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Description

The NAMD User’s Guide describes how to run and use the various features of the molecular
dynamics program NAMD. This guide includes the capabilities of the program, how to use these
capabilities, the necessary input files and formats, and how to run the program both on uniprocessor
machines and in parallel.
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Introduction

The University of Illinois at Urbana-Champaign has created its molecular dynamics software,
NAMD, developed by the Theoretical Biophysics Group (“TBG”) at Illinois’ Beckman Institute
available free of charge for non-commercial use by individuals, academic or research institutions
and corporations for in-house business purposes only, upon completion and submission of the online
registration form available from the NAMD web site http://www.ks.uiuc.edu/Research/namd/.

Commercial use of the NAMD software, or derivative works based thereon, REQUIRES A
COMMERCIAL LICENSE. Commercial use includes: (1) integration of all or part of the Software
into a product for sale, lease or license by or on behalf of Licensee to third parties, or (2) distribution
of the Software to third parties that need it to commercialize product sold or licensed by or on
behalf of Licensee. The University of Illinois will negotiate commercial-use licenses for NAMD upon
request. These requests can be directed to namd@ks.uiuc.edu

Registration

Individuals may register in their own name or with their institutional or corporate affiliations.
Registration information must include name, title, and e-mail of a person with signature authority to
authorize and commit the individuals, academic or research institution, or corporation as necessary
to the terms and conditions of the license agreement.

All parts of the information must be understood and agreed to as part of completing the form.
Completion of the form is required before software access is granted. Pay particular attention to
the authorized requester requirements above, and be sure that the form submission is authorized
by the duly responsible person.

Registration will be administered by the NAMD development team.



UNIVERSITY OF ILLINOIS
NAMD MOLECULAR DYNAMICS SOFTWARE LICENSE AGREEMENT

Upon execution of this Agreement by the party identified below (“Licensee”), The Board of Trustees
of the University of Illinois (“Illinois”), on behalf of The Theoretical Biophysics Group (“TBG”) in
the Beckman Institute, will provide the molecular dynamics software NAMD in Executable Code
and/or Source Code form (“Software”) to Licensee, subject to the following terms and conditions.
For purposes of this Agreement, Executable Code is the compiled code, which is ready to run
on Licensee’s computer. Source code consists of a set of files which contain the actual program
commands that are compiled to form the Executable Code.

1. The Software is intellectual property owned by Illinois, and all right, title and interest, in-
cluding copyright, remain with Illinois. Illinois grants, and Licensee hereby accepts, a restricted,
non-exclusive, non-transferable license to use the Software for academic, research and internal busi-
ness purposes only e.g. not for commercial use (see Paragraph 7 below), without a fee. Licensee
agrees to reproduce the copyright notice and other proprietary markings on all copies of the Soft-
ware. Licensee has no right to transfer or sublicense the Software to any unauthorized person or
entity. However, Licensee does have the right to make complimentary works that interoperate with
NAMD, to freely distribute such complimentary works, and to direct others to the TBG server to
obtain copies of NAMD itself.

2. Licensee may, at its own expense, modify the Software to make derivative works, for its own
academic, research, and internal business purposes. Licensee’s distribution of any derivative work
is also subject to the same restrictions on distribution and use limitations that are specified herein
for Illinois’ Software. Prior to any such distribution the Licensee shall require the recipient of the
Licensee’s derivative work to first execute a license for NAMD with Illinois in accordance with
the terms and conditions of this Agreement. Any derivative work should be clearly marked and
renamed to notify users that it is a modified version and not the original NAMD code distributed
by Illinois.

3. Except as expressly set forth in this Agreement, THIS SOFTWARE IS PROVIDED “AS
IS” AND ILLINOIS MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT, TRADE-
MARK, OR OTHER RIGHTS. LICENSEE ASSUMES THE ENTIRE RISK AS TO THE RE-
SULTS AND PERFORMANCE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.
LICENSEE AGREES THAT UNIVERSITY SHALL NOT BE HELD LIABLE FOR ANY DI-
RECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES WITH RESPECT TO
ANY CLAIM BY LICENSEE OR ANY THIRD PARTY ON ACCOUNT OF OR ARISING FROM
THIS AGREEMENT OR USE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.

4. Licensee understands the Software is proprietary to Illinois. Licensee agrees to take all
reasonable steps to insure that the Software is protected and secured from unauthorized disclosure,
use, or release and will treat it with at least the same level of care as Licensee would use to protect
and secure its own proprietary computer programs and/or information, but using no less than a
reasonable standard of care. Licensee agrees to provide the Software only to any other person or
entity who has registered with Illinois. If licensee is not registering as an individual but as an
institution or corporation each member of the institution or corporation who has access to or uses
Software must understand and agree to the terms of this license. If Licensee becomes aware of any
unauthorized licensing, copying or use of the Software, Licensee shall promptly notify Illinois in
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writing. Licensee expressly agrees to use the Software only in the manner and for the specific uses
authorized in this Agreement.

5. By using or copying this Software, Licensee agrees to abide by the copyright law and all
other applicable laws of the U.S. including, but not limited to, export control laws and the terms
of this license. Illinois shall have the right to terminate this license immediately by written notice
upon Licensee’s breach of, or non-compliance with, any of its terms. Licensee may be held legally
responsible for any copyright infringement that is caused or encouraged by its failure to abide by
the terms of this license. Upon termination, Licensee agrees to destroy all copies of the Software
in its possession and to verify such destruction in writing.

6. The user agrees that any reports or published results obtained with the Software will ac-
knowledge its use by the appropriate citation as follows:

NAMD was developed by the Theoretical Biophysics Group in the Beckman Institute for
Advanced Science and Technology at the University of Illinois at Urbana-Champaign.

Any published work which utilizes NAMD shall include the following reference:

Laxmikant Kale, Robert Skeel, Milind Bhandarkar, Robert Brunner, Attila Gursoy,
Neal Krawetz, James Phillips, Aritomo Shinozaki, Krishnan Varadarajan, and Klaus
Schulten. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp.
Phys., 151:283-312, 1999.

Electronic documents will include a direct link to the official NAMD page:

http://www.ks.uiuc.edu/Research/namd/

One copy of each publication or report will be supplied to Illinois through Dr. Gila Budescu at
the addresses listed below in Contact Information.

7. Should Licensee wish to make commercial use of the Software, Licensee will contact Illinois
(namd@ks.uiuc.edu) to negotiate an appropriate license for such use. Commercial use includes: (1)
integration of all or part of the Software into a product for sale, lease or license by or on behalf
of Licensee to third parties, or (2) distribution of the Software to third parties that need it to
commercialize product sold or licensed by or on behalf of Licensee.

8. Government Rights. Because substantial governmental funds have been used in the devel-
opment of NAMD, any possession, use or sublicense of the Software by or to the United States
government shall be subject to such required restrictions.

9. NAMD is being distributed as a research and teaching tool and as such, TBG encourages
contributions from users of the code that might, at Illinois’ sole discretion, be used or incorporated to
make the basic operating framework of the Software a more stable, flexible, and/or useful product.
Licensees that wish to contribute their code to become an internal portion of the Software may be
required to sign an “Agreement Regarding Contributory Code for NAMD Software” before Illinois
can accept it (contact namd@ks.uiuc.edu for a copy).
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Contact Information

The best contact path for licensing issues is by e-mail to namd@ks.uiuc.edu or send correspondence
to:

NAMD Team
Theoretical Biophysics Group
Beckman Institute
University of Illinois
405 North Mathews MC-251
Urbana, Illinois 61801 USA
FAX: (217) 244-6078
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1 Introduction

NAMD is a parallel molecular dynamics program for UNIX platforms designed for high-performance
simulations in structural biology. This document describes how to use NAMD, its features, and
the platforms on which it runs. The document is divided into several sections:

Section 1 gives an overview of NAMD.

Section 2 lists the basics for getting started.

Section 3 describes NAMD file formats.

Section 4 explains PSF file generation with psfgen.

Section 5 lists basic simulation options.

Section 6 lists additional simulation options.

Section 7 provides hints for X-PLOR users.

Section 8 provides sample configuration files.

Section 9 gives details on running NAMD.

Section 10 gives details on installing NAMD.

We have attempted to make this document complete and easy to understand and to make
NAMD itself easy to install and run. We welcome your suggestions for improving the documentation
or code at namd@ks.uiuc.edu.

1.1 New features in version 2.6b1

Ports to Itanium, Altix, and Opteron/Athlon64/EMT64

NAMD runs very fast on the Itanium processor under Linux, including the SGI Altix. Native
binaries for 64-bit x86 processors such as AMD Opteron and Intel EMT64 are 25% faster than
32-bit binaries.

Improved Serial Performance on POWER and PowerPC

Tuning of the NAMD inner loop has provided a 30% performance boost with the IBM XL compiler.
New Mac OS X binaries are up to 70% faster, but users must download the IBM XL runtime library
from http://ftp.software.ibm.com/aix/products/ccpp/vacpp-rte-macos/

Adaptive Biasing Force Free Energy Calculations

A new method, implemented in Tcl, efficiently calculates the potential of mean force along a reaction
coordinate by applying adaptive biasing forces to provide uniform sampling.

Tcl-Based Boundary Potentials

Tcl-scripted forces may be efficiently applied individually to large numbers of atoms to implement
boundaries and similar forces.
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Reduced Memory Usage for Unusual Simulations

Memory usage for simulations of large, highly bonded structures such as covalent crystals and for
sparse simulations such as coarse-grained models has been greatly reduced without affecting the
performance of typical biopolymer simulations.

Support for OPLS Force Field

Geometric combining of Lennard-Jones σ (radius) parameters (σij = √
σiσj), as required by the

OPLS force field, is available with the option vdwGeometricSigma.

1.2 NAMD and molecular dynamics simulations

Molecular dynamics (MD) simulations compute atomic trajectories by solving equations of motion
numerically using empirical force fields, such as the CHARMM force field, that approximate the
actual atomic force in biopolymer systems. Detailed information about MD simulations can be
found in several books such as [1, 18]. In order to conduct MD simulations, various computer
programs have been developed including X-PLOR [7] and CHARMM [6]. These programs were
originally developed for serial machines. Simulation of large molecules, however, require enormous
computing power. One way to achieve such simulations is to utilize parallel computers. In recent
years, distributed memory parallel computers have been offering cost-effective computational power.
NAMD was designed to run efficiently on such parallel machines for simulating large molecules.
NAMD is particularly well suited to the increasingly popular Beowulf-class PC clusters, which are
quite similar to the workstation clusters for which is was originally designed. Future versions of
NAMD will also make efficient use of clusters of multi-processor workstations or PCs.

NAMD has several important features:

• Force Field Compatibility
The force field used by NAMD is the same as that used by the programs CHARMM [6] and
X-PLOR [7]. This force field includes local interaction terms consisting of bonded interactions
between 2, 3, and 4 atoms and pairwise interactions including electrostatic and van der Waals
forces. This commonality allows simulations to migrate between these three programs.

• Efficient Full Electrostatics Algorithms
NAMD incorporates the Particle Mesh Ewald (PME) algorithm, which takes the full elec-
trostatic interactions into account. This algorithm reduces the computational complexity of
electrostatic force evaluation from O(N2) to O(N log N).

• Multiple Time Stepping
The velocity Verlet integration method [1] is used to advance the positions and velocities of
the atoms in time. To further reduce the cost of the evaluation of long-range electrostatic
forces, a multiple time step scheme is employed. The local interactions (bonded, van der
Waals and electrostatic interactions within a specified distance) are calculated at each time
step. The longer range interactions (electrostatic interactions beyond the specified distance)
are only computed less often. This amortizes the cost of computing the electrostatic forces
over several timesteps. A smooth splitting function is used to separate a quickly varying
short-range portion of the electrostatic interaction from a more slowly varying long-range
component. It is also possible to employ an intermediate timestep for the short-range non-
bonded interactions, performing only bonded interactions every timestep.
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• Input and Output Compatibility
The input and output file formats used by NAMD are identical to those used by CHARMM
and X-PLOR. Input formats include coordinate files in PDB format [3], structure files in
X-PLOR PSF format, and energy parameter files in either CHARMM or X-PLOR formats.
Output formats include PDB coordinate files and binary DCD trajectory files. These similar-
ities assure that the molecular dynamics trajectories from NAMD can be read by CHARMM
or X-PLOR and that the user can exploit the many analysis algorithms of the latter packages.

• Dynamics Simulation Options
MD simulations may be carried out using several options, including

– Constant energy dynamics,

– Constant temperature dynamics via

∗ Velocity rescaling,
∗ Velocity reassignment,
∗ Langevin dynamics,

– Periodic boundary conditions,

– Constant pressure dynamics via

∗ Berendsen pressure coupling,
∗ Nosé-Hoover Langevin piston,

– Energy minimization,

– Fixed atoms,

– Rigid waters,

– Rigid bonds to hydrogen,

– Harmonic restraints,

– Spherical or cylindrical boundary restraints.

• Easy to Modify and Extend
Another primary design objective for NAMD is extensibility and maintainability. In order
to achieve this, it is designed in an object-oriented style with C++. Since molecular dynam-
ics is a new field, new algorithms and techniques are continually being developed. NAMD’s
modular design allows one to integrate and test new algorithms easily. If you are contem-
plating a particular modification to NAMD you are encouraged to contact the developers at
namd@ks.uiuc.edu for guidance.

• Interactive MD simulations
A system undergoing simulation in NAMD may be viewed and altered with VMD; for instance,
forces can be applied to a set of atoms to alter or rearrange part of the molecular structure.
For more information on VMD, see http://www.ks.uiuc.edu/Research/vmd/.

• Load Balancing
An important factor in parallel applications is the equal distribution of computational load
among the processors. In parallel molecular simulation, a spatial decomposition that evenly
distributes the computational load causes the region of space mapped to each processor to
become very irregular, hard to compute and difficult to generalize to the evaluation of many
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different types of forces. NAMD addresses this problem by using a simple uniform spatial
decomposition where the entire model is split into uniform cubes of space called patches.
An initial load balancer assigns patches and the calculation of interactions among the atoms
within them to processors such that the computational load is balanced as much as possible.
During the simulation, an incremental load balancer monitors the load and performs necessary
adjustments.

1.3 User feedback

If you have problems installing or running NAMD after reading this document, please send a
complete description of the problem by email to namd@ks.uiuc.edu. If you discover and fix a
problem not described in this manual we would appreciate if you would tell us about this as well,
so we can alert other users and incorporate the fix into the public distribution.

We are interested in making NAMD more useful to the molecular modeling community. Your
suggestions are welcome at namd@ks.uiuc.edu. We also appreciate hearing about how you are
using NAMD in your work.
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2 Getting Started

2.1 What is needed

Before running NAMD, explained in section 9, the following are be needed:

• A CHARMM force field in either CHARMM or X-PLOR format.

• An X-PLOR format PSF file describing the molecular structure.

• The initial coordinates of the molecular system in the form of a PDB file.

• A NAMD configuration file.

NAMD provides the psfgen utility, documented in Section 4, which is capable of generating the
required PSF and PDB files by merging PDB files and guessing coordinates for missing atoms. If
psfgen is insufficient for your system, we recommend that you obtain access to either CHARMM
or X-PLOR, both of which are capable of generating the required files.

2.2 NAMD configuration file

Besides these input and output files, NAMD also uses a file referred to as the configuration file.
This file specifies what dynamics options and values that NAMD should use, such as the number
of timesteps to perform, initial temperature, etc. The options and values in this file control how
the system will be simulated.

A NAMD configuration file contains a set of options and values. The options and values
specified determine the exact behavior of NAMD, what features are active or inactive, how long the
simulation should continue, etc. Section 2.2.1 describes how options are specified within a NAMD
configuration file. Section 2.2.3 lists the parameters which are required to run a basic simulation.
Section 7 describes the relation between specific NAMD and X-PLOR dynamics options. Several
sample NAMD configuration files are shown in section 8.

2.2.1 Configuration parameter syntax

Each line in the configuration files consists of a keyword identifying the option being specified, and
a value which is a parameter to be used for this option. The keyword and value can be separated
by only white space:

keyword value

or the keyword and value can be separated by an equal sign and white space:

keyword = value

Blank lines in the configuration file are ignored. Comments are prefaced by a # and may appear
on the end of a line with actual values:

keyword value # This is a comment

or may be at the beginning of a line:

# This entire line is a comment . . .
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Some keywords require several lines of data. These are generally implemented to either allow the
data to be read from a file:

keyword filename

or to be included inline using Tcl-style braces:

keyword {
lots of data

}

The specification of the keywords is case insensitive so that any combination of upper and
lower case letters will have the same meaning. Hence, DCDfile and dcdfile are equivalent. The
capitalization in the values, however, may be important. Some values indicate file names, in which
capitalization is critical. Other values such as on or off are case insensitive.

2.2.2 Tcl scripting interface and features

When compiled with Tcl (all released binaries) the config file is parsed by Tcl in a fully backwards
compatible manner with the added bonus that any Tcl command may also be used. This alone
allows:

• the “source” command to include other files (works w/o Tcl too!),

• the “print” command to display messages (“puts” is broken, sorry),

• environment variables through the env array (“$env(USER)”), and

• user-defined variables (“set base sim23”, “dcdfile $base.dcd”).

Additional features include:

• The “callback” command takes a 2-parameter Tcl procedure which is then called with a list
of labels and a list of values during every timestep, allowing analysis, formatting, whatever.

• The “run” command takes a number of steps to run (overriding the now optional numsteps
parameter, which defaults to 0) and can be called repeatedly. You can “run 0” just to get
energies.

• The “minimize” command is similar to “run” and performs minimization for the specified
number of force evaluations.

• The “output” command takes an output file basename and causes .coor, .vel, and .xsc files
to be written with that name.

• Between “run” commands the reassignTemp, rescaleTemp, and langevinTemp parameters can
be changed to allow simulated annealing protocols within a single config file. The useGroup-
Pressure, useFlexibleCell, useConstantArea, useConstantRatio, LangevinPiston, Langevin-
PistonTarget, LangevinPistonPeriod, LangevinPistonDecay, LangevinPistonTemp, SurfaceTen-
sionTarget, BerendsenPressure, BerendsenPressureTarget, BerendsenPressureCompressibil-
ity, and BerendsenPressureRelaxationTime parameters may be changed to allow pressure
equilibration. The fixedAtoms and constraintScaling parameters may be changed to preserve
macromolecular conformation during minimization and equilibration (fixedAtoms may only
be disabled, and requires that fixedAtomsForces is enabled to do this).
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• The “checkpoint” and “revert” commands (no arguments) allow a scripted simulation to save
and restore to a prior state.

• The “reinitvels” command reinitializes velocities to a random distribution based on the given
temperature.

• The “rescalevels” command rescales velocities by the given factor.

• The “reloadCharges” command reads new atomic charges from the given file, which should
contain one number for each atom, separated by spaces and/or line breaks.

• The “measure” command allows user-programmed calculations to be executed in order to
facilitate automated methods. (For example, to revert or change a parameter.) A number
of measure commands are included in the NAMD binary; the module has been designed to
make it easy for users to add additional measure commands.

• The “coorfile” command allows NAMD to perform force and energy analysis on trajectory
files. “coorfile open dcd filename” opens the specified DCD file for reading. “coorfile read”
reads the next frame in the opened DCD file, replacing NAMD’s atom coordinates with
the coordinates in the frame, and returns 0 if successful or -1 if end-of-file was reached.
“coorfile skip” skips past one frame in the DCD file; this is significantly faster than reading
coordinates and throwing them away. “coorfile close” closes the file. The “coorfile” command
is not available on the Cray T3E.

Force and energy analysis are especially useful in the context of pair interaction calculations;
see Sec. 6.11 for details, as well as the example scripts in Sec. 8.

Please note that while NAMD has traditionally allowed comments to be started by a # appear-
ing anywhere on a line, Tcl only allows comments to appear where a new statement could begin.
With Tcl config file parsing enabled (all shipped binaries) both NAMD and Tcl comments are
allowed before the first “run” command. At this point only pure Tcl syntax is allowed. In addition,
the “;#” idiom for Tcl comments will only work with Tcl enabled. NAMD has also traditionally
allowed parameters to be specified as “param=value”. This is supported, but only before the first
“run” command. Some examples:

# this is my config file <- OK
reassignFreq 100 ; # how often to reset velocities <- only w/ Tcl
reassignTemp 20 # temp to reset velocities to <- OK before "run"
run 1000 <- now Tcl only
reassignTemp 40 ; # temp to reset velocities to <- ";" is required

NAMD has also traditionally allowed parameters to be specified as “param=value” as well as
“param value”. This is supported, but only before the first “run” command. For an easy life, use
“param value”.

2.2.3 Required NAMD configuration parameters

The following parameters are required for every NAMD simulation:

• numsteps (page 43),
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• coordinates (page 19),

• structure (page 19),

• parameters (page 19),

• exclude (page 46),

• outputname (page 20),

• one of the following three:

– temperature (page 46),

– velocities (page 19),

– binvelocities (page 20).

These required parameters specify the most basic properties of the simulation. In addition, it is
highly recommended that pairlistdist be specified with a value at least one greater than cutoff.
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3 Input and Output Files

NAMD was developed to be compatible with existing molecular dynamics packages, especially
the packages X-PLOR [7] and CHARMM [6]. To achieve this compatibility, the set of input files
which NAMD uses to define a molecular system are identical to the input files used by X-PLOR
and CHARMM. Thus it is trivial to move an existing simulation from X-PLOR or CHARMM to
NAMD. A description of these molecular system definition files is given in Section 3.1.

