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• Main factors affecting serial performance:
– Molecular system size and composition.
– Cutoff distance and cycle length.
– Full electrostatics (PME) parameters.
– Processor architecture and speed.
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• Time per step scales
– linearly with the number of atoms.
– linearly with density (atoms per volume).

• Example:  explicit H vs. united atoms
– 1/3 the number of atoms.
– 1/3 the density.
– Expect 9 X the performance (for protein).
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• Time per step scales cubically with cutoff.
• Steps per cycle has a much smaller effect.

• Example:  10 A vs. 14 A
– 1000 vs. 2744
– Expect 2.7 X the performance.
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• PME with a shorter cutoff breaks even.
• Grid spacing should be about 1 A.
• Grid sizes should be 2i 3j 5k.  (2i is best!)
• Only affects FFT (should be minor).

• Example:  47A x 31A x 39A periodic cell
– Grid sizes: 48 32 40
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• Limited dependence on memory system:
– Small amount of data.
– Cache friendly design.

• Performance scales
– linearly with clock speed (for one architecture).
– uncertainly with SPEC benchmarks.

• Example:
– 1333 MHz Althon equals 667 MHz Alpha
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• Speedup = (serial time) / (parallel time).
• Ideal (linear) speedup is number of CPUs.

• Amdahl’s law says best speedup possible is 
(total work) / (non-parallelizable work).

• In MD, each timestep must be parallelized.
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ATP Synthase
327K atoms

(2001)

BPTI
3K atoms

Estrogen Receptor
36K atoms (1996)
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HP 735 cluster
12 processors

(1993)

PSC LeMieux AlphaServer SC
3000 processors (2002)

SGI Origin 2000
128 processors (1997)
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• Atoms are “spatially decomposed” into 
cubes which are distributed among CPUs.
– Generates 25-400 cubes to distribute.

• Interactions between pairs of cubes are also 
distributed among CPUs.
– Generates 300-5000 interaction groups.

• Interactions are redistributed among CPUs 
based on measurement of their run time.
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• Run 500 steps on 1,2,4,8,… CPUs.
• Final performance, ignore startup time.
• Be aware of dynamic load balancing:

– Don’t use timing at start of simulation.
– Don’t use timing including load balancing step.
– Don’t use “Initial timing: …” value.
– Best estimate is “Benchmark timing: …”.
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• Smaller cutoff may improve efficiency.
– Data is distibuted to more CPUs.
– But there is less work to distribute.

• A larger simulation can employ more CPUs.
– More work to divide among CPUs.
– More data to distribute as well.

• Length of the simulation doesn’t matter.
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• PME is harder to parallelize:
– More communication.
– More stages of communication.
– Only uses number of CPUs equal to grid size.

• But…
– Superlinear speedup observed on T3E.
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• Three dimensions to machine performance:
– Performance of the individual processors.
– Bandwidth of the communication network.
– Latency of the communication network.

• CPUs are improving faster than networks.
• Slow CPUs and fast networks give best 

speedups, but not best price/performance.
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• Some communication is necessary, but we 
don’t want to sit idle waiting for it.

• Work is broken down into interaction sets 
which require different parts of the 
incoming data.

• Interactions are calculated as soon as 
required data is received, not in any 
particular order.



NIH Resource for Biomolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128 256 512 1024

Pr
oc

es
so

rs
 x

 s
ec

on
ds

 p
er

 s
te

p

PSC Cray T3E

PSC Alpha Cluster
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(perfect linear scaling is a horizontal line)
92K atoms, full electrostatics (PME)

6.6 s/step
2.5 months/ns

NCSA Linux Clusters

IA32

IA64



NIH Resource for Biomolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

0.01

0.1

1

10

1 2 4 8 16 32 64 126 252

tim
e 

pe
r 

st
ep

 (s
ec

on
ds

)

72% efficiency

Amber6

NAMD

NCSA Origin 2000

Joint Amber/CHARMM
DHFR Benchmark (PME)



NIH Resource for Biomolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

• 100,000 atom simulation with PME.
• 20s per timestep on one 1GHz CPU.
• One nanosecond of simulated time requires:

– 5000 CPU-hours
– 8 CPU-months
– 1 week on 32 CPUs

• You can buy 32 processor machines but 
they cost $300K (or more, we don’t ask).
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• 67% efficiency on 32, 
commodity hardware.

• NAMD design is
– latency tolerant,
– cache friendly.

• Can simulate 100K atoms 
at 50 ns/year on 32 CPUs.

• Equivalent to owning a 
100 CPU Cray T3E for 
only $32K.

92K atoms with PME
(ns simulated per week)
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Scalable Molecular Dynamics

40 ms per step
63% efficiency

327K atoms
with PME

PSC LeMieux
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