Analysis of MD Results Using Statistical Mechanics Methods

Ioan Kosztin

Beckman Institute
University of Illinois at Urbana-Champaign

Molecular Modeling

1. Model building
2. Molecular Dynamics Simulation
3. Analysis of the

- model
- results of the simulation

Collection of MD Data

- DCD trajectory file
- coordinates for each atom
- velocities for each atom
- Output file
- global energies
- temperature, pressure, ...

Analysis of MD Data

1. Structural properties
2. Equilibrium properties
3. Non-equilibrium properties

Can be studied via both equilibrium and non-equilibrium MD simulations

Equilibrium (Thermodynamic) Properties

Statistical Ensemble

Collection of large number of replicas (on a macroscopic level) of the system

Each replica is characterized by the same macroscopic parameters (e.g., NVT, NPT)

The microscopic state of each replica (at a given time) is determined by Γ in phase space

Time vs Ensemble Average

For $t \rightarrow \infty, \Gamma(t)$ generates an ensemble with

$$
\rho(\Gamma) d \Gamma=\lim _{t \rightarrow \infty} d \tau / t
$$

Ergodic Hypothesis: Time and Ensemble averages are equivalent, i.e., $\langle A(r, p)\rangle_{t}=\langle A(\Gamma)\rangle_{\rho}$
Time average: $\quad\langle A\rangle_{t}=\frac{1}{T} \int_{0}^{T} d t A[\mathbf{r}(t), \mathbf{p}(t)]$
Ensemble average: $\quad\langle A\rangle=\int d \Gamma \rho(\Gamma) A(\Gamma)$

Thermodynamic Properties from MD Simulations

Thermodynamic (equilibrium) averages can be calculated via time averaging of MD simulation time series

Finite simulation time means

Common Statistical Ensembles

1. Microcanonical ($\mathrm{N}, \mathrm{V}, \mathrm{E}$):
$\rho_{\text {NVE }}(\Gamma) \propto \delta[H(\Gamma)-E] \leftarrow$ Newton's eq. of motion
2. Canonical ($\mathrm{N}, \mathrm{V}, \mathrm{T}$):

$$
\rho_{N V T}(\Gamma)=\exp \left\{[F-H(\Gamma)] / k_{B} T\right\} \quad \begin{gathered}
\text {-Langevin } \\
\text { dynamics }
\end{gathered}
$$

3. Isothermal-isobaric ($\mathrm{N}, \mathrm{p}, \mathrm{T}$)
$\rho_{N P T}(\Gamma)=\exp \left\{[G-H(\Gamma)] / k_{B} T\right\} \leftarrow$ Nose-Hoover method

Different simulation protocols $[\Gamma(t) \rightarrow \Gamma(t+\delta t)]$ sample different statistical ensembles

Examples of Thermodynamic Observables

- Energies (kinetic, potential, internal,...)
- Temperature [equipartition theorem]
- Pressure [virial theorem]

Thermodynamic derivatives are related to mean square fluctuations of thermodynamic quantities

- Specific heat capacity C_{v} and C_{P}
- Thermal expansion coefficient α_{P}
- Isothermal compressibility β_{T}
- Thermal pressure coefficient γ_{V}

Mean Energies

Total (internal) energy: $\quad E=\frac{1}{N} \sum_{i=1}^{N} E\left(t_{i}\right) \quad$ TOTAL
Kinetic energy:
$K=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{\boldsymbol{p}_{j}^{2}\left(t_{i}\right)}{2 m_{j}} \quad$ KINETIC
BOND
Potential energy:
$U=E-K$
angle
DIHED
IMPRP
ELECT vDW
Note: You can conveniently use namdplot to graph the time evolution of different energy terms (as well as $\mathrm{T}, \mathrm{P}, \mathrm{V}$) during simulation