In addition, the output file formats used by NAMD were chosen to be compatible with X-
PLOR and CHARMM. In this way the output from NAMD can be analyzed using X-PLOR,
CHARMM, or a variety of the other tools that have been developed for the existing output file
formats. Descriptions of the output files formats are also given in Section 3.1.

3.1 File formats

3.1.1 PDB files

The PDB (Protein Data Bank) format is used to store coordinate or velocity data being input
or output from NAMD. This is the standard format for coordinate data for most other molecular
dynamics programs as well, including X-PLOR and CHARMM. A full description of this file format
can be obtained from the PDB web site at http://www.rcsb.org/pdb/.

3.1.2 X-PLOR format PSF files

NAMD uses the same protein structure files that X-PLOR does. At this time, the easiest way
to generate these files is using X-PLOR or CHARMM, although it is possible to build them by
hand. CHARMM can generate an X-PLOR format PSF file with the command “write psf card
xplor”.

3.1.3 CHARMM19, CHARMM22, and CHARMM27 parameter files

NAMD supports CHARMM19, CHARMM22, and CHARMM27 parameter files in both X-PLOR
and CHARMM formats. (X-PLOR format is the default, CHARMM format parameter files may be
used given the parameter “paraTypeCharmm on”.) For a full description of the format of commands
used in these files, see the X-PLOR and CHARMM User’s Manual [7].

3.1.4 DCD trajectory files

NAMD produces DCD trajectory files in the same format as X-PLOR and CHARMM. The DCD
files are single precision binary FORTRAN files, so are transportable between computer architec-
tures. They are not, unfortunately, transportable between big-endian (most workstations) and little
endian (Intel) architectures. (This same caveat applies to binary velocity and coordinate files. The
utility programs flipdcd and flipbinpdb are provided with the Linux/Intel version to reformat
these files.) The exact format of these files is very ugly but supported by a wide range of analysis
and display programs.
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3.2 NAMD configuration parameters

3.2.1 Input files

• coordinates < coordinate PDB file >
Acceptable Values: UNIX filename
Description: The PDB file containing initial position coordinate data. Note that path
names can be either absolute or relative. Only one value may be specified.

• structure < PSF file >
Acceptable Values: UNIX filename
Description: The X-PLOR format PSF file describing the molecular system to be simu-
lated. Only one value may be specified.

• parameters < parameter file >
Acceptable Values: UNIX filename
Description: A CHARMM19, CHARMM22, or CHARMM27 parameter file that defines
all or part of the parameters necessary for the molecular system to be simulated. At least one
parameter file must be specified for each simulation. Multiple definitions (but only one file
per definition) are allowed for systems that require more than one parameter file. The files
will be read in the order that they appear in the configuration file. If duplicate parameters
are read, a warning message is printed and the last parameter value read is used. Thus, the
order that files are read can be important in cases where duplicate values appear in separate
files.

• paraTypeXplor < Is the parameter file in X-PLOR format? >
Acceptable Values: on or off
Default Value: on
Description: Specifies whether or not the parameter file(s) are in X-PLOR format. X-
PLOR format is the default for parameter files! Caveat: The PSF file should be also con-
structed with X-PLOR in case of an X-PLOR parameter file because X-PLOR stores in-
formation about the multiplicity of dihedrals in the PSF file. See the X-PLOR manual for
details.

• paraTypeCharmm < Is the parameter file in CHARMM format? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not the parameter file(s) are in CHARMM format. X-
PLOR format is the default for parameter files! Caveat: The information about multiplicity
of dihedrals will be obtained directly from the parameter file, and the full multiplicity will be
used (same behavior as in CHARMM). If the PSF file originates from X-PLOR, consecutive
multiple entries for the same dihedral (indicating the dihedral multiplicity for X-PLOR) will
be ignored.

• velocities < velocity PDB file >
Acceptable Values: UNIX filename
Description: The PDB file containing the initial velocities for all atoms in the simulation.
This is typically a restart file or final velocity file written by NAMD during a previous simu-
lation. Either the temperature or the velocities/binvelocities option must be defined
to determine an initial set of velocities. Both options cannot be used together.
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• binvelocities < binary velocity file >
Acceptable Values: UNIX filename
Description: The binary file containing initial velocities for all atoms in the simulation.
A binary velocity file is created as output from NAMD by activating the binaryrestart
or binaryoutput options. The binvelocities option should be used as an alternative to
velocities. Either the temperature or the velocities/binvelocities option must be
defined to determine an initial set of velocities. Both options cannot be used together.

• bincoordinates < binary coordinate restart file >
Acceptable Values: UNIX filename
Description: The binary restart file containing initial position coordinate data. A binary
coordinate restart file is created as output from NAMD by activating the binaryrestart or
binaryoutput options. Note that, in the current implementation at least, the bincoordinates
option must be used in addition to the coordinates option, but the positions specified by
coordinates will then be ignored.

• cwd < default directory >
Acceptable Values: UNIX directory name
Description: The default directory for input and output files. If a value is given, all
filenames that do not begin with a / are assumed to be in this directory. For example, if
cwd is set to /scr, then a filename of outfile would be modified to /scr/outfile while a
filename of /tmp/outfile would remain unchanged. If no value for cwd is specified, than all
filenames are left unchanged but are assumed to be relative to the directory which contains
the configuration file given on the command line.

3.2.2 Output files

• outputname < output PDB file >
Acceptable Values: UNIX filename prefix
Description: At the end of every simulation, NAMD writes two PDB files, one containing
the final coordinates and another containing the final velocities of all atoms in the simulation.
This option specifies the file prefix for these two files. The position coordinates will be saved
to a file named as this prefix with .coor appended. The velocities will be saved to a file named
as this prefix with .vel appended. For example, if the prefix specified using this option was
/tmp/output, then the two files would be /tmp/output.coor and /tmp/output.vel.

• binaryoutput < use binary output files? >
Acceptable Values: yes or no
Default Value: yes
Description: Activates the use of binary output files. If this option is set to yes,
then the final output files will be written in binary rather than PDB format. Binary files
preserve more accuracy between NAMD restarts than ASCII PDB files, but the binary files
are not guaranteed to be transportable between computer architectures. (The utility program
flipbinpdb is provided with the Linux/Intel version to reformat these files.)

• restartname < restart files >
Acceptable Values: UNIX filename prefix
Description: The prefix to use for restart filenames. NAMD produces PDB restart files
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that store the current positions and velocities of all atoms at some step of the simulation. This
option specifies the prefix to use for restart files in the same way that outputname specifies
a filename prefix for the final positions and velocities. If restartname is defined then the
parameter restartfreq must also be defined.

• restartfreq < frequency of restart file generation >
Acceptable Values: positive integer
Description: The number of timesteps between the generation of restart files. If
restartfreq is defined, then restartname must also be defined.

• restartsave < use timestep in restart filenames? >
Acceptable Values: yes or no
Default Value: no
Description: Appends the current timestep to the restart filename prefix, producing a
sequence of restart files rather than only the last version written.

• binaryrestart < use binary restart files? >
Acceptable Values: yes or no
Default Value: yes
Description: Activates the use of binary restart files. If this option is set to yes, then
the restart files will be written in binary rather than PDB format. Binary files preserve more
accuracy between NAMD restarts than ASCII PDB files, but the binary files are not guaran-
teed to be transportable between computer architectures. (The utility program flipbinpdb
is provided with the Linux/Intel version to reformat these files.)

• DCDfile < coordinate trajectory output file >
Acceptable Values: UNIX filename
Description: The binary DCD position coordinate trajectory filename. This file stores the
trajectory of all atom position coordinates using the same format (binary DCD) as X-PLOR.
If DCDfile is defined, then DCDfreq must also be defined.

• DCDfreq < timesteps between writing coordinates to trajectory file >
Acceptable Values: positive integer
Description: The number of timesteps between the writing of position coordinates to the
trajectory file. The initial positions will not be included in the trajectory file.

• DCDUnitCell < write unit cell data to dcd file? >
Acceptable Values: yes or no
Default Value: yes if periodic cell
Description: If this option is set to yes, then DCD files will contain unit cell information
in the style of Charmm DCD files. By default this option is enabled if the simulation cell is
periodic in all three dimensions and disabled otherwise.

• velDCDfile < velocity trajectory output file >
Acceptable Values: UNIX filename
Description: The binary DCD velocity trajectory filename. This file stores the trajectory
of all atom velocities using the same format (binary DCD) as X-PLOR. If velDCDfile is
defined, then velDCDfreq must also be defined.
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• velDCDfreq < timesteps between writing velocities to trajectory file >
Acceptable Values: positive integer
Description: The number of timesteps between the writing of velocities to the trajectory
file. The initial velocities will not be included in the trajectory file.

3.2.3 Standard output

NAMD logs a variety of summary information to standard output. The standard units used by
NAMD are Angstroms for length, kcal/mol for energy, Kelvin for temperature, and bar for pressure.
Wallclock or CPU times are given in seconds unless otherwise noted.

BOUNDARY energy is from spherical boundary conditions and harmonic restraints, while MISC
energy is from external electric fields and various steering forces. TOTAL is the sum of the various
potential energies, and the KINETIC energy. TOTAL2 uses a slightly different kinetic energy
that is better conserved during equilibration in a constant energy ensemble. TOTAL3 is another
variation with much smaller short-time fluctuations that is also adjusted to have the same running
average as TOTAL2. Defects in constant energy simulations are much easier to spot in TOTAL3
than in TOTAL or TOTAL2.

PRESSURE is the pressure calculated based on individual atoms, while GPRESSURE incor-
porates hydrogen atoms into the heavier atoms to which they are bonded, producing smaller fluc-
tuations. The TEMPAVG, PRESSAVG, and GPRESSAVG are the average of temperature and
pressure values since the previous ENERGY output; for the first step in the simulation they will
be identical to TEMP, PRESSURE, and GPRESSURE.

• outputEnergies < timesteps between energy output >
Acceptable Values: positive integer
Default Value: 1
Description: The number of timesteps between each energy output of NAMD. This
value specifies how often NAMD should output the current energy values to stdout (which
can be redirected to a file). By default, this is done every step. For long simulations, the
amount of output generated by NAMD can be greatly reduced by outputting the energies
only occasionally.

• outputMomenta < timesteps between momentum output >
Acceptable Values: nonnegative integer
Default Value: 0
Description: The number of timesteps between each momentum output of NAMD. If
specified and nonzero, linear and angular momenta will be output to stdout.

• outputPressure < timesteps between pressure output >
Acceptable Values: nonnegative integer
Default Value: 0
Description: The number of timesteps between each pressure output of NAMD. If specified
and nonzero, atomic and group pressure tensors will be output to stdout.

• outputTiming < timesteps between timing output >
Acceptable Values: nonnegative integer
Default Value: 0
Description: The number of timesteps between each timing output of NAMD. If specified
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and nonzero, CPU and wallclock times will be output to stdout. These data are from node
0 only; CPU times for other nodes may vary.

3.3 AMBER force field parameters

AMBER format PARM file and coordinate file can be read by NAMD, which allows one to use
AMBER force field to carry out all types of simulations that NAMD has supported. NAMD can
read PARM files in either the format used in AMBER 6 or the new format defined in AMBER 7.
The output of the simulation (restart file, DCD file, etc.) will still be in traditional format that
has been used in NAMD.

• amber < use AMBER format force field? >
Acceptable Values: yes or no
Default Value: no
Description: If amber is set to on, then parmfile must be defined, and structure and
parameters should not be defined.

• parmfile < AMBER format PARM file >
Acceptable Values: UNIX filename
Description: This file contains complete topology and parameter information of the
system.

• ambercoor < AMBER format coordinate file >
Acceptable Values: UNIX filename
Description: This file contains the coordinates of all the atoms. Note that coordinates
can also be used for PDB format coordinate file. When amber is set to on, either ambercoor
or coordinates must be defined, but not both.

• readexclusions < Read exclusions from PARM file? >
Acceptable Values: yes or no
Default Value: yes
Description: PARM file explicitly gives complete exclusion (including 1-4 exclusions)
information. When readexclusions is set to on, NAMD will read all exclusions from PARM
file and will not add any more; alternatively, if readexclusions is set to off, NAMD will
ignore the exclusions in PARM file and will automatically generate them according to the
exclusion policy specified by exclude.

• scnb < VDW 1-4 scaling factor >
Acceptable Values: decimal ≥ 1.0
Default Value: 2.0
Description: Same meaning as SCNB in AMBER. Note that in NAMD, 1-4 vdw inter-
actions are DIVIDED by scnb, whereas 1-4 electrostatic interactions are MULTIPLIED by
1-4scaling. So 1-4scaling should be set to the inverse of SCEE value used in AMBER.

Caveat:
1. Polarizable parameters in AMBER are not supported.
2. NAMD does not support the 10-12 potential terms in some old AMBER versions. When non-zero
10-12 parameter is encountered in PARM file, NAMD will terminate.
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3. NAMD has several exclusion policy options, defined by exclude. The way AMBER dealing with
exclusions corresponds to the “scaled1-4” in NAMD. So for simulations using AMBER force field,
one would specify “exclude scaled1-4” in the configuration file, and set 1-4scaling to the inverse
value of SCEE as would be used in AMBER.
4. NAMD does not read periodic box lengths in PARM or coordinate file. They must be explicitly
specified in NAMD configuration file.
5. By default, NAMD applies switching functions to the non-bond interactions within the cut-
off distance, which helps to improve energy conservation, while AMBER does not use switching
functions so it simply truncates the interactions at cutoff. However, if “authentic” AMBER cutoff
simulations are desired, the switching functions could be turned off by specifying “switching off”
in NAMD configuration file.
6. NAMD and AMBER may have different default values for some parameters (e.g., the tolerance
of SHAKE). One should check other sections of this manual for accurate descriptions of the NAMD
options.

Following are two examples of the NAMD configuration file to read AMBER force field and
carry out simulation. They may help users to select proper NAMD options for AMBER force field.
For the convenience of AMBER users, the AMBER 6 sander input files are given in the left for
comparison, which would accomplish similar tasks in AMBER.

Example 1: Non-periodic boundary system, cutoff simulation

---AMBER---- ---NAMD---

TITLE
&cntrl
ntb=0, igb=2, # non-periodic, use cutoff for non-bond
nstlim=1000, numsteps 1000 # Num of total steps
ntpr=50, outputEnergies 50 # Energy output frequency
ntwr=50, restartfreq 50 # Restart file frequency
ntwx=100, DCDfreq 100 # Trajectory file frequency
dt=0.001, timestep 1 # in unit of fs (This is default)
tempi=0., temperature 0 # Initial temp for velocity assignment
cut=10., cutoff 10

switching off # Turn off the switching functions
scee=1.2, exclude scaled1-4

1-4scaling 0.833333 # =1/1.2, default is 1.0
scnb=2.0 scnb 2 # This is default
&end

amber on # Specify this is AMBER force field
parmfile prmtop # Input PARM file
ambercoor inpcrd # Input coordinate file
outputname md # Prefix of output files

Example 2: Periodic boundary system, PME, NVE ensemble, using SHAKE algorithm

---AMBER---- ---NAMD---
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TITLE
&cntrl
ntc=2, ntf=2, # SHAKE to the bond between each hydrogen and it mother atom

rigidBonds all
tol=0.0005, rigidTolerance 0.0005 # Default is 0.00001
nstlim=500, numsteps 500 # Num of total steps
ntpr=50, outputEnergies 50 # Energy output frequency
ntwr=100, restartfreq 100 # Restart file frequency
ntwx=100, DCDfreq 100 # Trajectory file frequency
dt=0.001, timestep 1 # in unit of fs (This is default)
tempi=300., temperature 300 # Initial temp for velocity assignment
cut=9., cutoff 9

switching off # Turn off the switching functions
&end
&ewald PME on # Use PME for electrostatic calculation

# Orthogonal periodic box size
a=62.23, cellBasisVector1 62.23 0 0
b=62.23, cellBasisVector2 0 62.23 0
c=62.23, cellBasisVector3 0 0 62.23
nfft1=64, PMEGridSizeX 64
nfft2=64, PMEGridSizeY 64
nfft3=64, PMEGridSizeZ 64
ischrgd=1, # NAMD doesn’t force neutralization of charge
&end

amber on # Specify this is AMBER force field
parmfile FILENAME # Input PARM file
ambercoor FILENAME # Input coordinate file
outputname PREFIX # Prefix of output files
exclude scaled1-4
1-4scaling 0.833333 # =1/1.2, default is 1.0

3.4 GROMACS force field paramets

NAMD has the ability to load GROMACS ASCII topology (.top) and coordinate (.gro) files, which
allows you to run most GROMACS simulations in NAMD. All simulation output will still be in
the traditional NAMD formats.

• gromacs < use GROMACS format force field? >
Acceptable Values: on or off
Default Value: off
Description: If gromacs is set to on, then grotopfile must be defined, and structure
and parameters should not be defined.

• grotopfile < GROMACS format topology/parameter file >
Acceptable Values: UNIX filename
Description: This file contains complete topology and parameter information of the
system.
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• grocoorfile < GROMACS format coordinate file >
Acceptable Values: UNIX filename
Description: This file contains the coordinates of all the atoms. Note that coordinates
can also be used for PDB format coordinate file. When gromacs is set to on, either grocoorfile
or coordinates must be defined, but not both.

However, NAMD does not have support for many GROMACS-specific options:

• Dummies (fake atoms with positions generated from the positions of real atoms) are not
supported.

• The GROMACS pairs section, where explicit 1–4 parameters are given between pairs of
atoms, is not supported, since NAMD calculates its 1–4 interactions exclusively by type.

• Similarly, exclusions are not supported. The biggest problem here is that GROMACS RB
dihedrals are supposed to imply exclusions, but NAMD does not support this.

• Constraints, restraints, and settles are not implemented in NAMD.

• In some cases, it may not work to override some but not all of the parameters for a bond,
atom, etc. In this case, NAMD will generate an error and stop. The parser will sometimes
not tolerate correct GROMACS files or fail to detect errors in badly formatted files.

• NAMD does not support all the types of bond potentials that exist in GROMACS, but
approximates them with harmonic or sinusoidal potentials.

• NAMD does not read periodic box lengths in the coordinate file. They must be explicitly
specified in the NAMD configuration file.
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4 Creating PSF Structure Files

The psfgen structure building tool consists of a portable library of structure and file manipulation
routines with a Tcl interface. Current capabilities include

• reading CHARMM topology files

• reading psf files in X-PLOR/NAMD format

• extracting sequence data from single segment PDB files

• generating a full molecular structure from sequence data

• applying patches to modify or link different segments

• writing NAMD and VMD compatible PSF structure files

• extracting coordinate data from PDB files

• constructing (guessing) missing atomic coordinates

• deleting selected atoms from the structure

• writing NAMD and VMD compatible PDB coordinate files

We are currently refining the interface of psfgen and adding features to create a complete
molecular building solution. We welcome your feedback on this new tool.

4.1 Ordinary Usage

psfgen is currently distributed in two forms. One form is as a standalone program implemented as
a Tcl interpreter which reads commands from standard output. You may use loops, variables, etc.
as you would in a VMD or NAMD script. You may use psfgen interactively, but we expect it to be
run most often with a script file redirected to standard input. The second form is as a Tcl package
which can be imported into any Tcl application, including VMD. All the commands available to
the standalone version of psfgen are available to the Tcl package; using psfgen within VMD lets
you harness VMD’s powerful atom selection capability, as well as instantly view the result of your
structure building scripts. Examples of using psfgen both with and without VMD are provided in
this document.

Generating PSF and PDB files for use with NAMD will typically consist of the following steps:

1. Preparing separate PDB files containing individual segments of protein, solvent, etc. before
running psfgen.

2. Reading in the appropriate topology definition files and aliasing residue and atom names found
in the PDB file to those found in the topology files. This will generally include selecting a
default protonation state for histidine residues.

3. Generating the default structure using segment and pdb commands.

4. Applying additional patches to the structure.

5. Reading coordinates from the PDB files.
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6. Deleting unwanted atoms, such as overlapping water molecules.

7. Guessing missing coordinates of hydrogens and other atoms.

8. Writing PSF and PDB files for use in NAMD.

4.1.1 Preparing separate PDB files

Many PDB files in the PDB databank contain multiple chains, corresponding to protein subunits,
water, and other miscellaneous groups. Protein subunits are often identified by their chain ID in
the PDB file. In psfgen, each of these groups must be assigned to their own segment. This applies
most strictly in the case of protein chains, each of which must be assigned to its own segment so
that N-terminal and C-terminal patches can be applied. You are free to group water molecules into
whatever segments you choose.

Chains can be split up into their own PDB files using your favorite text editor and/or Unix
shell commands, as illustrated in the BPTI example below. If you are using VMD you can also use
atom selections to write pieces of the structure to separate files:

# Split a file containing protein and water into separate segments.
# Creates files named myfile_water.pdb, myfile_frag0.pdb, myfile_frag1.pdb,...
# Requires VMD.
mol load pdb myfile.pdb
set water [atomselect top water]
$water writepdb myfile_water.pdb
set protein [atomselect top protein]
set chains [lsort -unique [$protein get pfrag]]
foreach chain $chains {

set sel [atomselect top "pfrag $chain"]
$sel writepdb myfile_frag${chain}.pdb

}

4.1.2 Deleting unwanted atoms

The delatom command described below allows you to delete selected atoms from the structure.
It’s fine to remove atoms from your structure before building the PSF and PDB files, but you
should never edit the PSF and PDB files created by psfgen by hand as it will probably mess up
the internal numbering in the PSF file.

