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Force Generation by G-proteins
(1) ATP hydrolyzing motor proteins

(2) GTP hydrolyzing signaling proteins (G-proteins)

Do G-proteins have mechanical (force generating) activity ?
If yes, what is the role of this mechanical action in G-proteins?

Questions:
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G-proteins are  Signal Transducers

Malfunctioning G-proteins disturb 
the intracellular signaling pathways, 
altering normal cell functions.

Receptor AmplifierG-protein

Biological effect
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No Biological effect

Missing
G-protein

Cell membrane
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signal signal

G-proteins transmit and modulate 
signals in cells. They can activate 
different cellular amplifier systems. 

• smallest G-protein (189 residues, 21KDa mass) 
• acts as a molecular switch 
• cycles between and active (GTP-bound) and an inactive 
(GDP-bound) state

• major conformational changes during the signaling cycle take 
place in the switch I and switch II regions 

• switching activity regulated by GAP and GEF proteins
• activated forms of Ras genes are found in 30% of human 
tumors.

switch I

switch II

Ras
GTP → GDP + Pi + 7.3 kcal/mol
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Signaling Cycle of Ras
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The Conformational Change in Ras 
can be Studied via MD Simulations

Time scale of the conformational
change is ~1ns

• solvation: water box
• periodic boundary  conditions
• force field: CHARMM22
• minimization & equilibration at

300K with X-PLOR
• NpT simulation with NAMD2 

www.ks.uiuc.edu

Previous Targeted Molecular Dynamics studies found that the
R- and T-states are separated by a ~60 kcal/mol potential barrier! 

60 Å

Solvated system size: 19,463 atoms
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Conformational Fluctuations 
switch I switch II
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Ras/GDP – obtained 
from NMR experiments

Ref. P. J. Kraulis et al,
Biochem 33, 3515 (1994).

switch I switch II switch I switch II

Ras/GDP – obtained 
by averaging over the 
last 74 frames of a 2ns 
MD trajectory, with 2ps 
frame separation 

Ras/GTP - obtained by 
averaging over the last 
105 frames of a 2ns 
MD trajectory, with 2ps 
frame separation 

T-state R-state

residue number residue numberresidue number

T-state is stable for Ras/GTP and unstable for Ras/GDP⇒
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What Happens After GTP Hydrolysis?

Switch I
RAS/GTP RAS/GDP

Switch II strong fluctuations
R-state

small fluctuations
T-state

The free energy of 
Ras decreases 
during the T→R

spontaneous 
transition

The change in free 
energy can be used 

to perform 
mechanical work 

against external load 
(as in motor proteins) 

• What is the load?
• Where and how
to apply the load?

• How to measure   
the force/work?

⇒ ⇒
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Switch I

Switch II

k
X

Tyr32

Gly60

Harmonic Spring as Load and “Force Meter”

• X=d(Tyr32,Gly60) changes significantly 
during the T→R transition

• Constraining the distance between the side 
chains of Tyr32 and Gly60 prevents the T→R 
conformational change
• Tyr32 (switch I) and Gly60 (switch II) are 
located at Ras/GAP interface
• Tyr32 and Gly60 act as hinges

MD simulations and conformational analysis show:

• Force:

• Work:

Harmonic spring (with variable spring 
constant k) inserted between Tyr32 and Gly60, 
mimics a load and serves as force meter

⇒
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TclForces Script in NAMD2
set timestep $TS
source vector.tcl
#  Tyr32 sidechain
set sc32list {477 478 479 480 481 
482 483 484 485 486 487 488 489 490 
491}
set sc32 [addgroup $sc32list]
#  Glu60 sidechain
set sc60 912
addatom $sc60
print Selected atoms: 
Tyr32(sidechain)  - $sc32list
print Selected atoms: 
Glu60(sidechain)  - $sc60
set r0 9.23722489897
set k  0.1
set fileid [open "fx_dyn02.dat" w+]
puts $fileid "# TS \t force \t 
spring_lenght"
flush $fileid; set i 1

proc calcforces {} {
global sc32 sc60 r0 k fileid i 
timestep
loadcoords coor
set r1 $coor($sc32)
set r2 $coor($sc60)
set r12 [vecsub $r2 $r1]
set r  [veclength $r12]
set n0 [vecnorm  $r12]
set f  [expr $k*($r-$r0)]
set f1 [vecscale $f $n0]
set f2 [vecscale -1. $f1]
addforce $sc32 $f1
addforce $sc60 $f2
if {$i == 100} {
set timestep [expr $timestep + 

100]
set i 1
puts $fileid "$timestep \t $f \t 

$r"
flush $fileid} else {incr i}
}
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vector.tcl   - Tcl Script from VMD
# Function: veclength {v}
#  Returns:    the vector length
proc veclength {v} {

set retval 0
foreach term $v {

set retval [expr $retval + 
$term * $term]

}
return [expr sqrt($retval)]