Temperature

From the equipartition theorem $\left\langle p_{k} \partial H / \partial p_{k}\right\rangle=k_{B} T$

$$
T=\frac{2}{3 N k_{B}}\langle K\rangle
$$

Instantaneous kinetic temperature

$$
T=\frac{2 K}{3 N k_{B}} \quad \text { namdplot TEMP vs TS } \ldots
$$

Note: in the NVTP ensemble $N \rightarrow N-N_{c}$, with $N_{c}=3$

Pressure

From the virial theorem $\left\langle r_{k} \partial H / \partial r_{k}\right\rangle=k_{B} T$

$$
P V=N k_{B} T+\langle W\rangle
$$

The virial is defined as

$$
\begin{aligned}
& \qquad \qquad \begin{array}{l}
W=\frac{1}{3} \sum_{j=1}^{M} \boldsymbol{r}_{j} \cdot \boldsymbol{f}_{j}=-\frac{1}{3} \sum_{i, j>i} w\left(r_{i j}\right) \\
\text { with } w(r)=r d \boldsymbol{v}(r) / d r
\end{array} \begin{array}{c}
\text { pairwise } \\
\text { interaction }
\end{array}
\end{aligned}
$$

Instantaneous pressure function (not unique!)

$$
P=\rho k_{B} T+W / V
$$

Thermodynamic Fluctuations (TF)

$$
\langle\delta A\rangle \approx \frac{1}{N} \sum_{i=1}^{N}\left[A\left(t_{i}\right)-\langle A\rangle\right]
$$

Mean Square Fluctuations (MSF)

$$
\left\langle\delta A^{2}\right\rangle=\left\langle(A-\langle A\rangle)^{2}\right\rangle=\left\langle A^{2}\right\rangle-\langle A\rangle^{2}
$$

According to Statistical Mechanics, the probability distribution of thermodynamic fluctuations is

$$
\rho_{\text {fluct }} \propto \exp \left(\frac{\delta P \cdot \delta V-\delta T \cdot \delta S}{2 k_{B} T}\right)
$$

TF in NVT Ensemble

In MD simulations distinction must be made between properly defined mechanical quantities (e.g., energy E, kinetic temperature T,
instantaneous pressure P) and thermodynamic quantities, e.g., T, P, \ldots
For example: $\begin{aligned} &\left\langle\delta E^{2}\right\rangle=\left\langle\delta \mathcal{H}^{2}\right\rangle=k_{B} T^{2} C_{V} \quad \checkmark \\ & \text { But: }\left\langle\delta P^{2}\right\rangle \neq\left\langle\delta P^{2}\right\rangle=k_{B} T / V \beta_{T} \times\end{aligned}$
Other useful formulas: $\quad\left\langle\delta K^{2}\right\rangle=\frac{3 N}{2}\left(k_{B} T\right)^{2}$
$\left\langle\delta U^{2}\right\rangle=k_{B} T^{2}\left(C_{V}-3 N k_{B} / 2\right)$
$\langle\delta U \delta \mathcal{P}\rangle=k_{B} T^{2}\left(\gamma_{V}-\rho k_{B}\right)$
$C_{V}=(\partial E / \partial T)_{V}$
$\gamma_{V}=(\partial P / \partial T)_{V}$

TF in NPT Ensemble

$$
\left\langle\delta V^{2}\right\rangle=V k_{B} T \beta_{T}
$$

$$
\left\langle\delta(\mathcal{H}+P V)^{2}\right\rangle=k_{B} T^{2} C_{P}
$$

$$
\langle\delta V \delta(\mathcal{H}+P V)\rangle=k_{B} T^{2} V \alpha_{P}
$$

By definition: $\quad \alpha_{T}=V^{-1}(\partial V / \partial T)_{P} ; \beta_{T}=-V^{-1}(\partial V / \partial P)_{T}$ $C_{P}=(\partial E / \partial T)_{P}$

How to Calculate C_{V} ?

1. From definition

$$
C_{V}=(\partial E / \partial T)_{V}
$$

Perform multiple simulations to determine $E \equiv\langle E\rangle$ as a function of T, then calculate the derivative of $E(T)$ with respect to T
2. From the MSF of the total energy E

$$
\begin{gathered}
C_{V}=\left\langle\delta E^{2}\right\rangle / k_{B} T^{2} \\
\text { with } \quad\left\langle\delta E^{2}\right\rangle=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}
\end{gathered}
$$