Very often the atoms you want to delete are water molecules that are either too far from the
solute, or else outside of the periodic box you are trying to prepare. In either case VMD atom
selections can be used to select the waters you want to delete. For example:

# Load a pdb and psf file into both psfgen and VMD.
resetpsf
readpsf myfile.psf
coordpdb myfile.pdb
mol load psf myfile.psf pdb myfile.pdb
# Select waters that are more than 10 Angstroms from the protein.
set badwater1 [atomselect top "name OH2 and not within 10 of protein"]
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# Alternatively, select waters that are outside our periodic cell.
set badwater2 [atomselect top "name OH2 and (x<-30 or x>30 or y<-30 or>30

or z<-30 or z>30)"]
# Delete the residues corresponding to the atoms we selected.
foreach segid [$badwater1 get segid] resid [$badwater1 get resid] {

delatom $segid $resid
}
# Have psfgen write out the new psf and pdb file (VMD’s structure and
# coordinates are unmodified!).
writepsf myfile_chopwater.psf
writepdb myfile_chopwater.pdb

4.2 BPTI Example

To actually run this demo requires

• the program psfgen from any NAMD distribution,

• the CHARMM topology and parameter files top_all22_prot.inp and par_all22_prot.inp
from http://www.pharmacy.umaryland.edu/faculty/amackere/force fields.htm, and

• the BPTI PDB file 6PTI.pdb available from the Protein Data Bank at http://www.pdb.org/
by searching for 6PTI and downloading the complete structure file in PDB format.

Building the BPTI structure

In this demo, we create the files bpti.psf and bpti.pdb in the output directory which can then
be used for a simple NAMD simulation.

# File: bpti_example.tcl
# Requirements: topology file top_all22_prot.inp in directory toppar
# PDB file 6PTI.pdb in current directory

# Create working directory; remove old output files
mkdir -p output
rm -f output/6PTI_protein.pdb output/6PTI_water.pdb

# (1) Split input PDB file into segments}
grep -v ’^HETATM’ 6PTI.pdb > output/6PTI_protein.pdb
grep ’HOH’ 6PTI.pdb > output/6PTI_water.pdb

# (2) Embed the psfgen commands in this script
psfgen << ENDMOL

# (3) Read topology file
topology toppar/top_all22_prot.inp

# (4) Build protein segment
segment BPTI {
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pdb output/6PTI_protein.pdb
}

# (5) Patch protein segment
patch DISU BPTI:5 BPTI:55
patch DISU BPTI:14 BPTI:38
patch DISU BPTI:30 BPTI:51

# (6) Read protein coordinates from PDB file
pdbalias atom ILE CD1 CD ; # formerly "alias atom ..."
coordpdb output/6PTI_protein.pdb BPTI

# (7) Build water segment
pdbalias residue HOH TIP3 ; # formerly "alias residue ..."
segment SOLV {
auto none
pdb output/6PTI_water.pdb
}

# (8) Read water coordinaes from PDB file
pdbalias atom HOH O OH2 ; # formerly "alias atom ..."
coordpdb output/6PTI_water.pdb SOLV

# (9) Guess missing coordinates
guesscoord

# (10) Write structure and coordinate files
writepsf output/bpti.psf
writepdb output/bpti.pdb

# End of psfgen commands
ENDMOL

Step-by-step explanation of the script:

(1) Split input PDB file into segments. 6PTI.pdb is the original file from the Protein Data
Bank. It contains a single chain of protein and some PO4 and H2O HETATM records. Since each
segment must have a separate input file, we remove all non-protein atom records using grep. If
there were multiple chains we would have to split the file by hand. Create a second file containing
only waters.

(2) Embed the psfgen commands in this script. Run the psfgen program, taking everything
until “ENDMOL” as input. You may run psfgen interactively as well. Since psfgen is built on a
Tcl interpreter, you may use loops, variables, etc., but you must use $$ for variables when inside a
shell script. If you want, run psfgen and enter the following commands manually.
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(3) Read topology file. Read in the topology definitions for the residues we will create. This
must match the parameter file used for the simulation as well. Multiple topology files may be read
in since psfgen and NAMD use atom type names rather than numbers in psf files.

(4) Build protein segment. Actually build a segment, calling it BPTI and reading the sequence
of residues from the stripped pdb file created above. In addition to the pdb command, we could
specify residues explicitly. Both angles and dihedrals are generated automatically unless “auto
none” is added (which is required to build residues of water). The commands “first” and “last”
may be used to change the default patches for the ends of the chain. The structure is built when
the closing } is encountered, and some errors regarding the first and last residue are normal.

(5) Patch protein segment. Some patch residues (those not used to begin or end a chain) are
applied after the segment is built. These contain all angle and dihedral terms explicitly since they
were already generated. In this case we apply the patch for a disulfide link three separate times.

(6) Read protein coordinates from PDB file. The same file used to generate the sequence
is now read to extract coordinates. In the residue ILE, the atom CD is called CD1 in the pdb file,
so we use “pdbalias atom” to define the correct name. If the segment names in the pdb file match
the name we gave in the segment statement, then we don’t need to specify it again; in this case we
do specify the segment, so that all atoms in the pdb file must belong to the segment.

(7) Build water segment. Build a segment for the crystal waters. The residue type for water
depends on the model, so here we alias HOH to TIP3. Because CHARMM uses an additional H-H
bond we must disable generation of angles and dihedrals for segments containing water. Then read
the pdb file.

(8) Read water coordinates from PDB file. Alias the atom type for water oxygen as well
and read coordinates from the file to the segment SOLV. Hydrogen doesn’t show up in crystal
structures so it is missing from this pdb file.

(9) Guessing missing coordinates. The tolopogy file contains default internal coordinates
which can be used to guess the locations of many atoms, hydrogens in particular. In the output
pdb file, the occupancy field of guessed atoms will be set to 0, atoms which are known are set
to 1, and atoms which could not be guessed are set to -1. Some atoms are “poorly guessed” if
needed bond lengths and angles were missing from the topology file. Similarly, waters with missing
hydrogen coordinates are given a default orientation.

Write structure and coordinate files. Now that all of the atoms and bonds have been created,
we can write out the psf structure file for the system. We also create the matching coordinate pdb
file. The psf and pdb files are a matched set with identical atom ordering as needed by NAMD.

Using generated files in NAMD.

The files bpti.pdb and bpti.psf can now be used with NAMD, but the initial coordinates require
minimization first. The following is an example NAMD configuration file for the BPTI example.
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# NAMD configuration file for BPTI

# molecular system
structure output/bpti.psf

# force field
paratypecharmm on
parameters toppar/par_all22_prot.inp
exclude scaled1-4
1-4scaling 1.0

# approximations
switching on
switchdist 8
cutoff 12
pairlistdist 13.5
margin 0
stepspercycle 20

#integrator
timestep 1.0

#output
outputenergies 10
outputtiming 100
binaryoutput no

# molecular system
coordinates output/bpti.pdb

#output
outputname output/bpti
dcdfreq 1000

#protocol
temperature 0
reassignFreq 1000
reassignTemp 25
reassignIncr 25
reassignHold 300

#script

minimize 1000

run 20000
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4.3 Building solvent around a protein

The following script illustrates how psfgen and VMD can be used together to add water around a
protein structure. It assumes you already have a psf and pdb file for your protein, as well as a box
of water which is large enough to contain the protein. For more information on how atomselections
can be used within VMD scripts, see the VMD User’s Guide.

proc addwater { psffile pdbfile watpsf watpdb } {
# Create psf/pdb files that contain both our protein as well as
# a box of equilibrated water. The water box should be large enough
# to easily contain our protein.
resetpsf
readpsf $psffile
readpsf $watpsf
coordpdb $pdbfile
coordpdb $watpdb

# Load the combined structure into VMD
writepsf combine.psf
writepdb combine.pdb
mol load psf combine.psf pdb combine.pdb

# Assume that the segid of the water in watpsf is QQQ
# We want to delete waters outside of a box ten Angstroms
# bigger than the extent of the protein.
set protein [atomselect top "not segid QQQ"]
set minmax [measure minmax $protein]
foreach {min max} $minmax { break }
foreach {xmin ymin zmin} $min { break }
foreach {xmax ymax zmax} $max { break }

set xmin [expr $xmin - 10]
set ymin [expr $ymin - 10]
set zmin [expr $zmin - 10]
set xmax [expr $xmax + 10]
set ymax [expr $ymax + 10]
set zmax [expr $zmax + 10]

# Center the water on the protein. Also update the coordinates held
# by psfgen.
set wat [atomselect top "segid QQQ"]
$wat moveby [vecsub [measure center $protein] [measure center $wat]]
foreach atom [$wat get {segid resid name x y z}] {
foreach {segid resid name x y z} $atom { break }
coord $segid $resid $name [list $x $y $z]
}

# Select waters that we don’t want in the final structure.
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set outsidebox [atomselect top "segid QQQ and (x <= $xmin or y <= $ymin \
or z <= $zmin or x >= $xmax or y >= $ymax or z >= $xmax)"]
set overlap [atomselect top "segid QQQ and within 2.4 of (not segid QQQ)"]

# Get a list of all the residues that are in the two selections, and delete
# those residues from the structure.
set reslist [concat [$outsidebox get resid] [$overlap get resid]]
set reslist [lsort -unique -integer $reslist]

foreach resid $reslist {
delatom QQQ $resid
}

# That should do it - write out the new psf and pdb file.
writepsf solvate.psf
writepdb solvate.pdb

# Delete the combined water/protein molecule and load the system that
# has excess water removed.
mol delete top
mol load psf solvate.psf pdb solvate.pdb

# Return the size of the water box
return [list [list $xmin $ymin $zmin] [list $xmax $ymax $zmax]]
}

4.4 List of Commands

• topology <file name>
Purpose: Read in molecular topology definitions from file.
Arguments: <file name>: CHARMM format topology file.
Context: Beginning of script, before segment. May call multiple times.

• pdbalias residue <alternate name> <real name>
Purpose: Provide translations from residues found in PDB files to proper residue names read
in from topology definition files. Proper names from topology files will be used in generated
PSF and PDB files. This command also exists under the deprecated name alias.
Arguments: <alternate name>: Residue name found in PDB file.
<real name>: Residue name found in topology file.
Context: Before reading sequence with pdb. May call multiple times.

• segment <segment ID> { <commands> }
Purpose: Build a segment of the molecule. A segment is typically a single chain of protein
or DNA, with default patches applied to the termini. Segments may also contain pure solvent
or lipid.
Arguments: <segment ID>: Unique name for segment, 1–4 characters.
<commands>: Sequence of commands in Tcl syntax to build the primary structure of the
segment, including auto, first, last, residue, pdb, etc.
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Context: After topology definitions and residue aliases. May call multiple times. Structure
information is generated at the end of every segment command.

• auto [angles] [dihedrals] [none]
Purpose: Override default settings from topology file for automatic generation of angles and
dihedrals for the current segment.
Arguments: angles: Enable generation of angles from bonds.
dihedrals: Enable generation of dihedrals from angles.
none: Disable generation of angles and dihedrals.
Context: Anywhere within segment, does not affect later segments.

• first <patch name>
Purpose: Override default patch applied to first residue in segment. Default is read from
topology file and may be residue-specific.
Arguments: <patch name>: Single-target patch residue name or none.
Context: Anywhere within segment, does not affect later segments.

• last <patch name>
Purpose: Override default patch applied to last residue in segment. Default is read from
topology file and may be residue-specific.
Arguments: <patch name>: Single-target patch residue name or none.
Context: Anywhere within segment, does not affect later segments.

• residue <resid> <resname>
Purpose: Add a single residue to the end of the current segment.
Arguments: <resid>: Unique name for residue, 1–5 characters, usually numeric. <resname>:
Residue type name from topology file.
Context: Anywhere within segment.

• pdb <file name>
Purpose: Extract sequence information from PDB file when building segment. Residue IDs
will be preserved, residue names must match entries in the topology file or should be aliased
before pdb is called.
Arguments: <file name>: PDB file containing known or aliased residues.
Context: Anywhere within segment.

• mutate <resid> <resname>
Purpose: Change the type of a single residue in the current segment.
Arguments: <resid>: Unique name for residue, 1–5 characters, usually numeric. <resname>:
New residue type name from topology file.
Context: Within segment, after target residue has been created.

• patch <patch residue name> <segid:resid> [...]
Purpose: Apply a patch to one or more residues. Patches make small modifications to the
structure of residues such as converting one to a terminus, changing the protonation state, or
creating disulphide bonds between a pair of residues.
Arguments: <patch residue name>: Name of patch residue from topology definition file.
<segid:resid>: List of segment and residue pairs to which patch should be applied.
Context: After one or more segments have been built.
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• regenerate [angles] [dihedrals]
Purpose: Remove all angles and/or dihedrals and completely regenerate them using the
segment automatic generation algorithms. This is only needed if patches were applied that
do not correct angles and bonds. Segment and file defaults are ignored, and angles/dihedrals
for the entire molecule are regenerated from scratch.
Arguments: angles: Enable generation of angles from bonds.
dihedrals: Enable generation of dihedrals from angles.
Context: After one or more segments have been built.

• multiply <factor> <segid[:resid[:atomname]]> [...]
Purpose: Create multiple images of a set of atoms for use in locally enhanced sampling. The
beta column of the output pdb file is set to 1...<factor> for each image. Multiple copies of
bonds, angles, etc. are created. Atom, residue or segment names are not altered; images are
distinguished only by beta value. This is not a normal molecular structure and may confuse
other tools.
Arguments: <factor>:
<segid:resid:atomname>: segment, residue, or atom to be multiplied. If :resid is omitted the
entire segment is multiplied; if :atomname is omitted the entire residue is multiplied. May be
repeated as many times as necessary to include all atoms.
Context: After one or more segments have been built, all patches applied, and coordinates
guessed. The effects of this command may confuse other commands.

• delatom <segid> [resid] [atom name]
Purpose: Delete one or more atoms. If only segid is specified, all atoms from that segment
will be removed from the structure. If both segid and resid are specified, all atoms from
just that residue will be removed. If segid, resid, and atom name are all specified, just a
single atom will be removed.
Arguments: <segid>: Name of segment.
<resid>: Name of residue (optional).
<atom name>: Name of atom (optional).
Context: After all segments have been built and patched.

• resetpsf
Purpose: Delete all segments in from the structure. The topology definitions and aliases are
left intact.
Arguments:
Context: After one or more segments have been built.

• psfcontext [context] [new] [delete]
Purpose: Switches between complete contexts, including structure, topology definitions, and
aliases. If no arguments are provided, the current context is returned. If <context> or new is
specified, a new context is entered and the old context is returned. If delete is also specified,
the old context is destroyed and “deleted <old context>” is returned. An error is returned
if the specified context does not exist or if delete was specified and the specified context is
the same as the current context.
Arguments: <context>: Context ID returned by psfcontext.
Context: At any time.
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• writepsf [charmm] [x-plor] <file name>
Purpose: Write out structure information as PSF file.
Arguments: charmm: Use CHARMM format (numbers for atom types).
x-plor: Use X-PLOR format (names for atom types), the default format required by NAMD.
<file name>: PSF file to be generated.
Context: After all segments have been built and patched.

• readpsf <file name>
Purpose: Read in structure information from PSF file and adds it to the structure. It is an
error if any segments in the PSF file already exist.
Arguments: <file name>: PSF file in X-PLOR format (names for atom types).
Context: Anywhere but within segment.

• pdbalias atom <residue name> <alternate name> <real name>
Purpose: Provide translations from atom names found in PDB files to proper atom names
read in from topology definition files. Proper names from topology files will be used in
generated PSF and PDB files. This command also exists under the deprecated name alias.
Arguments: <residue name>: Proper or aliased residue name.
<alternate name>: Atom name found in PDB file.
<real name>: Atom name found in topology file.
Context: Before reading coordinates with coordpdb. May call multiple times.

• coord <segid> <resid> <atomname> <{ x y z }>
Purpose: Set coordinates for a single atom.
Arguments: <segid>: Segment ID of target atom.
<resid>: Residue ID of target atom.
<atomname>: Name of target atom.
<{ x y z }>: Coordinates to be assigned.
Context: After structure has been generated.

• coordpdb <file name> [segid]
Purpose: Read coordinates from PDB file, matching segment, residue and atom names.
Arguments: <file name>: PDB file containing known or aliased residues and atoms.
<segid>: If specified override segment IDs in PDB file.
Context: After segment has been generated and atom aliases defined.

• guesscoord
Purpose: Guesses coordinates of atoms for which they were not explicitly set. Calculation
is based on internal coordinate hints contained in toplogy definition files. When these are
insufficient, wild guesses are attempted based on bond lengths of 1 Å and angles of 109◦.
Arguments: None.
Context: After stucture has been generated and known coordinates read in.

• writepdb <file name>
Purpose: Writes PDB file containing coordinates. Atoms order is identical to PSF file
generated by writepsf (unless structure has been changed). The O field is set to 1 for atoms
with known coordinates, 0 for atoms with guessed coordinates, and -1 for atoms with no
coordinate data available (coordinates are set to 0 for these atoms).
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Arguments: <file name>: PDB file to be written.
Context: After structure and coordinates are complete.
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5 Basic Simulation Parameters

5.1 Non-bonded interaction parameters and computations

NAMD has a number of options that control the way that non-bonded interactions are calculated.
These options are interrelated and can be quite confusing, so this section attempts to explain the
behavior of the non-bonded interactions and how to use these parameters.

5.1.1 Non-bonded van der Waals interactions

The simplest non-bonded interaction is the van der Waals interaction. In NAMD, van der Waals
interactions are always truncated at the cutoff distance, specified by cutoff. The main option
that effects van der Waals interactions is the switching parameter. With this option set to on, a
smooth switching function will be used to truncate the van der Waals potential energy smoothly at
the cutoff distance. A graph of the van der Waals potential with this switching function is shown
in Figure 1. If switching is set to off, the van der Waals energy is just abruptly truncated at the
cutoff distance, so that energy may not be conserved.
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Figure 1: Graph of van der Waals potential with and without the application of the switching function.
With the switching function active, the potential is smoothly reduced to 0 at the cutoff distance. Without
the switching function, there is a discontinuity where the potential is truncated.

The switching function used is based on the X-PLOR switching function. The parameter
switchdist specifies the distance at which the switching function should start taking effect to bring
the van der Waals potential to 0 smoothly at the cutoff distance. Thus, the value of switchdist
must always be less than that of cutoff.

5.1.2 Non-bonded electrostatic interactions

The handling of electrostatics is slightly more complicated due to the incorporation of multiple
timestepping for full electrostatic interactions. There are two cases to consider, one where full
electrostatics is employed and the other where electrostatics are truncated at a given distance.

First let us consider the latter case, where electrostatics are truncated at the cutoff distance.
Using this scheme, all electrostatic interactions beyond a specified distance are ignored, or assumed
to be zero. If switching is set to on, rather than having a discontinuity in the potential at the
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cutoff distance, a shifting function is applied to the electrostatic potential as shown in Figure 2. As
this figure shows, the shifting function shifts the entire potential curve so that the curve intersects
the x-axis at the cutoff distance. This shifting function is based on the shifting function used by
X-PLOR.
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Figure 2: Graph showing an electrostatic potential with and without the application of the shifting function.

Next, consider the case where full electrostatics are calculated. In this case, the electrostatic
interactions are not truncated at any distance. In this scheme, the cutoff parameter has a slightly
different meaning for the electrostatic interactions — it represents the local interaction distance,
or distance within which electrostatic pairs will be directly calculated every timestep. Outside of
this distance, interactions will be calculated only periodically. These forces will be applied using a
multiple timestep integration scheme as described in Section 5.2.
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Figure 3: Graph showing an electrostatic potential when full electrostatics are used within NAMD, with
one curve portion calculated directly and the other calculated using DPMTA.
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5.1.3 Nonbonded interaction distance-testing

The last critical parameter for non-bonded interaction calculations is the parameter pairlistdist.
To reduce the cost of performing the non-bonded interactions, NAMD uses a non-bonded pair list
which contained all pairs of atoms for which non-bonded interactions should be calculated. Per-
forming the search for pairs of atoms that should have their interactions calculated is an expensive
operation. Thus, the pair list is only calculated periodically, at least once per cycle. Unfortunately,
pairs of atoms move relative to each other during the steps between preparation of the pair list.
Because of this, if the pair list were built to include only those pairs of atoms that are within
the cutoff distance when the list is generated, it would be possible for atoms to drift closer to-
gether than the cutoff distance during subsequent timesteps and yet not have their non-bonded
interactions calculated.

Let us consider a concrete example to better understand this. Assume that the pairlist is built
once every ten timesteps and that the cutoff distance is 8.0 Å. Consider a pair of atoms A and B
that are 8.1 Å apart when the pairlist is built. If the pair list includes only those atoms within the
cutoff distance, this pair would not be included in the list. Now assume that after five timesteps,
atoms A and B have moved to only 7.9 Å apart. A and B are now within the cutoff distance of each
other, and should have their non-bonded interactions calculated. However, because the non-bonded
interactions are based solely on the pair list and the pair list will not be rebuilt for another five
timesteps, this pair will be ignored for five timesteps causing energy not to be conserved within the
system.

To avoid this problem, the parameter pairlistdist allows the user to specify a distance greater
than the cutoff distance for pairs to be included in the pair list, as shown in Figure 4. Pairs that
are included in the pair list but are outside the cutoff distance are simply ignored. So in the above
example, if the pairlistdist were set to 10.0 Å, then the atom pair A and B would be included
in the pair list, even though the pair would initially be ignored because they are further apart than
the cutoff distance. As the pair moved closer and entered the cutoff distance, because the pair was
already in the pair list, the non-bonded interactions would immediately be calculated and energy
conservation would be preserved. The value of pairlistdist should be chosen such that no atom
pair moves more than pairlistdist − cutoff in one cycle. This will insure energy conservation
and efficiency.

