NAMD Serial and Parallel Performance

Jim Phillips Theoretical Biophysics Group Beckman Institute, UIUC

Serial performance basics

- Main factors affecting serial performance:
 - Molecular system size and composition.
 - Cutoff distance and cycle length.
 - Full electrostatics (PME) parameters.
 - Processor architecture and speed.

System size and density

• Time per step scales

– linearly with the number of atoms.

- linearly with density (atoms per volume).
- Example: explicit H vs. united atoms
 - -1/3 the number of atoms.
 - -1/3 the density.
 - Expect 9 X the performance (for protein).

Cutoffs and frequencies

- Time per step scales cubically with cutoff.
- Steps per cycle has a much smaller effect.

- Example: 10 A vs. 14 A
 - 1000 vs. 2744
 - Expect 2.7 X the performance.

PME and grid sizes

- PME with a shorter cutoff breaks even.
- Grid spacing should be about 1 A.
- Grid sizes should be $2^i 3^j 5^k$. (2^i is best!)
- Only affects FFT (should be minor).

• Example: 47A x 31A x 39A periodic cell - Grid sizes: 48 32 40

Processors

- Limited dependence on memory system:
 - Small amount of data.
 - Cache friendly design.
- Performance scales
 - linearly with clock speed (for one architecture).
 - uncertainly with SPEC benchmarks.
- Example:
 - 1333 MHz Althon equals 667 MHz Alpha

Parallel performance basics

- Speedup = (serial time) / (parallel time).
- Ideal (linear) speedup is number of CPUs.

• Amdahl's law says best speedup possible is (total work) / (non-parallelizable work).

• In MD, each timestep must be parallelized.

Driven by Larger Molecules

Driven by Larger Machines

HP 735 cluster 12 processors (1993)

PSC LeMieux AlphaServer SC 3000 processors (2002)

NAMD parallel design

- Atoms are "spatially decomposed" into cubes which are distributed among CPUs.
 – Generates 25-400 cubes to distribute.
- Interactions between pairs of cubes are also distributed among CPUs.

– Generates 300-5000 interaction groups.

• Interactions are redistributed among CPUs based on measurement of their run time.

Calculating speedup

- Run 500 steps on 1,2,4,8,... CPUs.
- Final performance, ignore startup time.
- Be aware of dynamic load balancing:
 - Don't use timing at start of simulation.
 - Don't use timing including load balancing step.
 - Don't use "Initial timing: ..." value.
 - Best estimate is "Benchmark timing: ...".

Cutoff and system size

- Smaller cutoff may improve efficiency.
 - Data is distibuted to more CPUs.
 - But there is less work to distribute.
- A larger simulation can employ more CPUs.
 - More work to divide among CPUs.
 - More data to distribute as well.
- Length of the simulation doesn't matter.

Best recorded scaling (cutoff)

Speedup on Asci Red

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

PME and parallel scaling

- PME is harder to parallelize:
 - More communication.
 - More stages of communication.
 - Only uses number of CPUs equal to grid size.

- But...
 - Superlinear speedup observed on T3E.

PME performance increase

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Parallel machines

- Three dimensions to machine performance:
 - Performance of the individual processors.
 - Bandwidth of the communication network.
 - Latency of the communication network.
- CPUs are improving faster than networks.
- Slow CPUs and fast networks give best speedups, but not best price/performance.

Latency tolerant design

- Some communication is necessary, but we don't want to sit idle waiting for it.
- Work is broken down into interaction sets which require different parts of the incoming data.
- Interactions are calculated as soon as required data is received, not in any particular order.

NAMD 2.4 Performance

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

NAMD Relative Performance

http://www.ks.uiuc.edu/

Cost of large simulations

- 100,000 atom simulation with PME.
- 20s per timestep on one 1GHz CPU.
- One nanosecond of simulated time requires:
 - 5000 CPU-hours
 - 8 CPU-months
 - 1 week on 32 CPUs
- You can buy 32 processor machines but they cost \$300K (or more, we don't ask).

NAMD 2.4 on Athlon cluster

- 67% efficiency on 32, *commodity hardware*.
- NAMD design is
 - latency tolerant,
 - cache friendly.
- Can simulate 100K atoms at 50 ns/year on 32 CPUs.
- Equivalent to owning a 100 CPU Cray T3E for only \$32K.

92K atoms with PME (ns simulated per week)

NAMD: Scalable Molecular Dynamics

http://www.ks.uiuc.edu/

Beckman Institute, UIUC