data needed for execution
strategy, CPU/GPU load balancing, etc. (much is still
unimplemented and only exists in my head)

• First CUDA GPU kernels are so much faster than the CPU that
the existing VMD runtime strategy is nearly as simple as:
int err = 1; // force CPU execution if CUDA is not compiled in
#if defined(VMDCUDA)
if (cudagpucount > 0)
err=CUDAKernel(); // try CUDA kernel if GPUs are available

#endif
if (err)
err=CPUKernel(); // if no CUDA GPUs or an error occurred, try on CPU

…

	ECE 498AL��Lecture 18: �Performance Case Studies: �Ion Placement Tool, VMD��Guest Lecture by John Stone�Theoretical and Compu
	Objective
	Molecular Modeling: Ion Placement
	Evolution of Ion Placement Code
	Ion Placement Algorithm
	Computational Profile of the Algorithm
	Coulombic Potential Map Slice: Simplest C Version�GFLOPS? Don’t ask…
	Algorithm Design Observations
	Observations and Challenges for GPU Implementation
	Plan for CUDA �Coulombic Potential Map Code
	CUDA Block/Grid Decomposition
	Version 1: Tex Memory�90 GFLOPS, 9 Billion Atom Evals/Sec
	Version 1 Inner Loop Structure
	Version 2: Const+Precalc�150 GFLOPS, 16.7 Billion Atom Evals/Sec
	Version 2: Kernel Structure
	Version 3: Const+Precalc+Loop Unrolling�226 GFLOPS, 33 Billion Atom Evals/Sec
	Version 3: Inner Loop
	Version 4: �Const+Shared+Loop Unrolling+Precalc�235 GFLOPS, 34.8 Billion Atom Evals/Sec
	Version 4: Kernel Structure
	Calculating Potential Maps in Parallel
	Parallel GPUs with Multithreading:�705 GFLOPS /w 3 GPUs
	Multi-GPU CUDA �Coulombic Potential Map Performance
	Never Trust Compilers�(With apologies to Wen-mei and David)
	Early Experiences Integrating �CUDA Kernels Into VMD
	VMD/CUDA Integration Observations
	VMD/CUDA Integration Observations (2)
	VMD/CUDA Resource Management
	VMD/CUDA Resource Management (2)
	VMD/CUDA Code Organization
	VMD/CUDA Code Organization (2)