The pairlistdist parameter is also used to determine the minimum patch size. Unless the
splitPatch parameter is explicitly set to position, hydrogen atoms will be placed on the same
patch as the “mother atom” to which they are bonded. These hydrogen groups are then distance
tested against each other using only a cutoff increased by the the value of the hgroupCutoff
parameter. The size of the patches is also increased by this amount. NAMD functions correctly
even if a hydrogen atom and its mother atom are separated by more than half of hgroupCutoff
by breaking that group into its individual atoms for distance testing. Margin violation warning
messages are printed if an atom moves outside of a safe zone surrounding the patch to which it
is assigned, indicating that pairlistdist should be increased in order for forces to be calculated
correctly and energy to be conserved.

Margin violations mean that atoms that are in non-neighboring patches may be closer than the
cutoff distance apart. This may sometimes happen in constant pressure simulations when the cell
shrinks (since the patch grid remains the same size). The workaround is to increase the margin
parameter so that the simulation starts with fewer, larger patches. Restarting the simulation will
also regenerate the patch grid.

In rare special circumstances atoms that are involved in bonded terms (bonds, angles, dihedrals,
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pairlist distance cutoff

Figure 4: Depiction of the difference between the cutoff distance and the pair list distance. The pair list
distance specifies a sphere that is slightly larger than that of the cutoff so that pairs are allowed to move in
and out of the cutoff distance without causing energy conservation to be disturbed.

or impropers) or nonbonded exclusions (especially implicit exclusions due to bonds) will be placed
on non-neighboring patches because they are more than the cutoff distance apart. This can result
in the simulation dying with a message of “bad global exclusion count”. If an “atoms moving too
fast; simulation has become unstable”, “bad global exclusion count”, or similar error happens on
the first timestep then there is likely something very wrong with the input coordinates, such as the
atoms with uninitialized coordinates or different atom orders in the PSF and PDB file. Looking
at the system in VMD will often reveal an abnormal structure. Be aware that the atom IDs in the
“Atoms moving too fast” error message are 1-based, while VMD’s atom indices are 0-based. If an
“atoms moving too fast; simulation has become unstable”, “bad global exclusion count”, or similar
error happens later in the simulation then the dynamics have probably become unstable, resulting
in the system “exploding” apart. Energies printed at every timestep should show an exponential
increase. This may be due to a timestep that is too long, or some other strange feature. Saving
a trajectory of every step and working backwards in can also sometimes reveal the origin of the
instability.

5.2 Full electrostatic integration

To further reduce the cost of computing full electrostatics, NAMD uses a multiple timestepping
integration scheme. In this scheme, the total force acting on each atom is broken into two pieces, a
quickly varying local component and a slower long range component. The local force component is
defined in terms of a splitting function. The local force component consists of all bonded and van der
Waals interactions as well as that portion of electrostatic interactions for pairs that are separated
by less than the local interaction distance determined by the splitting function. The long range
component consists only of electrostatic interactions outside of the local interaction distance. Since
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the long range forces are slowly varying, they are not evaluated every timestep. Instead, they are
evaluated every k timesteps, specified by the NAMD parameter fullElectFrequency. An impulse
of k times the long range force is applied to the system every k timesteps (i.e., the r-RESPA
integrator is used). For appropriate values of k, it is believed that the error introduced by this
infrequent evaluation is modest compared to the error already incurred by the use of the numerical
(Verlet) integrator. Improved methods for incorporating these long range forces are currently being
investigated, with the intention of improving accuracy as well as reducing the frequency of long
range force evaluations.

In the scheme described above, the van der Waals forces are still truncated at the local interac-
tion distance. Thus, the van der Waals cutoff distance forms a lower limit to the local interaction
distance. While this is believed to be sufficient, there are investigations underway to remove this
limitation and provide full van der Waals calculations in O(N) time as well.

5.3 NAMD configuration parameters

5.3.1 Timestep parameters

• numsteps < number of timesteps >
Acceptable Values: positive integer
Description: The number of simulation timesteps to be performed. An integer greater
than 0 is acceptable. The total amount of simulation time is numsteps× timestep.

• timestep < timestep size (fs) >
Acceptable Values: non-negative decimal
Default Value: 1.0
Description: The timestep size to use when integrating each step of the simulation. The
value is specified in femtoseconds.

• firsttimestep < starting timestep value >
Acceptable Values: non-negative integer
Default Value: 0
Description: The number of the first timestep. This value is typically used only when a
simulation is a continuation of a previous simulation. In this case, rather than having the
timestep restart at 0, a specific timestep number can be specified.

• stepspercycle < timesteps per cycle >
Acceptable Values: positive integer
Default Value: 20
Description: Number of timesteps in each cycle. Each cycle represents the number of
timesteps between atom reassignments. For more details on non-bonded force evaluation, see
Section 5.1.

5.3.2 Simulation space partitioning

• cutoff < local interaction distance common to both electrostatic and van der Waals calcu-
lations (Å) >
Acceptable Values: positive decimal
Description: See Section 5.1 for more information.
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• switching < use switching function? >
Acceptable Values: on or off
Default Value: off
Description: If switching is specified to be off, then a truncated cutoff is performed.
If switching is turned on, then smoothing functions are applied to both the electrostatics
and van der Waals forces. For a complete description of the non-bonded force parameters see
Section 5.1. If switching is set to on, then switchdist must also be defined.

• switchdist < distance at which to activate switching function for electrostatic and van der
Waals calculations (Å) >
Acceptable Values: positive decimal ≤ cutoff
Description: Distance at which the switching function should begin to take effect. This
parameter only has meaning if switching is set to on. The value of switchdist must be less
than or equal to the value of cutoff, since the switching function is only applied on the range
from switchdist to cutoff. For a complete description of the non-bonded force parameters
see Section 5.1.

• pairlistdist < distance between pairs for inclusion in pair lists (Å) >
Acceptable Values: positive decimal ≥ cutoff
Default Value: cutoff
Description: A pair list is generated pairlistsPerCycle times each cycle, containing
pairs of atoms for which electrostatics and van der Waals interactions will be calculated.
This parameter is used when switching is set to on to specify the allowable distance between
atoms for inclusion in the pair list. This parameter is equivalent to the X-PLOR parameter
CUTNb. If no atom moves more than pairlistdist−cutoff during one cycle, then there will
be no jump in electrostatic or van der Waals energies when the next pair list is built. Since
such a jump is unavoidable when truncation is used, this parameter may only be specified
when switching is set to on. If this parameter is not specified and switching is set to on,
the value of cutoff is used. A value of at least one greater than cutoff is recommended.

• splitPatch < how to assign atoms to patches >
Acceptable Values: position or hydrogen
Default Value: hydrogen
Description: When set to hydrogen, hydrogen atoms are kept on the same patch as their
parents, allowing faster distance checking and rigid bonds.

• hgroupCutoff (Å) < used for group-based distance testing >
Acceptable Values: positive decimal
Default Value: 2.5
Description: This should be set to twice the largest distance which will ever occur between
a hydrogen atom and its mother. Warnings will be printed if this is not the case. This value
is also added to the margin.

• margin < extra length in patch dimension (Å) >
Acceptable Values: positive decimal
Default Value: 0.0
Description: An internal tuning parameter used in determining the size of the cubes of
space with which NAMD uses to partition the system. The value of this parameter will not
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change the physical results of the simulation. Unless you are very motivated to get the very
best possible performance, just leave this value at the default.

• pairlistMinProcs < min procs for pairlists >
Acceptable Values: positive integer
Default Value: 1
Description: Pairlists may consume a large amount of memory as atom counts, densities,
and cutoff distances increase. Since this data is distributed across processors it is normally
only problematic for small processor counts. Set pairlistMinProcs to the smallest number of
processors on which the simulation can fit into memory when pairlists are used.

• pairlistsPerCycle < regenerate x times per cycle >
Acceptable Values: positive integer
Default Value: 2
Description: Rather than only regenerating the pairlist at the beginning of a cycle,
regenerate multiple times in order to better balance the costs of atom migration, pairlist
generation, and larger pairlists.

• outputPairlists < how often to print warnings >
Acceptable Values: non-negative integer
Default Value: 0
Description: If an atom moves further than the pairlist tolerance during a simulation
(initially (pairlistdist - cutoff)/2 but refined during the run) any pairlists covering that atom
are invalidated and temporary pairlists are used until the next full pairlist regeneration. All
interactions are calculated correctly, but efficiency may be degraded. Enabling outputPairlists
will summarize these pairlist violation warnings periodically during the run.

• pairlistShrink < tol *= (1 - x) on regeneration >
Acceptable Values: non-negative decimal
Default Value: 0.01
Description: In order to maintain validity for the pairlist for an entire cycle, the pairlist
tolerance (the distance an atom can move without causing the pairlist to be invalidated) is
adjusted during the simulation. Every time pairlists are regenerated the tolerance is reduced
by this fraction.

• pairlistGrow < tol *= (1 + x) on trigger >
Acceptable Values: non-negative decimal
Default Value: 0.01
Description: In order to maintain validity for the pairlist for an entire cycle, the pairlist
tolerance (the distance an atom can move without causing the pairlist to be invalidated) is
adjusted during the simulation. Every time an atom exceeds a trigger criterion that is some
fraction of the tolerance distance, the tolerance is increased by this fraction.

• pairlistTrigger < trigger is atom beyond (1 - x) * tol >
Acceptable Values: non-negative decimal
Default Value: 0.3
Description: The goal of pairlist tolerance adjustment is to make pairlist invalidations
rare while keeping the tolerance as small as possible for best performance. Rather than
monitoring the (very rare) case where atoms actually move more than the tolerance distance,
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we reduce the trigger tolerance by this fraction. The tolerance is increased whenever the
trigger tolerance is exceeded, as specified by pairlistGrow.

5.3.3 Basic dynamics

• exclude < exclusion policy to use >
Acceptable Values: none, 1-2, 1-3, 1-4, or scaled1-4
Description: This parameter specifies which pairs of bonded atoms should be excluded
from non-bonded interactions. With the value of none, no bonded pairs of atoms will be
excluded. With the value of 1-2, all atom pairs that are directly connected via a linear bond
will be excluded. With the value of 1-3, all 1-2 pairs will be excluded along with all pairs
of atoms that are bonded to a common third atom (i.e., if atom A is bonded to atom B and
atom B is bonded to atom C, then the atom pair A-C would be excluded). With the value of
1-4, all 1-3 pairs will be excluded along with all pairs connected by a set of two bonds (i.e.,
if atom A is bonded to atom B, and atom B is bonded to atom C, and atom C is bonded to
atom D, then the atom pair A-D would be excluded). With the value of scaled1-4, all 1-3
pairs are excluded and all pairs that match the 1-4 criteria are modified. The electrostatic
interactions for such pairs are modified by the constant factor defined by 1-4scaling. The
van der Waals interactions are modified by using the special 1-4 parameters defined in the
parameter files.

• temperature < initial temperature (K) >
Acceptable Values: positive decimal
Description: Initial temperature value for the system. Using this option will generate a
random velocity distribution for the initial velocities for all the atoms such that the system
is at the desired temperature. Either the temperature or the velocities/binvelocities
option must be defined to determine an initial set of velocities. Both options cannot be used
together.

• COMmotion < allow center of mass motion? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not motion of the center of mass of the entire system
is allowed. If this option is set to no, the initial velocities of the system will be adjusted to
remove center of mass motion of the system. Note that this does not preclude later center-
of-mass motion due to external forces such as random noise in Langevin dynamics, boundary
potentials, and harmonic restraints.

• dielectric < dielectric constant for system >
Acceptable Values: decimal ≥ 1.0
Default Value: 1.0
Description: Dielectric constant for the system. A value of 1.0 implies no modification of
the electrostatic interactions. Any larger value will lessen the electrostatic forces acting in
the system.

• 1-4scaling < scaling factor for 1-4 interactions >
Acceptable Values: 0 ≤ decimal ≤ 1
Default Value: 1.0
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Description: Scaling factor for 1-4 interactions. This factor is only used when the exclude
parameter is set to scaled1-4. In this case, this factor is used to modify the electrostatic inter-
actions between 1-4 atom pairs. If the exclude parameter is set to anything but scaled1-4,
this parameter has no effect regardless of its value.

• vdwGeometricSigma < use geometric mean to combine L-J sigmas >
Acceptable Values: yes or no
Default Value: no
Description: Use geometric mean, as required by OPLS, rather than traditional arithmetic
mean when combining Lennard-Jones sigma parameters for different atom types.

• seed < random number seed >
Acceptable Values: positive integer
Default Value: pseudo-random value based on current UNIX clock time
Description: Number used to seed the random number generator if temperature or
langevin is selected. This can be used so that consecutive simulations produce the same
results. If no value is specified, NAMD will choose a pseudo-random value based on the
current UNIX clock time. The random number seed will be output during the simulation
startup so that its value is known and can be reused for subsequent simulations. Note that if
Langevin dynamics are used in a parallel simulation (i.e., a simulation using more than one
processor) even using the same seed will not guarantee reproducible results.

• rigidBonds < controls if and how ShakeH is used >
Acceptable Values: none, water, all
Default Value: none
Description: When rigidBonds is all, the bond between each hydrogen and its mother
atom is fixed to the nominal bond length given in the parameter file. When water is selected,
only the bonds between the hydrogens and the oxygen in water molecules are constrained.
For the default case none, no lengths are constrained.

• rigidTolerance < allowable bond-length error for ShakeH (Å) >
Acceptable Values: positive decimal
Default Value: 1.0e-8
Description: The ShakeH algorithm is assumed to have converged when all constrained
bonds differ from the nominal bond length by less than this amount.

• rigidIterations < maximum ShakeH iterations >
Acceptable Values: positive integer
Default Value: 100
Description: The maximum number of iterations ShakeH will perform before giving up
on constraining the bond lengths. If the bond lengths do not converge, a warning message is
printed, and the atoms are left at the final value achieved by ShakeH. Although the default
value is 100, convergence is usually reached after fewer than 10 iterations.

• rigidDieOnError < maximum ShakeH iterations >
Acceptable Values: on or off
Default Value: on
Description: Exit and report an error if rigidTolerance is not achieved after rigidItera-
tions.

47



• useSettle < Use SETTLE for waters. >
Acceptable Values: on or off
Default Value: on
Description: If rigidBonds are enabled then use the non-iterative SETTLE algorithm to
keep waters rigid rather than the slower SHAKE algorithm.

5.3.4 DPMTA parameters

DPMTA is no longer included in the released NAMD binaries. We recommend that you instead
use PME with a periodic system because it conserves energy better, is more efficient, and is better
parallelized. If you must have the fast multipole algorithm you may compile NAMD yourself.

These parameters control the options to DPMTA, an algorithm used to provide full electrostatic
interactions. DPMTA is a modified version of the FMA (Fast Multipole Algorithm) and, unfortu-
nately, most of the parameters still refer to FMA rather than DPMTA for historical reasons. Don’t
be confused!

For a further description of how exactly full electrostatics are incorporated into NAMD, see
Section 5.2. For a greater level of detail about DPMTA and the specific meaning of its options, see
the DPMTA distribution which is available via anonymous FTP from the site ftp.ee.duke.edu
in the directory /pub/SciComp/src.

• FMA < use full electrostatics? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not the DPMTA algorithm from Duke University should
be used to compute the full electrostatic interactions. If set to on, DPMTA will be used with
a multiple timestep integration scheme to provide full electrostatic interactions as detailed in
Section 5.2. DPMTA is no longer included in released binaries.

• FMALevels < number of levels to use in multipole expansion >
Acceptable Values: positive integer
Default Value: 5
Description: Number of levels to use for the multipole expansion. This parameter is only
used if FMA is set to on. A value of 4 should be sufficient for systems with less than 10,000
atoms. A value of 5 or greater should be used for larger systems.

• FMAMp < number of multipole terms to use for FMA >
Acceptable Values: positive integer
Default Value: 8
Description: Number of terms to use in the multipole expansion. This parameter is only
used if FMA is set to on. If the FMAFFT is set to on, then this value must be a multiple of 4.
The default value of 8 should be suitable for most applications.

• FMAFFT < use DPMTA FFT enhancement? >
Acceptable Values: on or off
Default Value: on
Description: Specifies whether or not the DPMTA code should use the FFT enhancement
feature. This parameter is only used if FMA is set to on. If FMAFFT is set to on, the value of
FMAMp must be set to a multiple of 4. This feature offers substantial benefits only for values
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of FMAMp of 8 or greater. This feature will substantially increase the amount of memory used
by DPMTA.

• FMAtheta < DPMTA theta parameter (radians) >
Acceptable Values: decimal
Default Value: 0.715
Description: This parameter specifies the value of the theta parameter used in the DPMTA
calculation. The default value is based on recommendations by the developers of the code.

• FMAFFTBlock < blocking factor for FMA FFT >
Acceptable Values: positive integer
Default Value: 4
Description: The blocking factor for the FFT enhancement to DPMTA. This parameter
is only used if both FMA and FMAFFT are set to on. The default value of 4 should be suitable
for most applications.

5.3.5 PME parameters

PME stands for Particle Mesh Ewald and is an efficient full electrostatics method for use with
periodic boundary conditions. None of the parameters should affect energy conservation, although
they may affect the accuracy of the results and momentum conservation.

• PME < Use particle mesh Ewald for electrostatics? >
Acceptable Values: yes or no
Default Value: no
Description: Turns on particle mesh Ewald.

• PMETolerance < PME direct space tolerance >
Acceptable Values: positive decimal
Default Value: 10−6

Description: Affects the value of the Ewald coefficient and the overall accuracy of the
results.

• PMEInterpOrder < PME interpolation order >
Acceptable Values: positive integer
Default Value: 4 (cubic)
Description: Charges are interpolated onto the grid and forces are interpolated off using
this many points, equal to the order of the interpolation function plus one.

• PMEGridSizeX < number of grid points in x dimension >
Acceptable Values: positive integer
Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeX should have only small integer factors (2, 3 and 5).

• PMEGridSizeY < number of grid points in y dimension >
Acceptable Values: positive integer
Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeY should have only small integer factors (2, 3 and 5).
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• PMEGridSizeZ < number of grid points in z dimension >
Acceptable Values: positive integer
Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeZ should have only small integer factors (2, 3 and 5).

• PMEProcessors < processors for FFT and reciprocal sum >
Acceptable Values: positive integer
Default Value: larger of x and y grid sizes up to all available processors
Description: For best performance on some systems and machines, it may be necessary
to restrict the amount of parallelism used. Experiment with this parameter if your parallel
performance is poor when PME is used.

• FFTWEstimate < Use estimates to optimize FFT? >
Acceptable Values: yes or no
Default Value: no
Description: Do not optimize FFT based on measurements, but on FFTW rules of thumb.
This reduces startup time, but may affect performance.

• FFTWUseWisdom < Use FFTW wisdom archive file? >
Acceptable Values: yes or no
Default Value: yes
Description: Try to reduce startup time when possible by reading FFTW “wisdom” from
a file, and saving wisdom generated by performance measurements to the same file for future
use. This will reduce startup time when running the same size PME grid on the same number
of processors as a previous run using the same file.

• FFTWWisdomFile < name of file for FFTW wisdom archive >
Acceptable Values: file name
Default Value: FFTW NAMD version platform.txt
Description: File where FFTW wisdom is read and saved. If you only run on one platform
this may be useful to reduce startup times for all runs. The default is likely sufficient, as it
is version and platform specific.

• useDPME < Use old DPME code? >
Acceptable Values: yes or no
Default Value: no
Description: Switches to old DPME implementation of particle mesh Ewald. The new
code is faster and allows non-orthogonal cells so you probably just want to leave this option
turned off. If you set cellOrigin to something other than (0, 0, 0) the energy may differ
slightly between the old and new implementations. DPME is no longer included in released
binaries.

5.3.6 Full direct parameters

The direct computation of electrostatics is not intended to be used during real calculations, but
rather as a testing or comparison measure. Because of the O(N2) computational complexity for
performing direct calculations, this is much slower than using DPMTA or PME to compute full
electrostatics for large systems. In the case of periodic boundary conditions, the nearest image
convention is used rather than a full Ewald sum.
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• FullDirect < calculate full electrostatics directly? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not direct computation of full electrostatics should be
performed.

5.3.7 Multiple timestep parameters

One of the areas of current research being studied using NAMD is the exploration of better methods
for performing multiple timestep integration. Currently the only available method is the impulse-
based Verlet-I or r-RESPA method which is stable for timesteps up to 4 fs for long-range electrostatic
forces, 2 fs for short-range nonbonded forces, and 1 fs for bonded forces Setting rigid all (i.e.,
using SHAKE) increases these timesteps to 6 fs, 2 fs, and 2 fs respectively but eliminates bond
motion for hydrogen. The mollified impulse method (MOLLY) reduces the resonance which limits
the timesteps and thus increases these timesteps to 6 fs, 2 fs, and 1 fs while retaining all bond
motion.

• fullElectFrequency < number of timesteps between full electrostatic evaluations >
Acceptable Values: positive integer factor of stepspercycle
Default Value: nonbondedFreq
Description: This parameter specifies the number of timesteps between each full elec-
trostatics evaluation. It is recommended that fullElectFrequency be chosen so that the
product of fullElectFrequency and timestep does not exceed 4.0 unless rigidBonds all
or molly on is specified, in which case the upper limit is perhaps doubled.

