Steered Molecular Dynamics Studies of Titin Domains

Mu Gao

Department of Physics and Beckman Institute University of Illinois at Urbana-Champaign

Overview

- Biology Background
- > AFM experiments
- Modeling and simulation protocols
- SMD simulations of titin domain I27
- SMD simulations of the oxidized and reduced I1 domains

Architecture of Titin Molecules

Titin Under Tension

Under external forces up to 20 pN, the PEVK region extends

Under stronger external forces, Ig domains unfold one by one

Unfolding Titin Domains With Atomic Force Microscopy

AFM extension of titin Ig multimers, Reif et al., Science 276, 1109 (1997)

Models and Simulation Procedures

➢ A titin module is solvated in a water sphere of 60 - 70 Å in diameter

The whole system has 12,000 - 18,000 atoms

After 1 ns equilibration, Steered Molecular Dynamics is employed to stretch the domains, using constant velocity and constant force protocols

 NAMD benchmark on local cluster of 32 1.1 GHz Athlon processors: 24 -29 hours/ns

SMD Simulation Protocols

(i) Constant velocity Stretching

F = -k(x - vt)

Sample NAMD script

fixedAtoms	on	
fixedAtomsFile	I27.fix	
SMD	on	
SMDFile	I27.smd	
SMDk	7	
SMDVel	0.0001	
SMDDir	-0.0997 0.9195 -0.3825	
SMDOutputFreq	10	

(ii) Constant force Stretching

Sample tcl script

select the carbon atom that we apply the force to set carbon [atomid I27 89 CA] addatom \$carbon # set force vector set magnitude 2.8786 set force x [expr -0.0997 * \$magnitude] set force y [expr 0.9185 * \$magnitude] set force z [expr -0.3825 * \$magnitude] lappend force vec \$force x \$force y \$force z # SMD part proc calcforces {} { global carbon force vec addforce \$carbon \$force vec return}

Two-step Unfolding of Titin I27

http://www.ks.uiuc.edu/

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Refolding of I27 Intermediates

Mechanical Stability of I27 Mutants

Li et al. Nature Struct. Biol. 7:1117-1120 (2001)

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Structure Comparison of I1 and I27

National Center for Research Resources

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Equilibration of I1 Domains

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Stretching I1 Domains with Small Constant Forces

Titin	extension (Å) at small forces			
Domains	50 pN	100 pN	200 pN	
Oxidized I1	0.5	1.4	1.6	
Reduced I1	1.3	3.1	3.4	
127	2.2	6.1	7.8	
reduced I1	, 1ns eq.	50 pN	200 pN	

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Backbone Hydrogen Bonds and Key Events In Unfolding I1

Three step unfolding of I1

Roles of the Disulfide Bond

(i) limit the extension of oxidized I1 within 220 Å (ii) stabilize backbone hydrogen bonds between A'- and G-strands

Conclusion

- Backbone hydrogen bonds between A- and B-strands and between A'- and G-strands are the major force bearing elements of titin domains
- I27 exhibits a mechanical intermediate but I1 does not
- Water molecules are involved in the unfolding processes
- The disulfide bond can limit the extension of
 I1 and increases its mechanical stability