}
# Function:  veclength2 {v}
#  Returns:  the square of the
vector length
proc veclength2 {v} {

set retval 0
foreach term $v {

set retval [expr $retval + 
$term * $term]

}
return $retval}

# Function: vecnorm {v}
#  Returns:    the normal vector
pointing along v
proc vecnorm {v} {

set sum 0
foreach term $v {

set sum [expr $sum + $term 
* $term]

}
set sum [expr sqrt($sum)]
set retval {}
foreach term $v {

lappend retval [expr $term 
/ $sum]

}
return $retval}
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Mechanical Cycle of Ras/Spring
Ras

GTP

GDP

GTP

Pi

GTP hydrolysis

Ras

GDP

Ras

GDP R-state

τ ~ 1ns
T→R transiton

Ras/GDP

Ras/GDP

GAP

GAP

T-state

Ras/GTP hydrolysis, 
catalyzed  by GAP, 
leads to Ras/GDP in 
T-state

Ras/GDP evolves 
irreversibly and 
spontaneously from
T-state to R-state

Ras separates from 
GAP, then exchanges 
GDP for GTP, and 
the reverse R-to-T 
transition takes place
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Force Generated by Ras/GDP & Ras/GTP

Spring constant
k = 0.2 kcal/ mol·Å2

• spring streched in
T-state of Ras/GTP

• P(F) has a single 
peak structure
(~ Gaussian)

• spring compressed in
R-state of Ras/GDP

• P(F) has a double
peak structure

Typical mean force level is similar to those in motor proteins [~10 pN]
Small mechanical efficiency  compared to motor proteins [~1%]

MD simulations with inserted spring
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Load Dependence of the Force
Medium spring [k = 0.1]

• swII helix unwinds suddenly at
t0~1.2 ns

• for t > t0, F(t) ~ “telegraph noise”
• P(F) has multi peak structure
• meta stable force generating 

sub-states (w/ ~100ps lifetime)

Stiff spring [k > 4]
• force generating sub-states

disappear
• P(F) is Gaussian with 〈〈〈〈F〉〉〉〉=0

Soft spring [k < 0.05]
• P(F) is approximately Gaussian 

with 〈〈〈〈F〉〉〉〉 ~0

What is the underlying 
potential energy function?
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Underlying Potential Energy Function
Apply the Potential of Mean Force (PMF) method (thermodynamic equilibrium) 

• Force:

• In the presence of a harmonic spring:

with and

substate

and distribution function:

• Estimate V(X) by fitting P(F) to the results of the
MD simulations (the result should be k independent)

4
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“Most Likely” Force Level 
produced by Ras in the R-state

Sharp maximum at:

Maximum force generation
in the R-state requires 
mechanical load (“impedance”)
matching
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Force Generating Sub-States

k = 0.01
k = 0.1
k = 1
k = 4

one substate minimum in
E(F) near X-X0≈−1.7 Å

force generating substate
disappears

E(X) is nearly parabolic
→ P(F) is Gaussian

= 0.17

Are determined by the 2nd (local) minimum of E(X)
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Can the Force Distribution P(F) 
be Predicted? [PMF vs MD]

k = 4

• for k>>1 P(F) 
is Gaussian

• good agreement

k = 0.2 k = 0.1

• for k~1 P(F) has two peaks (substate)
• qualitative agreement
• inaccurate prediction for the peak

position and height 

k = 0.05

• for k<<1 P(F) 
from PMF and MD 
are qualitatively 
different!

• breakdown due
to lack of termo-
dynamic eq.
[relaxation time

for X is ~2ns] 
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Force Generation Mechanism in G-proteins

“disordered”“ordered”
T-state R-state

Ras/GTP Ras/GDP

Switch I

Switch II

After hydrolysis, force generation by G-proteins proceeds in two steps:

Thermal fluctuations between
force generating, load-dependent
substates (“soft-switch”)
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Similar to myosin but no direct 
force generation (“power-stroke”)

Similar to kinesin (“load-dependent
isomerization”) but R-state produced
by hydrolysis and not ATP binding

[M.J. Schnitzer et al, Nature Cell Biology 2, 718 (2000).]
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Conclusions
1. Mechanical action of Ras can be studied via MD simulations.

2. GTP  hydrolysis triggers irreversible conformational changes from a tense T 
(low entropy) state to a relaxed R (high entropy) state.

3. Tyr32 and Gly60 are key load bearing coupling elements between the switch I 
and switch II regions.

3. Found 2 different forms of force generation:
(i) Steady traction [due to change in the 2nd moment of the 

force distribution P(F)]
(ii) Reversible force fluctuations [due to configurational sub-states]

4. Efficient force generation requires impedance matching between external load 
and protein [with k~0.1 kcal/ mol·Å2] 

5. Our results suggest a new force generation mechanism in G-proteins: 
load-dependent isomerization process (“soft-switch” ) 

6. In principle, the force generated by Ras (and other G-proteins) can be 
measured by Atomic Force Microscopy