• nonbondedFreq < timesteps between nonbonded evaluation >
Acceptable Values: positive integer factor of fullElectFrequency
Default Value: 1
Description: This parameter specifies how often short-range nonbonded interactions should
be calculated. Setting nonbondedFreq between 1 and fullElectFrequency allows triple
timestepping where, for example, one could evaluate bonded forces every 1 fs, short-range
nonbonded forces every 2 fs, and long-range electrostatics every 4 fs.

• MTSAlgorithm < MTS algorithm to be used >
Acceptable Values: impulse/verletI or constant/naive
Default Value: impulse
Description: Specifies the multiple timestep algorithm used to integrate the long and short
range forces. impulse/verletI is the same as r-RESPA. constant/naive is the stale force
extrapolation method.

• longSplitting < how should long and short range forces be split? >
Acceptable Values: xplor, c1
Default Value: c1
Description: Specifies the method used to split electrostatic forces between long and short
range potentials. The xplor option uses the X-PLOR shifting function, and the c1 splitting
uses the following C1 continuous shifting function [14]:

SW (rij) = 0 if |~rij | > Roff
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SW (rij) = 1 if |~rij | ≤ Ron

if Roff > |~rij | ≥ Ron

where

Ron is a constant defined using the configuration value switchdist

Roff is specified using the configuration value cutoff

• molly < use mollified impulse method (MOLLY)? >
Acceptable Values: on or off
Default Value: off
Description: This method eliminates the components of the long range electrostatic forces
which contribute to resonance along bonds to hydrogen atoms, allowing a fullElectFrequency
of 6 (vs. 4) with a 1 fs timestep without using rigidBonds all. You may use rigidBonds
water but using rigidBonds all with MOLLY makes no sense since the degrees of freedom
which MOLLY protects from resonance are already frozen.

• mollyTolerance < allowable error for MOLLY >
Acceptable Values: positive decimal
Default Value: 0.00001
Description: Convergence criterion for MOLLY algorithm.

• mollyIterations < maximum MOLLY iterations >
Acceptable Values: positive integer
Default Value: 100
Description: Maximum number of iterations for MOLLY algorithm.
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6 Additional Simulation Parameters

6.1 Constraints and Restraints

6.1.1 Harmonic constraint parameters

The following describes the parameters for the harmonic constraints feature of NAMD. Actually,
this feature should be referred to as harmonic restraints rather than constraints, but for historical
reasons the terminology of harmonic constraints has been carried over from X-PLOR. This feature
allows a harmonic restraining force to be applied to any set of atoms in the simulation.

• constraints < are constraints active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not harmonic constraints are active. If it is set to off,
then no harmonic constraints are computed. If it is set to on, then harmonic constraints are
calculated using the values specified by the parameters consref, conskfile, conskcol, and
consexp.

• consexp < exponent for harmonic constraint energy function >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent to be use in the harmonic constraint energy function. This value
must be a positive integer, and only even values really make sense. This parameter is used
only if constraints is set to on.

• consref < PDB file containing constraint reference positions >
Acceptable Values: UNIX file name
Description: PDB file to use for reference positions for harmonic constraints. Each atom
that has an active constraint will be constrained about the position specified in this file.

• conskfile < PDB file containing force constant values >
Acceptable Values: UNIX filename
Description: PDB file to use for force constants for harmonic constraints.

• conskcol < column of PDB file containing force constant >
Acceptable Values: X, Y, Z, O, or B
Description: Column of the PDB file to use for the harmonic constraint force constant.
This parameter may specify any of the floating point fields of the PDB file, either X, Y, Z,
occupancy, or beta-coupling (temperature-coupling). Regardless of which column is used, a
value of 0 indicates that the atom should not be constrained. Otherwise, the value specified
is used as the force constant for that atom’s restraining potential.

• selectConstraints < Restrain only selected Cartesian components of the coordinates? >
Acceptable Values: on or off
Default Value: off
Description: This option is useful to restrain the positions of atoms to a plane or a line
in space. If active, this option will ensure that only selected Cartesian components of the
coordinates are restrained. E.g.: Restraining the positions of atoms to their current z values
with no restraints in x and y will allow the atoms to move in the x-y plane while retaining
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their original z-coordinate. Restraining the x and y values will lead to free motion only along
the z coordinate.

• selectConstrX < Restrain X components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian x components of the positions.

• selectConstrY < Restrain Y components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian y components of the positions.

• selectConstrZ < Restrain Z components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian z components of the positions.

6.1.2 Fixed atoms parameters

Atoms may be held fixed during a simulation. NAMD avoids calculating most interactions in which
all affected atoms are fixed unless fixedAtomsForces is specified.

• fixedAtoms < are there fixed atoms? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not fixed atoms are present.

• fixedAtomsForces < are forces between fixed atoms calculated? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not forces between fixed atoms are calculated. This
option is required to turn fixed atoms off in the middle of a simulation. These forces will
affect the pressure calculation, and you should leave this option off when using constant
pressure if the coordinates of the fixed atoms have not been minimized. The use of constant
pressure with significant numbers of fixed atoms is not recommended.

• fixedAtomsFile < PDB file containing fixed atom parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the fixed atom flags for each atom. If this parameter is
not specified, then the PDB file specified by coordinates is used.

• fixedAtomsCol < column of PDB containing fixed atom parameters >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file to use for the containing fixed atom parameters for
each atom. The coefficients can be read from any floating point column of the PDB file. A
value of 0 indicates that the atom is not fixed.
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6.2 Energy Minimization

6.2.1 Conjugate gradient parameters

The default minimizer uses a sophisticated conjugate gradient and line search algorithm with much
better performance than the older velocity quenching method. The method of conjugate gradients
is used to select successive search directions (starting with the initial gradient) which eliminate
repeated minimization along the same directions. Along each direction, a minimum is first bracketed
(rigorously bounded) and then converged upon by either a golden section search, or, when possible,
a quadratically convergent method using gradient information.

For most systems, it just works.

• minimization < Perform conjugate gradient energy minimization? >
Acceptable Values: on or off
Default Value: off
Description: Turns efficient energy minimization on or off.

• minTinyStep < first initial step for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-6
Description: If your minimization is immediately unstable, make this smaller.

• minBabyStep < max initial step for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-2
Description: If your minimization becomes unstable later, make this smaller.

• minLineGoal < gradient reduction factor for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-4
Description: Varying this might improve conjugate gradient performance.

6.2.2 Velocity quenching parameters

You can perform energy minimization using a simple quenching scheme. While this algorithm is not
the most rapidly convergent, it is sufficient for most applications. There are only two parameters
for minimization: one to activate minimization and another to specify the maximum movement of
any atom.

• velocityQuenching < Perform old-style energy minimization? >
Acceptable Values: on or off
Default Value: off
Description: Turns slow energy minimization on or off.

• maximumMove < maximum distance an atom can move during each step (Å) >
Acceptable Values: positive decimal
Default Value: 0.75× cutoff/stepsPerCycle
Description: Maximum distance that an atom can move during any single timestep of
minimization. This is to insure that atoms do not go flying off into space during the first few
timesteps when the largest energy conflicts are resolved.
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6.3 Temperature Control and Equilibration

6.3.1 Langevin dynamics parameters

NAMD is capable of performing Langevin dynamics, where additional damping and random forces
are introduced to the system. This capability is based on that implemented in X-PLOR which is
detailed in the X-PLOR User’s Manual [7], although a different integrator is used.

• langevin < use Langevin dynamics? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Langevin dynamics active. If set to on, then the
parameter langevinTemp must be set and the parameters langevinFile and langevinCol
can optionally be set to control the behavior of this feature.

• langevinTemp < temperature for Langevin calculations (K) >
Acceptable Values: positive decimal
Description: Temperature to which atoms affected by Langevin dynamics will be adjusted.
This temperature will be roughly maintained across the affected atoms through the addition
of friction and random forces.

• langevinDamping < damping coefficient for Langevin dynamics (1/ps) >
Acceptable Values: positive decimal
Default Value: per-atom values from PDB file
Description: Langevin coupling coefficient to be applied to all atoms (unless langevinHydrogen
is off, in which case only non-hydrogen atoms are affected). If not given, a PDB file is used
to obtain coefficients for each atom (see langevinFile and langevinCol below).

• langevinHydrogen < Apply Langevin dynamics to hydrogen atoms? >
Acceptable Values: on or off
Default Value: on
Description: If langevinDamping is set then setting langevinHydrogen to off will turn
off Langevin dynamics for hydrogen atoms. This parameter has no effect if Langevin coupling
coefficients are read from a PDB file.

• langevinFile < PDB file containing Langevin parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the Langevin coupling coefficients for each atom. If this
parameter is not specified, then the PDB file specified by coordinates is used.

• langevinCol < column of PDB from which to read coefficients >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file to use for the Langevin coupling coefficients for each
atom. The coefficients can be read from any floating point column of the PDB file. A value
of 0 indicates that the atom will remain unaffected.
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6.3.2 Temperature coupling parameters

NAMD is capable of performing temperature coupling, in which forces are added or reduced to
simulate the coupling of the system to a heat bath of a specified temperature. This capability is
based on that implemented in X-PLOR which is detailed in the X-PLOR User’s Manual [7].

• tCouple < perform temperature coupling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not temperature coupling is active. If set to on, then
the parameter tCoupleTemp must be set and the parameters tCoupleFile and tCoupleCol
can optionally be set to control the behavior of this feature.

• tCoupleTemp < temperature for heat bath (K) >
Acceptable Values: positive decimal
Description: Temperature to which atoms affected by temperature coupling will be ad-
justed. This temperature will be roughly maintained across the affected atoms through the
addition of forces.

• tCoupleFile < PDB file with tCouple parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the temperature coupling coefficient for each atom. If
this parameter is not specified, then the PDB file specified by coordinates is used.

• tCoupleCol < column of PDB from which to read coefficients >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file to use for the temperature coupling coefficient for
each atom. This value can be read from any floating point column of the PDB file. A value
of 0 indicates that the atom will remain unaffected.

6.3.3 Temperature rescaling parameters

NAMD allows equilibration of a system by means of temperature rescaling. Using this method,
all of the velocities in the system are periodically rescaled so that the entire system is set to the
desired temperature. The following parameters specify how often and to what temperature this
rescaling is performed.

• rescaleFreq < number of timesteps between temperature rescaling >
Acceptable Values: positive integer
Description: The equilibration feature of NAMD is activated by specifying the number of
timesteps between each temperature rescaling. If this value is given, then the rescaleTemp
parameter must also be given to specify the target temperature.

• rescaleTemp < temperature for equilibration (K) >
Acceptable Values: positive decimal
Description: The temperature to which all velocities will be rescaled every rescaleFreq
timesteps. This parameter is valid only if rescaleFreq has been set.
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6.3.4 Temperature reassignment parameters

NAMD allows equilibration of a system by means of temperature reassignment. Using this method,
all of the velocities in the system are periodically reassigned so that the entire system is set to the
desired temperature. The following parameters specify how often and to what temperature this
reassignment is performed.

• reassignFreq < number of timesteps between temperature reassignment >
Acceptable Values: positive integer
Description: The equilibration feature of NAMD is activated by specifying the num-
ber of timesteps between each temperature reassignment. If this value is given, then the
reassignTemp parameter must also be given to specify the target temperature.

• reassignTemp < temperature for equilibration (K) >
Acceptable Values: positive decimal
Default Value: temperature if set, otherwise none
Description: The temperature to which all velocities will be reassigned every reassignFreq
timesteps. This parameter is valid only if reassignFreq has been set.

• reassignIncr < temperature increment for equilibration (K) >
Acceptable Values: decimal
Default Value: 0
Description: In order to allow simulated annealing or other slow heating/cooling protocols,
reassignIncr will be added to reassignTemp after each reassignment. (Reassignment is
carried out at the first timestep.) The reassignHold parameter may be set to limit the final
temperature. This parameter is valid only if reassignFreq has been set.

• reassignHold < holding temperature for equilibration (K) >
Acceptable Values: positive decimal
Description: The final temperature for reassignment when reassignIncr is set; reassignTemp
will be held at this value once it has been reached. This parameter is valid only if reassignIncr
has been set.

6.4 Boundary Conditions

In addition to periodic boundary conditions, NAMD provides spherical and cylindrical boundary
potentials to contain atoms in a given volume. To apply more general boundary potentials written
in Tcl, use tclBC as described in Sec. 6.6.8.

6.4.1 Spherical harmonic boundary conditions

NAMD provides spherical harmonic boundary conditions. These boundary conditions can consist
of a single potential or a combination of two potentials. The following parameters are used to define
these boundary conditions.

• sphericalBC < use spherical boundary conditions? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not spherical boundary conditions are to be applied to
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the system. If set to on, then sphericalBCCenter, sphericalBCr1 and sphericalBCk1 must
be defined, and sphericalBCexp1, sphericalBCr2, sphericalBCk2, and sphericalBCexp2
can optionally be defined.

• sphericalBCCenter < center of sphere (Å) >
Acceptable Values: position
Description: Location around which sphere is centered.

• sphericalBCr1 < radius for first boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect.
This distance is a radius from the center.

• sphericalBCk1 < force constant for first potential >
Acceptable Values: non-zero decimal
Description: Force constant for the first harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• sphericalBCexp1 < exponent for first potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for first boundary potential. The only likely values to use are 2
and 4.

• sphericalBCr2 < radius for second boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes effect.
This distance is a radius from the center. If this parameter is defined, then spericalBCk2
must also be defined.

• sphericalBCk2 < force constant for second potential >
Acceptable Values: non-zero decimal
Description: Force constant for the second harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• sphericalBCexp2 < exponent for second potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for second boundary potential. The only likely values to use are 2
and 4.

6.4.2 Cylindrical harmonic boundary conditions

NAMD provides cylindrical harmonic boundary conditions. These boundary conditions can consist
of a single potential or a combination of two potentials. The following parameters are used to define
these boundary conditions.

• cylindricalBC < use cylindrical boundary conditions? >
Acceptable Values: on or off
Default Value: off
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Description: Specifies whether or not cylindrical boundary conditions are to be applied
to the system. If set to on, then cylindricalBCCenter, cylindricalBCr1, cylindricalBCl1
and cylindricalBCk1 must be defined, and cylindricalBCAxis, cylindricalBCexp1, cylindricalBCr2,
cylindricalBCl2, cylindricalBCk2, and cylindricalBCexp2 can optionally be defined.

• cylindricalBCCenter < center of cylinder (Å) >
Acceptable Values: position
Description: Location around which cylinder is centered.

• cylindricalBCAxis < axis of cylinder (Å) >
Acceptable Values: x, y, or z
Description: Axis along which cylinder is aligned.

• cylindricalBCr1 < radius for first boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect
along the non-axis plane of the cylinder.

• cylindricalBCl1 < distance along cylinder axis for first boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect
along the cylinder axis.

• cylindricalBCk1 < force constant for first potential >
Acceptable Values: non-zero decimal
Description: Force constant for the first harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• cylindricalBCexp1 < exponent for first potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for first boundary potential. The only likely values to use are 2
and 4.

• cylindricalBCr2 < radius for second boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes effect
along the non-axis plane of the cylinder. If this parameter is defined, then cylindricalBCl2
and spericalBCk2 must also be defined.

• cylindricalBCl2 < radius for second boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes
effect along the cylinder axis. If this parameter is defined, then cylindricalBCr2 and
spericalBCk2 must also be defined.

• cylindricalBCk2 < force constant for second potential >
Acceptable Values: non-zero decimal
Description: Force constant for the second harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.
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• cylindricalBCexp2 < exponent for second potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for second boundary potential. The only likely values to use are 2
and 4.

6.4.3 Periodic boundary conditions

NAMD provides periodic boundary conditions in 1, 2 or 3 dimensions. The following parameters
are used to define these boundary conditions.

• cellBasisVector1 < basis vector for periodic boundaries (Å) >
Acceptable Values: vector
Default Value: 0 0 0
Description: Specifies a basis vector for periodic boundary conditions.

• cellBasisVector2 < basis vector for periodic boundaries (Å) >
Acceptable Values: vector
Default Value: 0 0 0
Description: Specifies a basis vector for periodic boundary conditions.

• cellBasisVector3 < basis vector for periodic boundaries (Å) >
Acceptable Values: vector
Default Value: 0 0 0
Description: Specifies a basis vector for periodic boundary conditions.

• cellOrigin < center of periodic cell (Å) >
Acceptable Values: position
Default Value: 0 0 0
Description: When position rescaling is used to control pressure, this location will remain
constant. Also used as the center of the cell for wrapped output coordinates.

• extendedSystem < XSC file to read cell parameters from >
Acceptable Values: file name
Description: In addition to .coor and .vel output files, NAMD generates a .xsc (eXtended
System Configuration) file which contains the periodic cell parameters and extended system
variables, such as the strain rate in constant pressure simulations. Periodic cell parameters
will be read from this file if this option is present, ignoring the above parameters.

• XSTfile < XST file to write cell trajectory to >
Acceptable Values: file name
Description: NAMD can also generate a .xst (eXtended System Trajectory) file which
contains a record of the periodic cell parameters and extended system variables during the
simulation. If XSTfile is defined, then XSTfreq must also be defined.

• XSTfreq < how often to append state to XST file >
Acceptable Values: positive integer
Description: Like the DCDfreq option, controls how often the extended system configura-
tion will be appended to the XST file.
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• wrapWater < wrap water coordinates around periodic boundaries? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally output relative to the way they were read in.
Hence, if part of a molecule crosses a periodic boundary it is not translated to the other side
of the cell on output. This option alters this behavior for water molecules only.

• wrapAll < wrap all coordinates around periodic boundaries? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally output relative to the way they were read in.
Hence, if part of a molecule crosses a periodic boundary it is not translated to the other side
of the cell on output. This option alters this behavior for all contiguous clusters of bonded
atoms.

• wrapNearest < use nearest image to cell origin when wrapping coordinates? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally wrapped to the diagonal unit cell centered on the
origin. This option, combined with wrapWater or wrapAll, wraps coordinates to the nearest
image to the origin, providing hexagonal or other cell shapes.

6.5 Pressure Control

Constant pressure simulation (and pressure calculation) require periodic boundary conditions. Pres-
sure is controlled by dynamically adjusting the size of the unit cell and rescaling all atomic coordi-
nates (other than those of fixed atoms) during the simulation.

Pressure values in NAMD output are in bar. PRESSURE is the pressure calculated based on
individual atoms, while GPRESSURE incorporates hydrogen atoms into the heavier atoms to which
they are bonded, producing smaller fluctuations. The TEMPAVG, PRESSAVG, and GPRESSAVG
are the average of temperature and pressure values since the previous ENERGY output; for the
first step in the simulation they will be identical to TEMP, PRESSURE, and GPRESSURE.

The phenomenological pressure of bulk matter reflects averaging in both space and time of the
sum of a large positive term (the kinetic pressure, nRT/V ), and a large cancelling negative term
(the static pressure). The instantaneous pressure of a simulation cell as simulated by NAMD will
have mean square fluctuations (according to David Case quoting Section 114 of Statistical Physics
by Landau and Lifshitz) of kT/(V β), where β is the compressibility, which is RMS of roughly 100
bar for a 10,000 atom biomolecular system. Much larger fluctuations are regularly observed in
practice.

The instantaneous pressure for a biomolecular system is well defined for “internal” forces that
are based on particular periodic images of the interacting atoms, conserve momentum, and are
translationally invariant. When dealing with externally applied forces such as harmonic constraints,
fixed atoms, and various steering forces, NAMD bases its pressure calculation on the relative
positions of the affected atoms in the input coordinates and assumes that the net force will average
to zero over time. For time periods during with the net force is non-zero, the calculated pressure
fluctuations will include a term proportional to the distance to the affected from the user-defined
cell origin. A good way to observe these effects and to confirm that pressure for external forces
is handled reasonably is to run a constant volume cutoff simulation in a cell that is larger than
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the molecular system by at least the cutoff distance; the pressure for this isolated system should
average to zero over time.

Because NAMD’s impluse-basd multiple timestepping system alters the balance between bonded
and non-bonded forces from every timestep to an average balance over two steps, the calculated
pressure on even and odd steps will be different. The PRESSAVG and GPRESSAVG fields provide
the average over the non-printed intermediate steps. If you print energies on every timestep you
will see the effect clearly in the PRESSURE field.

The following options affect all pressure control methods.

• useGroupPressure < group or atomic quantities >
Acceptable Values: yes or no
Default Value: no
Description: Pressure can be calculated using either the atomic virial and kinetic energy
(the default) or a hydrogen-group based pseudo-molecular virial and kinetic energy. The
latter fluctuates less and is required in conjunction with rigidBonds (SHAKE).

• useFlexibleCell < anisotropic cell fluctuations >
Acceptable Values: yes or no
Default Value: no
Description: NAMD allows the three orthogonal dimensions of the periodic cell to fluctuate
independently when this option is enabled.

• useConstantRatio < constant shape in first two cell dimensions >
Acceptable Values: yes or no
Default Value: no
Description: When enabled, NAMD keeps the ratio of the unit cell in the x-y plane
constant while allowing fluctuations along all axes. The useFlexibleCell option is required
for this option.

• useConstantArea < constant area and normal pressure conditions >
Acceptable Values: yes or no
Default Value: no
Description: When enabled, NAMD keeps the dimension of the unit cell in the x-y plane
constant while allowing fluctuations along the z axis. This is not currently implemented in
Berendsen’s method.

6.5.1 Berendsen pressure bath coupling

NAMD provides constant pressure simulation using Berendsen’s method. The following parameters
are used to define the algorithm.

