

The Conformational Change in Ras can be Studied via MD Simulations

Beckman Institute, UIUC

Conclusions 1. Mechanical action of Ras can be studied via MD simulations.	
 GTP hydrolysis triggers irreversible conformational changes from a ter (low entropy) state to a relaxed R (high entropy) state. 	nse T
3. Tyr32 and Gly60 are key load bearing coupling elements between the and switch II regions.	switch I
 3. Found 2 different forms of force generation: (i) Steady traction [due to change in the 2nd moment of the force distribution P(F)] (ii) Reversible force fluctuations [due to configurational sub-states] 	
 Efficient force generation requires <i>impedance matching</i> between externance and protein [with k~0.1 kcal/ mol·Å²] 	nal load
5. Our results suggest a new force generation mechanism in G-proteins: load-dependent isomerization process ("soft-switch")	
6. In principle, the force generated by Ras (and other G-proteins) can be measured by Atomic Force Microscopy	ckman Institute, UIUC