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Molecular Modeling

1. Model building

2. Molecular Dynamics Simulation

3. Analysis of the

• model 
• results of the simulation
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Collection of MD Data

• DCD trajectory file
coordinates for each atom 

velocities for each atom

• Output file
global energies
temperature, pressure, …
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Analysis of MD Data
1. Structural properties
2. Equilibrium properties
3. Non-equilibrium properties

Can be studied via both equilibrium and 
non-equilibrium MD simulations
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Equilibrium (Thermodynamic) 
Properties

MD simulation

microscopic information

macroscopic properties

Statistical Mechanics

Γ[r(t),p(t)]

Phase space trajectory

Ensemble average over
probability density

ρ(Γ)
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Statistical Ensemble 

Collection of large number of replicas (on a 
macroscopic level) of the system

Each replica is characterized by the same 
macroscopic parameters (e.g., NVT, NPT)

The microscopic state of each replica (at a 
given time) is determined by Γ in phase space
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Time vs Ensemble Average
For t ∞, Γ(t) generates an ensemble with 
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Ergodic Hypothesis: Time and Ensemble averages are

equivalent, i.e., ρ〉Γ〈=〉〈 )(),( AprA t
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Thermodynamic Properties 
from MD Simulations
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MD simulation
time series

Thermodynamic
average

Finite simulation time means 
incomplete sampling!

Thermodynamic (equilibrium) averages can be calculated 
via time averaging of MD simulation time series
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Common Statistical Ensembles
1. Microcanonical (N,V,E):

2. Canonical (N,V,T):

3. Isothermal-isobaric (N,p,T)

])([)( EHNVE −Γδ∝Γρ

}/)](exp{[)( TkHF BNVT Γ−=Γρ

}/)](exp{[)( TkHG BNPT Γ−=Γρ

Different simulation protocols [Γ(t) Γ(t+δt )] sample different 
statistical ensembles 

Newton’s eq. of motion

Langevin    
dynamics

Nose-Hoover    
method
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Examples of Thermodynamic 
Observables

• Energies (kinetic, potential, internal,…)
• Temperature [equipartition theorem]
• Pressure [virial theorem]

• Specific heat capacity Cv and CP
• Thermal expansion coefficient αP
• Isothermal compressibility βT
• Thermal pressure coefficient γV

Thermodynamic derivatives are related to   mean 
square fluctuations of thermodynamic quantities
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Mean Energies
Total (internal) energy:

Kinetic energy:

Potential energy:

You can conveniently use namdplot to graph the 
time evolution of different energy terms (as well as 
T, P, V) during simulation  

Note:
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Temperature

From the equipartition theorem

〉〈= KT
BNk3

2

Note: in the NVTP ensemble N N-Nc, with Nc=3

TkpH/p Bkk =〉∂∂〈

Instantaneous kinetic temperature

BNk

K

3

2=T namdplot TEMP vs TS …
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Pressure
From the virial theorem TkrH/r Bkk =〉∂∂〈

〉〈+= WTNkPV B
The virial is defined as
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Instantaneous pressure function (not unique!)

VWTkB /+ρ=P
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Thermodynamic Fluctuations (TF)
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According to Statistical Mechanics, the probability 
distribution of thermodynamic fluctuations is 
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Mean Square Fluctuations (MSF)
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TF in NVT Ensemble
In MD simulations distinction must be made between properly defined 
mechanical quantities (e.g., energy E, kinetic temperature T, 
instantaneous pressure P ) and thermodynamic quantities, e.g., T, P, …

VB CTkE 222 =〉δ〈=〉δ〈 HFor example:

TB VTkP β=〉δ〈≠〉δ〈 /22PBut:

22 )(
2

3 TkK B
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BVB NkCTkU −=〉δ〈
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BVB kTkU ρ−γ=〉δδ〈 P

Other useful formulas:

VV TEC )/( ∂∂=
VV TP )/( ∂∂=γ
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TF in NPT Ensemble

TBTVkV β=〉δ〈 2

PB CTkPV 22)( =〉+δ〈 H

PB VTkPVV α=〉+δδ〈 2)(H

TT PVV )/(1 ∂∂−=β −By definition:

PP TEC )/( ∂∂=
PT TVV )/(1 ∂∂=α − ;
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How to Calculate CV ?

VV TEC )/( ∂∂=
1. From definition

22 / TkEC BV 〉δ〈=

2. From the MSF of the total energy E

222 〉〈−〉〈=〉δ〈 EEEwith

Perform multiple simulations to determine 〉〈≡ EE
then calculate the derivative of E(T) with respect to T

as a function of T,