• BerendsenPressure < use Berendsen pressure bath coupling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Berendsen pressure bath coupling is active. If set to
on, then the parameters BerendsenPressureTarget, BerendsenPressureCompressibility
and BerendsenPressureRelaxationTime must be set and the parameter BerendsenPressureFreq
can optionally be set to control the behavior of this feature.
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• BerendsenPressureTarget < target pressure (bar) >
Acceptable Values: positive decimal
Description: Specifies target pressure for Berendsen’s method. A typical value would be
1.01325 bar, atmospheric pressure at sea level.

• BerendsenPressureCompressibility < compressibility (bar−1) >
Acceptable Values: positive decimal
Description: Specifies compressibility for Berendsen’s method. A typical value would
be 4.57E-5 bar−1, corresponding to liquid water. The higher the compressibility, the more
volume will be adjusted for a given pressure difference. The compressibility and the relaxation
time appear only as a ratio in the dynamics, so a larger compressibility is equivalent to a
smaller relaxation time.

• BerendsenPressureRelaxationTime < relaxation time (fs) >
Acceptable Values: positive decimal
Description: Specifies relaxation time for Berendsen’s method. If the instantaneous pres-
sure did not fluctuate randomly during a simulation and the compressibility estimate was
exact then the inital pressure would decay exponentially to the target pressure with this time
constant. Having a longer relaxation time results in more averaging over pressure measure-
ments and hence smaller fluctuations in the cell volume. A reasonable choice for relaxation
time would be 100 fs. The compressibility and the relaxation time appear only as a ratio in
the dynamics, so a larger compressibility is equivalent to a smaller relaxation time.

• BerendsenPressureFreq < how often to rescale positions >
Acceptable Values: positive multiple of nonbondedFrequency and fullElectFrequency
Default Value: nonbondedFrequency or fullElectFrequency if used
Description: Specifies number of timesteps between position rescalings for Berendsen’s
method. Primarily to deal with multiple timestepping integrators, but also to reduce cell
volume fluctuations, cell rescalings can occur on a longer interval. This could reasonably be
between 1 and 20 timesteps, but the relaxation time should be at least ten times larger.

6.5.2 Nosé-Hoover Langevin piston pressure control

NAMD provides constant pressure simulation using a modified Nosé-Hoover method in which
Langevin dynamics is used to control fluctuations in the barostat. This method should be combined
with a method of temperature control, such as Langevin dynamics, in order to simulate the NPT
ensemble.

The Langevin piston Nose-Hoover method in NAMD is a combination of the Nose-Hoover
constant pressure method as described in GJ Martyna, DJ Tobias and ML Klein, ”Constant pressure
molecular dynamics algorithms”, J. Chem. Phys 101(5), 1994, with piston fluctuation control
implemented using Langevin dynamics as in SE Feller, Y Zhang, RW Pastor and BR Brooks,
”Constant pressure molecular dynamics simulation: The Langevin piston method”, J. Chem. Phys.
103(11), 1995.

The equations of motion are:

r′ = p/m + e′r

p′ = F − e′p− gp + R

V ′ = 3V e′
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e′′ = 3V/W (P − P0)− gee
′ + Re/W

W = 3Nτ2kT

< R2 > = 2mgkT/h

τ = oscillationperiod
< R2

e > = 2WgekT/h

Here, W is the mass of piston, R is noise on atoms, and Re is the noise on the piston.
The user specifies the desired pressure, oscillation and decay times of the piston, and tempera-

ture of the piston. The compressibility of the system is not required. In addition, the user specifies
the damping coefficients and temperature of the atoms for Langevin dynamics.

The following parameters are used to define the algorithm.

• LangevinPiston < use Langevin piston pressure control? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Langevin piston pressure control is active. If set to
on, then the parameters LangevinPistonTarget, LangevinPistonPeriod, LangevinPistonDecay
and LangevinPistonTemp must be set.

• LangevinPistonTarget < target pressure (bar) >
Acceptable Values: positive decimal
Description: Specifies target pressure for Langevin piston method. A typical value would
be 1.01325 bar, atmospheric pressure at sea level.

• LangevinPistonPeriod < oscillation period (fs) >
Acceptable Values: positive decimal
Description: Specifies barostat oscillation time scale for Langevin piston method. If
the instantaneous pressure did not fluctuate randomly during a simulation and the decay
time was infinite (no friction) then the cell volume would oscillate with this angular period.
Having a longer period results in more averaging over pressure measurements and hence slower
fluctuations in the cell volume. A reasonable choice for the piston period would be 200 fs.

• LangevinPistonDecay < damping time scale (fs) >
Acceptable Values: positive decimal
Description: Specifies barostat damping time scale for Langevin piston method. A value
larger than the piston period would result in underdamped dynamics (decaying ringing in the
cell volume) while a smaller value approaches exponential decay as in Berendsen’s method
above. A smaller value also corresponds to larger random forces with increased coupling to
the Langevin temperature bath. Typically this would be chosen equal to or smaller than the
piston period, such as 100 fs.

• LangevinPistonTemp < noise temperature (K) >
Acceptable Values: positive decimal
Description: Specifies barostat noise temperature for Langevin piston method. This should
be set equal to the target temperature for the chosen method of temperature control.

• SurfaceTensionTarget < Surface tension target (dyn/cm) >
Acceptable Values: decimal
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Default Value: 0.0
Description: Specifies surface tension target. Must be used with useFlexibleCell and
periodic boundary conditions. The pressure specified in LangevinPistonTarget becomes the
pressure along the z axis, and surface tension is applied in the x-y plane.

• StrainRate < initial strain rate >
Acceptable Values: decimal triple (x y z)
Default Value: 0. 0. 0.
Description: Optionally specifies the initial strain rate for pressure control. Is overridden
by value read from file specified with extendedSystem. There is typically no reason to set
this parameter.

• ExcludeFromPressure < Should some atoms be excluded from pressure rescaling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not to exclude some atoms from pressure rescaling. The
coordinates and velocites of such atoms are not rescaled during constant pressure simulations,
though they do contribute to the virial calculation. May be useful for membrane protein
simulation. EXPERIMENTAL.

• ExcludeFromPressureFile < File specifying excluded atoms >
Acceptable Values: PDB file
Default Value: coordinates file
Description: PDB file with one column specifying which atoms to exclude from pressure
rescaling. Specify 1 for excluded and 0 for not excluded.

• ExcludeFromPressureCol < Column in PDB file for specifying excluded atoms >
Acceptable Values: O, B, X, Y, or Z
Default Value: O
Description: Specifies which column of the pdb file to check for excluded atoms.

6.6 Applied Forces and Analysis

There are several ways to apply external forces to simulations with NAMD. These are described
below.

6.6.1 Constant Forces

NAMD provides the ability to apply constant forces to some atoms. There are two parameters that
control this feature.

• constantforce < Apply constant forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not constant forces are applied.

• consforcefile < PDB file containing forces to be applied >
Acceptable Values: UNIX filename
Description: The X, Y, Z and occupancy (O) fields of this file are read to determine
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the constant force vector of each atom, which is (X,Y,Z)*O, in unit of kcal/(mol*Å). The
occupancy (O) serves as a scaling factor, which could expand the range of the force applied.
(One may be unable to record very large or very small numbers in the data fields of a PDB
file due to limited space). Zero forces are ignored.

Specifying consforcefile is optional; constant forces may be specifed or updated between
runs by using the consForceConfig command.

6.6.2 External Electric Field

NAMD provides the ability to apply a constant electric field to the molecular system being simu-
lated. Energy due to the external field will be reported in the MISC column and may be discontin-
uous in simulations using periodic boundary conditions if, for example, a charged hydrogen group
moves outside of the central cell. There are two parameters that control this feature.

• eFieldOn < apply electric field? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not an electric field is applied.

• eField < electric field vector >
Acceptable Values: vector of decimals (x y z)
Description: Vector which describes the electric field to be applied. Units are kcal/(mol Å e),
which is natural for simulations. This parameter may be changed between run commands,
allowing a square wave or other approximate wave form to be applied.

6.6.3 Moving Constraints

Moving constraints feature works in conjunction with the Harmonic Constraints (see an appropriate
section of the User’s guide). The reference positions of all constraints will move according to

~r(t) = ~r0 + ~vt . (1)

A velocity vector ~v (movingConsVel) needs to be specified.
The way the moving constraints work is that the moving reference position is calculated ev-

ery integration time step using Eq. 1, where ~v is in Å/timestep, and t is the current timestep
(i.e., firstTimestep plus however many timesteps have passed since the beginning of NAMD
run). Therefore, one should be careful when restarting simulations to appropriately update the
firstTimestep parameter in the NAMD configuration file or the reference position specified in the
reference PDB file.
NOTE: NAMD actually calculates the constraints potential with U = k(x − x0)d and the force
with F = dk(x − x0), where d is the exponent consexp. The result is that if one specifies some
value for the force constant k in the PDB file, effectively, the force constant is 2k in calculations.
This caveat was removed in SMD feature.

The following parameters describe the parameters for the moving harmonic constraint feature
of NAMD.

• movingConstraints < Are moving constraints active >
Acceptable Values: on or off
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Default Value: off
Description: Should moving restraints be applied to the system. If set to on, then
movingConsVel must be defined. May not be used with rotConstraints.

• movingConsVel < Velocity of the reference position movement >
Acceptable Values: vector in Å/timestep
Description: The velocity of the reference position movement. Gives both absolute value
and direction

6.6.4 Rotating Constraints

The constraints parameters are specified in the same manner as for usual (static) harmonic con-
straints. The reference positions of all constrained atoms are then rotated with a given angular
velocity about a given axis. If the force constant of the constraints is sufficiently large, the con-
strained atoms will follow their reference positions.

A rotation matrix M about the axis unit vector v is calculated every timestep for the angle
of rotation corresponding to the current timestep. angle = Ωt, where Ω is the angular velocity of
rotation.

From now on, all quantities are 3D vectors, except the matrix M and the force constant K.
The current reference position R is calculated from the initial reference position R0 (at t = 0),

R = M(R0 − P ) + P , where P is the pivot point.
Coordinates of point N can be found as N = P + ((R− P ) · v)v. Normal from the atom pos to

the axis is, similarly, normal = (P + ((X − P ) · v)v) −X The force is, as usual, F = K(R −X);
This is the force applied to the atom in NAMD (see below). NAMD does not know anything
about the torque applied. However, the torque applied to the atom can be calculated as a vector
product torque = F × normal Finally, the torque applied to the atom with respect to the axis is
the projection of the torque on the axis, i.e., torqueproj = torque · v

If there are atoms that have to be constrained, but not moved, this implementation is not
suitable, because it will move all reference positions.

Only one of the moving and rotating constraints can be used at a time.
Using very soft springs for rotating constraints leads to the system lagging behind the reference

positions, and then the force is applied along a direction different from the ”ideal” direction along
the circular path.

Pulling on N atoms at the same time with a spring of stiffness K amounts to pulling on the
whole system by a spring of stiffness NK, so the overall behavior of the system is as if you are
pulling with a very stiff spring if N is large.

In both moving and rotating constraints the force constant that you specify in the constraints
pdb file is multiplied by 2 for the force calculation, i.e., if you specified K = 0.5 kcal/mol/Å2 in the
pdb file, the force actually calculated is F = 2K(R −X) = 1 kcal/mol/Å2 (R −X). SMD feature
of namd2 does the calculation without multiplication of the force constant specified in the config
file by 2.

• rotConstraints < Are rotating constraints active >
Acceptable Values: on or off
Default Value: off
Description: Should rotating restraints be applied to the system. If set to on, then
rotConsAxis, rotConsPivot and rotConsVel must be defined. May not be used with
movingConstraints.
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• rotConsAxis < Axis of rotation >
Acceptable Values: vector (may be unnormalized)
Description: Axis of rotation. Can be any vector. It gets normalized before use. If the
vector is 0, no rotation will be performed, but the calculations will still be done.

• rotConsPivot < Pivot point of rotation >
Acceptable Values: position in Å
Description: Pivot point of rotation. The rotation axis vector only gives the direction of
the axis. Pivot point places the axis in space, so that the axis goes through the pivot point.

• rotConsVel < Angular velocity of rotation >
Acceptable Values: rate in degrees per timestep
Description: Angular velocity of rotation, degrees/timestep.

6.6.5 Steered Molecular Dynamics (SMD)

The SMD feature is independent from the harmonic constraints, although it follows the same ideas.
In both SMD and harmonic constraints, one specifies a PDB file which indicates which atoms are
’tagged’ as constrained. The PDB file also gives initial coordinates for the constraint positions.
One also specifies such parameters as the force constant(s) for the constraints, and the velocity
with which the constraints move.

There are two major differences between SMD and harmonic constraints:

• In harmonic constraints, each tagged atom is harmonically constrained to a reference point
which moves with constant velocity. In SMD, it is the center of mass of the tagged atoms
which is constrained to move with constant velocity.

• In harmonic constraints, each tagged atom is constrained in all three spatial dimensions. In
SMD, tagged atoms are constrained only along the constraint direction.

The center of mass of the SMD atoms will be harmonically constrained with force constant k
(SMDk) to move with velocity v (SMDVel) in the direction ~n (SMDDir). SMD thus results in the
following potential being applied to the system:

U(~r1, ~r2, ..., t) =
1
2
k

[
vt− (~R(t)− ~R0) · ~n

]2
. (2)

Here, t ≡ Ntsdt where Nts is the number of elapsed timesteps in the simulation and dt is the size
of the timestep in femtoseconds. Also, ~R(t) is the current center of mass of the SMD atoms and
R0 is the initial center of mass as defined by the coordinates in SMDFile. Vector ~n is normalized
by NAMD before being used.

Output NAMD provides output of the current SMD data. The frequency of output is specified
by the SMDOutputFreq parameter in the configuration file. Every SMDOutputFreq timesteps NAMD
will print the current timestep, current position of the center of mass of the restrained atoms, and
the current force applied to the center of mass (in piconewtons, pN). The output line starts with
word SMD
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Parameters The following parameters describe the parameters for the SMD feature of NAMD.

• SMD < Are SMD features active >
Acceptable Values: on or off
Default Value: off
Description: Should SMD harmonic constraint be applied to the system. If set to on, then
SMDk, SMDFile, SMDVel, and SMDDir must be defined. Specifying SMDOutputFreq is optional.

• SMDFile < SMD constraint reference position >
Acceptable Values: UNIX filename
Description: File to use for the initial reference position for the SMD harmonic constraints.
All atoms in this PDB file with a nonzero value in the occupancy column will be tagged as
SMD atoms. The coordinates of the tagged SMD atoms will be used to calculate the initial
center of mass. During the simulation, this center of mass will move with velocity SMDVel
in the direction SMDDir. The actual atom order in this PDB file must match that in the
structure or coordinate file, since the atom number field in this PDB file will be ignored.

• SMDk < force constant to use in SMD simulation >
Acceptable Values: positive real
Description: SMD harmonic constraint force constant. Must be specified in kcal/mol/Å2.
The conversion factor is 1 kcal/mol = 69.479 pN Å.

• SMDVel < Velocity of the SMD reference position movement >
Acceptable Values: nonzero real, Å/timestep
Description: The velocity of the SMD center of mass movement. Gives the absolute value.

• SMDDir < Direction of the SMD center of mass movement >
Acceptable Values: non-zero vector
Description: The direction of the SMD reference position movement. The vector does not
have to be normalized, it is normalized by NAMD before being used.

• SMDOutputFreq < frequency of SMD output >
Acceptable Values: positive integer
Default Value: 1
Description: The frequency in timesteps with which the current SMD data values are
printed out.

6.6.6 Interactive Molecular Dynamics (IMD)

NAMD now works directly with VMD to allow you to view and interactively steer your simulation.
With IMD enabled, you can connect to NAMD at any time during the simulation to view the
current state of the system or perform interactive steering.

• IMDon < is IMD active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not to listen for an IMD connection.

• IMDport < port number to expect a connection on >
Acceptable Values: positive integer
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Description: This is a free port number on the machine that node 0 is running on. This
number will have to be entered into VMD.

• IMDfreq < timesteps between sending coordinates >
Acceptable Values: positive integer
Description: This allows coordinates to be sent less often, which may increase NAMD
performance or be necessary due to a slow network.

• IMDwait < wait for an IMD connection? >
Acceptable Values: yes or no
Default Value: no
Description: If no, NAMD will proceed with calculations whether a connection is present
or not. If yes, NAMD will pause at startup until a connection is made, and pause when the
connection is lost.

• IMDignore < ignore interactive steering forces >
Acceptable Values: yes or no
Default Value: no
Description: If yes, NAMD will ignore any steering forces generated by VMD to allow a
simulation to be monitored without the possibility of perturbing it.

6.6.7 Tcl Forces and Analysis

NAMD provides a limited Tcl scripting interface designed for applying forces and performing on-
the-fly analysis. This interface is efficient if only a few coordinates, either of individual atoms or
centers of mass of groups of atoms, are needed. In addition, information must be requested one
timestep in advance. To apply forces individually to a potentially large number of atoms, use tclBC
instead as described in Sec. 6.6.8. The following configuration parameters are used to enable the
Tcl interface:

• tclForces < is Tcl interface active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Tcl interface is active. If it is set to off, then no Tcl
code is executed. If it is set to on, then Tcl code specified in tclForcesScript parameters
is executed.

• tclForcesScript < input for Tcl interface >
Acceptable Values: file or {script}
Description: Must contain either the name of a Tcl script file or the script itself between {
and } (may include multiple lines). This parameter may occur multiple times and scripts will
be executed in order of appearance. The script(s) should perform any required initialization
on the Tcl interpreter, including requesting data needed during the first timestep, and define
a procedure calcforces { } to be called every timestep.

At this point only low-level commands are defined. In the future this list will be expanded.
Current commands are:

• print <anything>
This command should be used instead of puts to display output. For example, “print Hello World”.
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• atomid <segname> <resid> <atomname>
Determines atomid of an atom from its segment, residue, and name. For example, “atomid
br 2 N”.

• addatom <atomid>
Request coordinates of this atom for next force evaluation, and the calculated total force on
this atom for current force evaluation. Request remains in effect until clearconfig is called.
For example, “addatom 4” or “addatom [atomid br 2 N]”.

• addgroup <atomid list>
Request center of mass coordinates of this group for next force evaluation. Returns a group
ID which is of the form gN where N is a small integer. This group ID may then be used to
find coordinates and apply forces just like a regular atom ID. Aggregate forces may then be
applied to the group as whole. Request remains in effect until clearconfig is called. For
example, “set groupid [addgroup { 14 10 12 }]”.

• clearconfig
Clears the current list of requested atoms. After clearconfig, calls to addatom and addgroup
can be used to build a new configuration.

• loadcoords <varname>
Loads requested atom and group coordinates (in Å) into a local array. loadcoords should
only be called from within the calcforces procedure. For example, “loadcoords p” and
“print $p(4)”.

• loadforces <varname>
Loads the forces applied in the previous timestep (in kcal mol−1 Å−1) into a local array.
loadforces should only be called from within the calcforces procedure. For example,
“loadforces f” and “print $f(4)”.

• loadtotalforces <varname>
Loads the total forces on each requested atom in the previous time step (in kcal mol−1Å−1)
into a local array. The total force also includes external forces. Note that the “loadforces”
command returns external forces applied by the user. Therefore, one can subtract the external
force on an atom from the total force on this atom to get the pure force arising from the
simulation system.

• loadmasses <varname>
Loads requested atom and group masses (in amu) into a local array. loadmasses should only
be called from within the calcforces procedure. For example, “loadcoords m” and “print
$m(4)”.

• addforce <atomid|groupid> <force vector>
Applies force (in kcal mol−1 Å−1) to atom or group. addforce should only be called from
within the calcforces procedure. For example, “addforce $groupid { 1. 0. 2. }”.

• addenergy <energy (kcal/mol)>
This command adds the specified energy to the MISC column (and hence the total energy) in
the energy output. For normal runs, the command does not affect the simulation trajectory
at all, and only has an artificial effect on its energy output. However, it can indeed affect
minimizations.
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With the commands above and the functionality of the Tcl language, one should be able to
perform any on-the-fly analysis and manipulation. To make it easier to perform certain tasks, some
Tcl routines are provided below.

Several vector routines (vecadd, vecsub, vecscale) from the VMD Tcl interface are defined.
Please refer to VMD manual for their usage.

The following routines take atom coordinates as input, and return some geometry parameters
(bond, angle, dihedral).

• getbond <coor1> <coor2>
Returns the length of the bond between the two atoms. Actually the return value is simply
the distance between the two coordinates. “coor1” and “coor2” are coordinates of the atoms.

• getangle <coor1> <coor2> <coor3>
Returns the angle (from 0 to 180) defined by the three atoms. “coor1”, “coor2” and “coor3”
are coordinates of the atoms.

• getdihedral <coor1> <coor2> <coor3> <coor4>
Returns the dihedral (from -180 to 180) defined by the four atoms. “coor1”, “coor2”, “coor3”
and “coor4” are coordinates of the atoms.

The following routines calculate the derivatives (gradients) of some geometry parameters (angle,
dihedral).

• anglegrad <coor1> <coor2> <coor3>
An angle defined by three atoms is a function of their coordinates: θ (~r1, ~r2, ~r3) (in radian).
This command takes the coordinates of the three atoms as input, and returns a list of { ∂θ

∂ ~r1
∂θ
∂ ~r2

∂θ
∂ ~r3
}. Each element of the list is a 3-D vector in the form of a Tcl list.

• dihedralgrad <coor1> <coor2> <coor3> <coor4>
A dihedral defined by four atoms is a function of their coordinates: φ (~r1, ~r2, ~r3, ~r4) (in radian).
This command takes the coordinates of the four atoms as input, and returns a list of { ∂φ

∂ ~r1
∂φ
∂ ~r2

∂φ
∂ ~r3

∂φ
∂ ~r4
}. Each element of the list is a 3-D vector in the form of a Tcl list.

As an example, here’s a script which applies a harmonic constraint (reference position being 0)
to a dihedral. Note that the “addenergy” line is not really necessary – it simply adds the calculated
constraining energy to the MISC column, which is displayed in the energy output.

tclForcesScript {
# The IDs of the four atoms defining the dihedral
set aid1 112
set aid2 123
set aid3 117
set aid4 115

# The "spring constant" for the harmonic constraint
set k 3.0

addatom $aid1
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addatom $aid2
addatom $aid3
addatom $aid4

set PI 3.1416

proc calcforces {} {

global aid1 aid2 aid3 aid4 k PI

loadcoords p

# Calculate the current dihedral
set phi [getdihedral $p($aid1) $p($aid2) $p($aid3) $p($aid4)]
# Change to radian
set phi [expr $phi*$PI/180]

# (optional) Add this constraining energy to "MISC" in the energy output
addenergy [expr $k*$phi*$phi/2.0]

# Calculate the "force" along the dihedral according to the harmonic constraint
set force [expr -$k*$phi]

# Calculate the gradients
foreach {g1 g2 g3 g4} [dihedralgrad $p($aid1) $p($aid2) $p($aid3) $p($aid4)] {}

# The force to be applied on each atom is proportional to its
# corresponding gradient
addforce $aid1 [vecscale $g1 $force]
addforce $aid2 [vecscale $g2 $force]
addforce $aid3 [vecscale $g3 $force]
addforce $aid4 [vecscale $g4 $force]

}
}

6.6.8 Tcl Boundary Forces

While the tclForces interface described above is very flexible, it is only efficient for applying
forces to a small number of pre-selected atoms. Applying forces individually to a potentially large
number of atoms, such as applying boundary conditions, is much more efficient with the tclBC
facility described below.

• tclBC < are Tcl boundary forces active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Tcl interface is active. If it is set to off, then no
Tcl code is executed. If it is set to on, then Tcl code specified in the tclBCScript parameter
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is executed.

• tclBCScript < input for Tcl interface >
Acceptable Values: {script}
Description: Must contain the script itself between { and } (may include multiple lines).
This parameter may occur only once. The script(s) should perform any required initialization
on the Tcl interpreter and define a procedure calcforces <step> <unique> [args...] to
be called every timestep.

• tclBCArgs < extra args for tclBC calcforces command >
Acceptable Values: {args...}
Description: The string (or Tcl list) provided by this option is appended to the tclBC
calcforces command arguments. This parameter may appear multiple times during a run in
order to alter the parameters of the boundary potential function.

The script provided in tclBCScript and the calcforces procedure it defines are executed in
multiple Tcl interpreters, one for every processor that owns patches. These tclBC interpreters do
not share state with the Tcl interpreter used for tclForces or config file parsing. The calcforces
procedure is passed as arguments the current timestep, a “unique” flag which is non-zero for exactly
one Tcl interpreter in the simulation (that on the processor of patch zero), and any arguments
provided to the most recent tclBCArgs option. The “unique” flag is useful to limit printing of
messages, since the command is invoked on multiple processors.

The print, vecadd, vecsub, vecscale, getbond, getangle, getdihedral, anglegrad, and
dihedralgrad commands described under tclForces are available at all times.

The wrapmode <mode> command, available in the tclBCScript or the calcforces procedure,
determines how coordinates obtained in the calcforces procedure are wrapped around periodic
boundaries. The options are:

• patch, (default) the position in NAMD’s internal patch data structure, requires no extra
calculation and is almost the same as cell

• input, the position corresponding to the input files of the simulation

• cell, the equivalent position in the unit cell centered on the cellOrigin

• nearest, the equivalent position nearest to the cellOrigin

The following commands are available from within the calcforces procedure:

• nextatom
Sets the internal counter to a new atom and return 1, or return 0 if all atoms have been
processed (this may even happen the first call). This should be called as the condition of a
while loop, i.e., while {[nextatom]} { ... } to iterate over all atoms. One one atom may
be accessed at a time.

• dropatom
Excludes the current atom from future iterations on this processor until cleardrops is called.
Use this to eliminate extra work when an atom will not be needed for future force calculations.
If the atom migrates to another processor it may reappear, so this call should be used only
as an optimization.
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• cleardrops
All available atoms will be iterated over by nextatom as if dropatom had never been called.

• getcoord
Returns a list {x y z} of the position of the current atom wrapped in the periodic cell (if
there is one) in the current wrapping mode as specified by wrapmode.

• getcell
Returns a list of 1–4 vectors containing the cell origin (center) and as many basis vectors
as exist, i.e., {{ox oy oz} {ax ay az} {bx by bz} {cx cy cz}}. It is more efficient to set
the wrapping mode than to do periodic image calculations in Tcl.

• getmass
Returns the mass of the current atom.

• getcharge
Returns the charge of the current atom.

• getid
Returns the 1-based ID of the current atom.

• addforce {<fx> <fy> <fz>}
Adds the specified force to the current atom for this step.

• addenergy <energy>
Adds potential energy to the BOUNDARY column of NAMD output.

As an example, these spherical boundary condition forces:

sphericalBC on
sphericalBCcenter 0.0,0.0,0.0
sphericalBCr1 48
sphericalBCk1 10
sphericalBCexp1 2

Are replicated in the following script:

tclBC on
tclBCScript {

proc veclen2 {v1} {
foreach {x1 y1 z1} $v1 { break }
return [expr $x1*$x1 + $y1*$y1 + $z1*$z1]

}

# wrapmode input
# wrapmode cell
# wrapmode nearest
# wrapmode patch ;# the default

proc calcforces {step unique R K} {
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if { $step % 20 == 0 } {
cleardrops
# if $unique { print "clearing dropped atom list at step $step" }

}
set R [expr 1.*$R]
set R2 [expr $R*$R]
set tol 2.0
set cut2 [expr ($R-$tol)*($R-$tol)]

while {[nextatom]} {
# addenergy 1 ; # monitor how many atoms are checked
set rvec [getcoord]
set r2 [veclen2 $rvec]
if { $r2 < $cut2 } {

dropatom
continue

}
if { $r2 > $R2 } {

# addenergy 1 ; # monitor how many atoms are affected
set r [expr sqrt($r2)]
addenergy [expr $K*($r - $R)*($r - $R)]
addforce [vecscale $rvec [expr -2.*$K*($r-$R)/$r]]

}
}

}
}

tclBCArgs {48.0 10.0}

6.7 Free Energy of Conformational Change Calculations

NAMD incorporates methods for performing free energy of conformational change perturbation
calculations. The system is efficient if only a few coordinates, either of individual atoms or centers
of mass of groups of atoms, are needed. The following configuration parameters are used to enable
free energy perturbation:

• freeEnergy < is free energy perturbation active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not free energy perturbation is active. If it is set to
off, then no free energy perturbation is performed. If it is set to on, then the free energy
perturbation calculation specified in freeEnergyConfig parameters is executed.

• freeEnergyConfig < free energy perturbation script >
Acceptable Values: file or {script}
Description: Must contain either the name of a free energy perturbation script file or
the script itself between { and } (may include multiple lines). This parameter may occur
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multiple times and scripts will be executed in order of appearance. The format of the free
energy perturbation script is described below.

The following sections describe the format of the free energy perturbation script.

6.7.1 User-Supplied Conformational Restraints

These restraints extend the scope of the available restraints beyond that provided by the harmonic
position restraints. Each restraint is imposed with a potential energy term, whose form depends
on the type of the restraint.

Fixed Restraints
Position restraint (1 atom): force constant Kf , and reference position −−→rref

E = (Kf/2) (|−→ri −−−→rref |)2
Stretch restraint (2 atoms): force constant Kf , and reference distance dref

E = (Kf/2) (di − dref )2

Bend restraint (3 atoms): force constant Kf , and reference angle θref

E = (Kf/2) (θi − θref )2

Torsion restraint (4 atoms): energy barrier E0, and reference angle χref

E = (E0/2) {1− cos (χi − χref )}
Forcing restraints
Position restraint (1 atom): force constant Kf , and two reference positions −→r0 and −→r1

E = (Kf/2) (|−→ri −−−→rref |)2
−−→rref = λ−→r1 + (1− λ) −→r0

Stretch restraint (2 atoms): force constant Kf , and two reference distances d0 and d1

E = (Kf/2) (di − dref )2

dref = d1 + (1− λ) d0

Bend restraint (3 atoms): force constant Kf , and two reference angles θ0 and θ1

E = (Kf/2) (θi − θref )2

θref = λθ1 + (1− λ) θ0

Torsion restraint (4 atoms): energy barrier E0, and two reference angles χ0 and χ1

E = (E0/2) {1− cos (χi − χref )}
χref = λχ1 + (1− λ) χ0

The forcing restraints depend on the coupling parameter, λ, specified in a conformational forcing
calculation. For example, the restraint distance, dref , depends on λ, and as λ changes two atoms
or centers-of-mass are forced closer together or further apart. In this case Kf = Kf,0, the value
supplied at input.

Alternatively, the value of Kf may depend upon the coupling parameter λ according to:
Kf = Kf,0λ
Bounds
Position bound (1 atom): Force constant Kf , reference position −−→rref ,

and upper or lower reference distance, dref

Upper bound:
E = (Kf/2) (di − dref )2 for di > dref , else E = 0.

Lower bound:
E = (Kf/2) (di − dref )2 for di < dref , else E = 0.
d2

i = (|−→ri −−−→rref |)2
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Distance bound (2 atoms): Force constant Kf ,
and upper or lower reference distance, dref

Upper bound:
E = (Kf/2) (dij − dref )2 for dij > dref , else E = 0.

Lower bound:
E = (Kf/2) (dij − dref )2 for dij < dref , else E = 0.

Angle bound (3 atoms): Force constant Kf ,
and upper or lower reference angle, θref

Upper bound:
E = (Kf/2) (θ − θref )2 for θ > θref , else E = 0.

Lower bound:
E = (Kf/2) (θ − θref )2 for θ < θref , else E = 0.

Torsion bound (4 atoms): An upper and lower bound must be provided together.
Energy gap E0, lower AND upper reference angles, χ1 and χ2,
and angle interval, ∆χ.

χ1 < χ < χ2 : E = 0
(χ1 −∆χ) < χ < χ1 : E = (G/2) {1− cos (χ− χ1)}
χ2 < χ (χ2 + ∆χ): E = (G/2) {1− cos (χ− χ2)}
(χ2 + ∆χ) < χ (χ1 −∆χ + 2π) : E = G

G = E0/ {1− cos (∆χ)}

Bounds may be used in pairs, to set a lower and upper bound. Torsional bounds always are
defined in pairs.

6.7.2 Free Energy Calculations

Conformational forcing / Potential of mean force
In conformational forcing calculations, structural parameters such as atomic positions, inter-

atomic distances, and dihedral angles are forced to change by application of changing restraint
potentials. For example, the distance between two atoms can be restrained by a potential to a
mean distance that is varied during the calculation. The free energy change (or potential of mean
force, pmf) for the process can be estimated during the simulation.

The potential is made to depend on a coupling parameter, λ, whose value changes during the
simulation. In potential of mean force calculations, the reference value of the restraint potential
depends on λ. Alternately, the force constant for the restraint potential may change in proportion
to the coupling parameter. Such a calculation gives the value of a restraint free energy, i.e., the
free energy change of the system due to imposition of the restraint potential.

Methods for computing the free energy
With conformational forcing (or with molecular transformation calculations) one obtains a free

energy difference for a process that is forced on the system by changing the potential energy function
that determines the dynamics of the system. One always makes the changing potential depend on a
coupling parameter, λ. By convention, λ can have values only in the range from 0 to 1, and a value
of λ = 0 corresponds to one defined state and a value of λ = 1 corresponds to the other defined
state. Intermediate values of λ correspond to intermediate states; in the case of conformational
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forcing calculations these intermediate states are physically realizable, but in the case of molecular
transformation calculations they are not.

The value of λ is changed during the simulation. In the first method provided here, the change
in λ is stepwise, while in the second method it is virtually continuous.

Multi-configurational thermodynamic integration (MCTI).
In MCTI one accumulates 〈∂U/∂λ〉 at several values of λ, and from these averages estimates

the integral
−∆A =

∫
〈∂U/∂λ〉 dλ

With this method, the precision of each 〈∂U/∂λ〉 can be estimated from the fluctuations of the
time series of ∂U/∂λ.

Slow growth.
In slow growth, λ is incremented by δλ = ±1/Nstep after each dynamics integration time-step,

and the pmf is estimated as
−∆A = Σ (∂U/∂λ) δλ

Typically, slow growth is done in cycles of: equilibration at λ = 0, change to λ = 1, equilibration
at λ = 1, change to λ = 0 . It is usual to estimate the precision of slow growth simulations from
the results of successive cycles.

6.7.3 Options for Conformational Restraints

User-supplied restraint and bounds specifications
urestraint {

n * (restraint or bound specification) // see below
}

Restraint Specifications (not coupled to pmf calculations)
posi ATOM kf = KF ref = (X Y Z)
dist 2 x ATOM kf = KF ref = D
angle 3 x ATOM kf = KF ref = A
dihe 4 x ATOM barr = B ref = A

Bound Specifications (not coupled to pmf calculations)
posi bound ATOM kf = KF [low = (X Y Z D) or hi = (X Y Z D)]
dist bound 2 x ATOM kf = KF [low = D or hi = D]
angle bound 3 x ATOM kf = KF [low = A or hi = A]
dihe bound 4 x ATOM gap = E low = A0 hi = A1 delta = A2

Forcing Restraint Specifications (coupled to pmf calculations)
posi pmf ATOM kf=KF low = (X0 Y0 Z0) hi = (X1 Y1 Z1)
dist pmf 2 x ATOM kf=KF low = D0 hi = D1
angle pmf 3 x ATOM kf=KF low = A0 hi = A1
dihe pmf 4 x ATOM barr=B low = A0 hi = A1

Units

80



Input item Units
E, B kcal/mol

X, Y, Z, D
A degrees
Kf kcal/(mol 2) or kcal/(mol rad2)

6.7.4 Options for ATOM Specification

The designation ATOM, above, stands for one of the following forms:

A single atom
(segname, resnum, atomname)
Example: (insulin, 10, ca)

All atoms of a single residue
(segname, resnum)
Example: (insulin, 10)

A list of atoms
group { (segname, resnum, atomname), (segname, resnum, atomname), . . . }
Example: group { (insulin, 10, ca), (insulin, 10, cb), (insulin, 11, cg) }

All atoms in a list of residues
group { (segname, resnum), (segname, resnum), . . . }
Example: group { (insulin, 10), (insulin, 12), (insulin, 14) }

All atoms in a range of residues
group { (segname, resnum) to (segname, resnum) }
Example: group { (insulin, 10) to (insulin, 12) }

One or more atomnames in a list of residues
group { atomname: (segname, resnum), (segname, resnum), . . . }
group { (atomname, atomname, . . . ): (segname, resnum), (segname, resnum), . . . }
Examples: group { ca: (insulin, 10), (insulin, 12), (insulin, 14) }

group { (ca, cb, cg): (insulin, 10), (insulin, 12), (insulin, 14) }
group { (ca, cb): (insulin, 10), (insulin, 12) cg: (insulin, 11), (insulin, 12) }

Note: Within a group, atomname is in effect until a new atomname is used, or the keyword all
is used. atomname will not carry over from group to group. This note applies to the paragraph
below.

One or more atomnames in a range of residues
group { atomname: (segname, resnum) to (segname, resnum) }
group { (atomname, atomname, . . . ): (segname, resnum) to (segname, resnum) }
Examples: group { ca: (insulin, 10) to (insulin, 14) }

group { (ca, cb, cg): (insulin, 10) to (insulin, 12) }
group { (ca, cb): (insulin, 10) to (insulin, 12) all: (insulin, 13) }

6.7.5 Options for Potential of Mean Force Calculation

The pmf and mcti blocks, below, are used to simultaneously control all forcing restraints specified
in urestraint above. These blocks are performed consecutively, in the order they appear in the

81



config file. The pmf block is used to either a) smoothly vary λ from 0 →1 or 1 →0, or b) set
lambda. The mcti block is used to vary λ from 0 →1 or 1 →0 in steps, so that λ is fixed while
dU/dλ is accumulated.

Lamba control for slow growth
pmf {

task = [up, down, stop, grow, fade, or nogrow]
time = T [fs, ps, or ns] (default = ps)
lambda = Y (value of λ; only needed for stop and nogrow)
lambdat = Z (value of λt; only needed for grow, fade, and nogrow) (default = 0)
print = P [fs, ps, or ns] or noprint (default = ps)

}

up, down, stop: λ is applied to the reference values.
grow, fade, nogrow: λ is applied to Kf . A fixed value, λt, is used to determine the ref. values.
up, grow: λ changes from 0 →1. (no value of λ is required)
down, fade: λ changes from 1 →0. (no value of λ is required)
stop, nogrow: dU/dλ is accumulated (for single point MCTI)

Lambda control for automated MCTI
mcti {

task = [stepup, stepdown, stepgrow, or stepfade]
equiltime = T1 [fs, ps, or ns] (default = ps)
accumtime = T2 [fs, ps, or ns] (default = ps)
numsteps = N
lambdat = Z (value of λt; only needed for stepgrow, and stepfade) (default = 0)
print = P [fs, ps, or ns] or noprint (default = ps)

}

stepup, stepdown: λ is applied to the reference values.
stepgrow, stepfade: λ is applied to Kf . A fixed value, λt, is used to determine the ref. values.
stepup, stepgrow: λ changes from 0 →1. (no value of λ is required)
stepdown, stepfade: λ changes from 1 →0. (no value of λ is required)

For each task, λ changes in steps of (1.0/N) from 0 →1 or 1 →0. At each step, no data is
accumulated for the initial period T1, then dU/dλ is accumulated for T2. Therefore, the total
duration of an mcti block is (T1+T2) x N.

6.7.6 Examples

Fixed restraints
// 1. restrain the position of the ca atom of residue 0.

// 2. restrain the distance between the ca’s of residues 0 and 10 to 5.2Å

// 3. restrain the angle between the ca’s of residues 0-10-20 to 90o .

// 4. restrain the dihedral angle between the ca’s of residues 0-10-20-30 to 180o .

// 5. restrain the angle between the centers-of-mass of residues 0-10-20 to 90o .

urestraint {
posi (insulin, 0, ca) kf=20 ref=(10, 11, 11)
dist (insulin, 0, ca) (insulin, 10, ca) kf=20 ref=5.2
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angle (insulin, 0, ca) (insulin, 10, ca) (insulin, 20, ca) kf=20 ref=90
dihe (insulin, 0, ca) (insulin, 10, ca) (insulin, 20, ca) (insulin, 30, ca) barr=20 ref=180
angle (insulin, 0) (insulin, 10) (insulin, 20) kf=20 ref=90

}

// 1. restrain the center of mass of three atoms of residue 0.

// 2. restrain the distance between (the COM of 3 atoms of residue 0) to (the COM of 3 atoms of residue 10).

// 3. restrain the dihedral angle of (10,11,12)-(15,16,17,18)-(20,22)-(30,31,32,34,35) to 90o

// ( (ca of 10 to 12), (ca, cb, cg of 15 to 18), (all atoms of 20 and 22), (ca of 30, 31, 32, 34, all atoms of 35) ).

urestraint {
posi group {(insulin, 0, ca), (insulin, 0, cb), (insulin, 0, cg)} kf=20 ref=(10, 11, 11)

dist group {(insulin, 0, ca), (insulin, 0, cb), (insulin, 0, cg)}
group {(insulin, 10, ca), (insulin, 10, cb), (insulin, 10, cg)} kf=20 ref=6.2

dihe group {ca: (insulin, 10) to (insulin, 12)}
group {(ca, cb, cg): (insulin, 15) to (insulin, 18)}
group {(insulin, 20), (insulin, 22)}
group {ca: (insulin, 30) to (insulin, 32), (insulin, 34), all: (insulin, 35)} barr=20 ref=90

}
Bound specifications
// 1. impose an upper bound if an atom’s position strays too far from a reference position.

// (add an energy term if the atom is more than 10Å from (2.0, 2.0, 2.0) ).

// 2&3. impose lower and upper bounds on the distance between the ca’s of residues 5 and 15.

// (if the separation is less than 5.0Å or greater than 12.0Å add an energy term).

// 4. impose a lower bound on the angle between the centers-of-mass of residues 3-6-9.

// (if the angle goes lower than 90o apply a restraining potential).

urestraint {
posi bound (insulin, 3, cb) kf=20 hi = (2.0, 2.0, 2.0, 10.0)
dist bound (insulin, 5, ca) (insulin, 15, ca) kf=20 low = 5.0
dist bound (insulin, 5, ca) (insulin, 15, ca) kf=20 hi = 12.0
angle bound (insulin, 3) (insulin, 6) (insulin, 9) kf=20 low=90.0

}

// torsional bounds are defined as pairs. this example specifies upper and lower bounds on the

// dihedral angle, χ, separating the planes of the 1-2-3 residues and the 2-3-4 residues.

// The energy is 0 for: -90o ¡ χ ¡ 120o

// The energy is 20 kcal/mol for: 130o ¡ χ ¡ 260o

// Energy rises from 0 → 20 kcal/mol as χ increases from 120o → 130o , and decreases from –90o → –100o.

urestraint {
dihe bound (insulin 1) (insulin 2) (insulin 3) (insulin 4) gap=20 low=-90 hi=120 delta=10

}
Forcing restraints
// a forcing restraint will be imposed on the distance between the centers-of-mass of residues (10 to 15) and

// residues (30 to 35). low=20.0, hi=10.0, indicates that the reference distance is 20.0at λ=0, and 10.0at λ=1.

urestraint {
dist pmf group { (insulin, 10) to (insulin, 15) }

group { (insulin, 30) to (insulin, 35) } kf=20, low=20.0, hi=10.0
}
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// 1. during the initial 10 ps, increase the strength of the forcing restraint to full strength: 0 → 20 kcal/(mol 2)

// 2. next, apply a force to slowly close the distance from 20 to 10 (λ changes from 0 → 1)

// 3. accumulate dU/dλ for another 10 ps. ( stays fixed at 1)

// 4. force the distance back to its initial value of 20 ( changes from 1 → 0)

pmf {
task = grow
time = 10 ps
print = 1 ps

}
pmf {

task = up
time = 100 ps

}
pmf {

task = stop
time = 10 ps

}
pmf {

task = down
time = 100 ps

}

// 1. force the distance to close from 20 to 10 in 5 steps. (λ changes from 0 → 1: 0.2, 0.4, 0.6, 0.8, 1.0)

// at each step equilibrate for 10 ps, then collect dU/dλ for another 10 ps.

// ref = 18, 16, 14, 12, 10 , duration = (10 + 10) x 5 = 100 ps.

// 2. reverse the step above (λ changes from 1 → 0: 0.8, 0.6, 0.4, 0.2, 0.0)

mcti {
task = stepup
equiltime = 10 ps
accumtime = 10 ps
numsteps = 5
print = 1 ps

}
mcti {

task = stepdown
}

6.7.7 Appendix

Gradient for position restraint
E = (Kf/2) (|−→ri −−−→rref |)2

E = (Kf/2)
{
(xi − xref )2 + (yi − yref )2 + (zi − zref )2

}
∇(E) = Kf

{
(xi − xref )−→i + (yi − yref )−→j + (zi − zref )−→k

}
Gradient for stretch restraint
E = (Kf/2) (di − dref )2

di =
{
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2
}1/2
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∇(E) = Kf (di − dref ) · ∇(di)

for atom 2 moving, and atom 1 fixed

∇(di) = 1/2
{
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2
}−1/2

{2 (x2 − x1) + 2 (y2 − y1) + 2 (z2 − z1)}

∇(di) =
{
(x2 − x1)

−→
i + (y2 − y1)

−→
j + (z2 − z1)

−→
k

}
/di

∇(E) = Kf {(di − dref ) /di}
{
(x2 − x1)

−→
i + (y2 − y1)

−→
j + (z2 − z1)

−→
k

}
Gradient for bend restraint
E = (Kf/2) (θi − θref )2

Atoms at positions A-B-C
distances: (A to B) = c; (A to C) = b; (B to C) = a;
θi = cos−1(u) = cos−1

{(
a2 + c2 − b2

)
/ (2ac)

}
∇(E) = Kf (θi − θref ) · ∇(θi)
∇(θi) = −1√

1−u2
· ∇(u)

for atom A moving, atoms B & C fixed (distances b and c change)
∇(u) = {−b/ (ac)} · ∇(b) +

{
−a/

(
2c2

)
+ 1/ (2a) + b2/

(
2ac2

)}
· ∇(c)

∇(b) =
{
(xA − xC)−→i + (yA − yC)−→j + (zA − zC)−→k

}
/b

∇(c) =
{
(xA − xB)−→i + (yA − yB)−→j + (zA − zB)−→k

}
/c

for atom B moving, atoms A & C fixed (distances a and c change)
∇(u) =

{
1/(2c) +−c/(2a2) + b2/(2a2c)

}
· ∇(a) +

{
−a/

(
2c2

)
+ 1/(2a) + b2/

(
2ac2

)}
· ∇(c)

∇(a) =
{
(xB − xC)−→i + (yB − yC)−→j + (zB − zC)−→k

}
/a

∇(c) =
{
(xB − xA)−→i + (yB − yA)−→j + (zB − zA)−→k

}
/c

for atom C moving, atoms A & B fixed (distances a and b change)
∇(u) = {−b/ (ac)} · ∇(b) +

{
−c/

(
2a2

)
+ 1/(2c) + b2/

(
2ac2

)}
· ∇(a)

∇(b) =
{
(xC − xA)−→i + (yC − yA)−→j + (zC − zA)−→k

}
/b

∇(a) =
{
(xC − xB)−→i + (yC − yB)−→j + (zC − zB)−→k

}
/a

Gradient for dihedral angle restraint
E = (E0/2) {1− cos (χi − χref )}
Atoms at positions A-B-C-D

χi = cos−1(u) = cos−1

−−→
(CD×

−−→
CB)•(

−−→
BC×

−−→
BA)∣∣∣−−→CD×

−−→
CB

∣∣∣∣∣∣−−→BC×
−−→
BA

∣∣∣
 AND

χi = sin−1(v) = sin−1

−−→
(CD×

−−→
CB)×(

−−→
BC×

−−→
BA)∣∣∣−−→CD×

−−→
CB

∣∣∣∣∣∣−−→BC×
−−→
BA

∣∣∣ •
−−→
CB∣∣∣−−→CB

∣∣∣


∇(E) = (E0/2) {sin (χi − χref )} · ∇(χi)
∇(χi) = −1√

1−u2
· ∇(u)

−−→
CD ×−−→

CB = ((yD − yC)(zB − zC)− (zD − zC)(yB − yC))−→i +
((zD − zC)(xB − xC)− (xD − xC)(zB − zC))−→j +
((xD − xC)(yB − yC)− (yD − yC)(xB − xC))−→k

= p1
−→
i + p2

−→
j + p3

−→
k
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−−→
BC ×−−→

BA = ((yC − yB)(zA − zB)− (zC − zB)(yA − yB))−→i +
((zC − zB)(xA − xB)− (xC − xB)(zA − zB))−→j +
((xC − xB)(yA − yB)− (yC − yB)(xA − xB))−→k

= p4
−→
i + p5

−→
j + p6

−→
k

u = p1p4+p2p5+p3p6√
p2
1+p2

2+p2
3

√
p2
4+p2

5+p2
6

∇(u) = p1·∇(p4)+p2·∇(p5)+p3·∇(p6)√
p2
1+p2

2+p2
3

√
p2
4+p2

5+p2
6

+
p1p4+p2p5+p3p6√

p2
1+p2

2+p2
3

(
−1/2

(
p2
4 + p2

5 + p2
6

)−3/2 (2p4 · ∇(p4) + 2p5 · ∇(p5) + 2p6 · ∇(p6))
)

+
p1p4+p2p5+p3p6√

p2
4+p2

5+p2
6

(
−1/2

(
p2
1 + p2

2 + p2
3

)−3/2 (2p1 · ∇(p1) + 2p2 · ∇(p2) + 2p3 · ∇(p3))
)

for atom A moving, atoms B, C, & D fixed
∇(p1) = (0.0)−→i + (0.0)−→j + (0.0)−→k
∇(p2) = (0.0)−→i + (0.0)−→j + (0.0)−→k
∇(p3) = (0.0)−→i + (0.0)−→j + (0.0)−→k
∇(p4) = (0.0)−→i + (zB − zC)−→j + (yC − yB)−→k
∇(p5) = (zC − zB)−→i + (0.0)−→j + (xB − xC)−→k
∇(p6) = (yB − yC)−→i + (xC − xB)−→j + (0.0)−→k

for atom B moving, atoms A, C, & D fixed
∇(p1) = (0.0)−→i + (zC − zD)−→j + (yD − yC)−→k
∇(p2) = (zD − zC)−→i + (0.0)−→j + (xC − xD)−→k
∇(p3) = (yC − yD)−→i + (xD − xC)−→j + (0.0)−→k
∇(p4) = (0.0)−→i + (zC − zA)−→j + (yA − yC)−→k
∇(p5) = (zA − zC)−→i + (0.0)−→j + (xC − xA)−→k
∇(p6) = (yC − yA)−→i + (xA − xC)−→j + (0.0)−→k

Gradient for forcing position restraint
E = (Kf/2) (|−→ri −−−→rref |)2
rref = λ−→r1 + (1− λ)−→r0

dE/dλ = Kf×
(
(xi − xref )2 + (yi − yref )2 + (zi − zref )2

)1/2
×

1/2
(
(xi − xref )2 + (yi − yref )2 + (zi − zref )2

)−1/2
×

(2 (xi − xref ) (x0 − x1) + 2 (yi − yref ) (y0 − y1) + 2 (zi − zref ) (z0 − z1))
dE/dλ = Kf × ((xi − xref ) (x0 − x1) + (yi − yref ) (y0 − y1) + (zi − zref ) (z0 − z1))

Gradient for forcing stretch restraint
E = (Kf/2) (di − dref )2

dref = λd1 + (1− λ) d0

dE/dλ = Kf × (di − dref ) × (d0 − d1)

Gradient for forcing bend restraint
E = (Kf/2) (θi − θref )2

θref = λθ1 + (1− λ) θ0

dE/dλ = Kf × (θi − θref ) × (θ0 − θ1)
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Gradient for forcing dihedral restraint
E = (E0/2) (1− cos (χi − χref ))
χref = λχ1 + (1− λ) χ0

dE/dλ = (E0/2) × sin (χi − χref ) × (χ0 − χ1)

6.8 Adaptive Biasing Force Calculations

This feature has been contributed to NAMD by the following authors:

Jérôme Hénin and Christophe Chipot

Equipe de dynamique des assemblages membranaires,
Institut nancéien de chimie moléculaire,
UMR CNRS/UHP 7565,
Université Henri Poincaré,
BP 239,
54506 Vandœuvre–lès–Nancy cedex, France

c© 2005, Centre National de la Recherche Scientifique

6.8.1 Introduction and theoretical background

Strictly speaking, a potential of mean force (PMF) is the reversible work supplied to the system to
bring two solvated particles, or ensembles of particles, from an infinite separation to some contact
distance: [8]

w(r) = − 1
β

ln g(r) (3)

Here, g(r) is the pair correlation function of the two particles, or ensembles thereof. The
vocabulary “PMF” has, however, been extended to a wide range of reaction coordinates that go
far beyond simple interatomic or intermolecular distances. In this perspective, generalization of
equation (3) is not straightforward. This explains why it may be desirable to turn to a definition
suitable for any type of reaction coordinate, ξ:

A(ξ) = − 1
β

lnPξ + A0 (4)

A(ξ) is the free energy of the state defined by a particular value of ξ, which corresponds to an
iso–ξ hypersurface in phase space. A0 is a constant and Pξ is the probability density to find the
chemical system of interest at ξ.

The connection between the derivative of the free energy with respect to the reaction coordinate,
dA(ξ)/dξ, and the forces exerted along the latter may be written as: [24, 11]

dA(ξ)
dξ

=
〈

∂V(x)
∂ξ

− 1
β

∂ ln |J |
∂ξ

〉
ξ

= −〈Fξ〉ξ (5)

where |J | is the determinant of the Jacobian for the transformation from generalized to Cartesian
coordinates. The first term of the ensemble average corresponds to the Cartesian forces exerted
on the system, derived from the potential energy function, V(x). The second contribution is a
geometric correction arising from the change in the metric of the phase space due to the use of

87



generalized coordinates. It is worth noting, that, contrary to its instantaneous component, Fξ, only
the average force, 〈Fξ〉ξ, is physically meaningful.

In the framework of the average biasing force (ABF) approach, [10, 20] Fξ is accumulated in
small windows or bins of finite size, δξ, thereby providing an estimate of the derivative dA(ξ)/dξ
defined in equation (5). The force applied along the reaction coordinate, ξ, to overcome free energy
barriers is defined by:

FABF = ∇x Ã = −〈Fξ〉ξ ∇x ξ (6)

where Ã denotes the current estimate of the free energy and 〈Fξ〉ξ, the current average of Fξ.
As sampling of the phase space proceeds, the estimate ∇x Ã is progressively refined. The biasing

force, FABF, introduced in the equations of motion guarantees that in the bin centered about ξ,
the force acting along the reaction coordinate averages to zero over time. Evolution of the system
along ξ is, therefore, governed mainly by its self–diffusion properties.

A particular feature of the instantaneous force, Fξ, is its tendency to fluctuate significantly.
As a result, in the beginning of an ABF simulation, the accumulated average in each bin will
generally take large, inaccurate values. Under these circumstances, applying the biasing force
along ξ according to equation (6) may severely perturb the dynamics of the system, thereby biasing
artificially the accrued average, and, thus, impede convergence. To avoid such undesirable effects,
no biasing force is applied in a bin centered about ξ until a reasonable number of force samples has
been collected. When the user–defined minimum number of samples is reached, the biasing force is
introduced progressively in the form of a linear ramp. For optimal efficiency, this minimal number
of samples should be adjusted on a system–dependent basis.

In addition, to alleviate the deleterious effects caused by abrupt variations of the force, the
corresponding fluctuations are smoothed out, using a weighted running average over a preset number
of adjacent bins, in lieu of the average of the current bin itself. It is, however, crucial to ascertain
that the free energy profile varies regularly in the ξ–interval, over which the average is performed.

To obtain an adequate sampling in reasonable simulation times, it is recommended to split long
reaction pathways into consecutive ranges of ξ. In contrast with probability–based methods, ABF
does not require that these windows overlap by virtue of the continuity of the force across the the
reaction pathway.

A more comprehensive discussion of the theoretical basis of the method and its implementation
in NAMD can be found in [13].

6.8.2 Using the NAMD implementation of the adaptive biasing force method

The ABF method has been implemented as a suite of Tcl routines that can be invoked from the
main configuration file used to run molecular dynamics simulations with NAMD.

The routines can be invoked by including the following command in the configuration file:

source <path to>/lib/abf/abf.tcl

where <path to>/lib/abf/abf.tcl is the complete path to the main ABF file. The other Tcl
files of the ABF package must be located in the same directory.

A second option for loading the ABF module is to source the lib/init.tcl file distributed
with NAMD, and then use the Tcl package facility. The file may be sourced in the config file:

source <path to>/lib/init.tcl
package require abf
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Or, to make the config file portable, the init file may be the first config file passed to NAMD:

namd2 <path to>/lib/init.tcl myconfig.namd

and then the config file need only contain:

package require abf

Note that the ABF code makes use of the TclForces and TclForcesScript commands. As a
result, NAMD configuration files should not call the latter directly when running ABF.

6.8.3 Parameters for ABF simulations

The following parameters have been defined to control ABF calculations. They may be set using
the folowing syntax:

abf <keyword> <value>
where <value> may be a number, a word or a Tcl list. Keywords are not case–sensitive.

• coordinate < Type of reaction coordinate used in the ABF simulation >
Acceptable Values: distance, distance-com, abscissa, zCoord, zCoord-1atom or
xyDistance
Description: As a function of the system of interest, a number of alternative reaction
coordinates may be considered. The ABF code is modular: RC–specific code for each RC
is contained in a separate Tcl file. Additional RCs, tailored for a particular problem, may
be added by creating a new file providing the required Tcl procedures. Existing files such as
distance.tcl are thoroughly commented, and should provide a good basis for the coding of
additional coordinates, together with [13].

(1) distance corresponds to the distance separating two selected atoms:
abf1: index of the first atom of the reaction coordinate;
abf2: index of the second atom of the reaction coordinate.

(2) distance-com corresponds to the distance separating the center of mass of
two sets of atoms, e.g.the distance between the centroid of
two benzene molecules:
abf1: list of indices of atoms participating to the first center
of mass;
abf2: list of indices of atoms participating to the second
center of mass.

(3) abscissa corresponds to the distance between the centers of mass of
two sets of atoms along a given direction:
direction: a vector (Tcl list of three real numbers) defining
the direction of interest
abf1: list of indices of atoms participating to the first center
of mass;
abf2: list of indices of atoms participating to the second
center of mass.
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(4) zCoord corresponds to the distance separating two groups of atoms
along the z-direction of Cartesian space. This reaction co-
ordinate is useful for the estimation of transfer free energies
between two distinct media:
abf1: list of indices of reference atoms
abf2: list of indices of atoms of interest — e.g.a solute

(5) zCoord-1atom is similar to zCoord, but using a single atom of interest
abf1: list of indices of reference atoms
abf2: index of an atom of interest

(6) xyDistance is the distance between the centers of mass of two atom
groups, projected on the (x, y) plane:
abf1: list of indices of atoms participating to the first center
of mass;
abf2: list of indices of atoms participating to the second
center of mass.

• xiMin < Lower bound of the reaction coordinate >
Acceptable Values: decimal number, in Å
Description: Lower limit of the reaction coordinate, ξ, below which no sampling is per-
formed.

• xiMax < Upper bound of the reaction coordinate >
Acceptable Values: decimal number, in Å
Description: Upper limit of the reaction coordinate, ξ, beyond which no sampling is
performed.

• dxi < Width of the bins in which the forces are accumulated >
Acceptable Values: decimal number, in Å
Description: Width, δξ, of the bins in which the instantaneous components of the force,
Fξ, are collected. The choice of this variable is dictated by the nature of the system and how
rapidly the free energy changes as a function of ξ.

• forceConst < Force constant applied at the borders of the reaction coordinate >
Acceptable Values: positive decimal number, in kcal/mol/Å2

Default Value: 10.0
Description: If this force constant is nonzero, a harmonic bias is enforced at the borders
of the reaction coordinate, i.e.at both xiMin and xiMax, to guarantee that sampling will be
confined between these two values.

• dSmooth < Length over which force data is averaged when computing the ABF >
Acceptable Values: positive decimal number, in Å
Default Value: 0.0
Description: To avoid abrupt variations in the average force and in the free energy,
fluctuations are smoothed out by means of a weighted running average over adjacent bins on
each side of ξ. When the free energy derivative varies slowly, smoothing can be performed
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across several contiguous bins. Great attention should be paid, however, when the free energy
varies sharply with ξ.

• fullSamples < Number of samples in a bin prior to application of the ABF >
Acceptable Values: positive integer
Default Value: 200
Description: To avoid nonequilibrium effects in the dynamics of the system, due to large
fluctuations of the force exerted along the reaction coordinate, ξ, it is recommended to apply
the biasing force only after a reasonable estimate of the latter has been obtained.

• outFile < Output file of an ABF calculation >
Acceptable Values: Unix filename
Default Value: abf.dat
Description: Output file containing, for each value of the reaction coordinate, ξ, the free
energy, A(ξ), the average force, 〈Fξ〉, and the number of samples accrued in the bin.

• historyFile < History of the force data over time >
Acceptable Values: Unix filename
Default Value: none
Description: This file contains a history of the information stored in outFile, and is
written every tenth update of outFile. Data for different timesteps are separated by & signs
for easier visualization using the Grace plotting software. This is useful for assessing the
convergence of the free energy profile.

• inFiles < Input files for an ABF calculation >
Acceptable Values: Tcl list of Unix filenames
Default Value: empty list
Description: Input files containing the same data as in outFileName, and that may,
therefore, be used to restart an ABF simulation. The new free energies and forces will then
be written out based on the original information supplied by these files. This command may
also be used to combine data obtained from separate runs.

• outputFreq < Frequency at which outFileName is updated >
Acceptable Values: positive integer
Default Value: 5000
Description: The free energy, A(ξ), the average force, 〈Fξ〉, and the number of samples
accrued in the bin will be written to the ABF output file every ABFoutFreq timesteps.

• writeXiFreq < Frequency at which the time series of ξ is written >
Acceptable Values: positive integer
Default Value: 0
Description: If this parameter is nonzero, the instantaneous value of the reaction coordi-
nate, ξ, is written in the NAMD standard output every writeXiFreq time steps.

• distFile < Output file containing force distributions >
Acceptable Values: Unix filename
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Default Value: none
Description: Output file containing a distribution of the instantaneous components of the
force, Fξ, for every bin comprised between xiMin and xiMax. This is useful for performing
error analysis for the resulting free energy profile

• fMax < Half–width of the force histograms >
Acceptable Values: positive decimal number, in kcal/mol/Å
Default Value: 60.0
Description: When force distributions are written in distFile, the histogram collects Fξ

values ranging from −fMax to +fMax.

• moveBoundary < Number of samples beyond which xiMin and xiMax are updated >
Acceptable Values: positive integer
Default Value: 0
Description: Slow relaxation in the degrees of freedom orthogonal to the reaction coordi-
nate, ξ, results in a non–uniform sampling along the latter. To force exploration of ξ in quasi
non–ergodic situations, the boundaries of the reaction pathway may be modified dynamically
when a preset minimum number of samples is attained. As a result, the interval between
xiMin and xiMax is progressively narrowed down as this threshold is being reached for all
values of ξ. It should be clearly understood that uniformity of the sampling is artificial and
is only used to force diffusion along ξ. Here, uniform sampling does not guarantee the proper
convergence of the simulation.

• restraintList < Apply external restraints >
Acceptable Values: list of formatted entries
Default Value: empty list
Description: For a detailed description of this feature, see next subsection.

• applyBias < Apply a biasing force in the simulation ? >
Acceptable Values: yes or no
Default Value: yes
Description: By default, a biasing force is applied along the reaction coordinate, ξ, in ABF
calculations. It may be, however, desirable to set this option to no to monitor the evolution
of the system along ξ and collect the forces and the free energy, yet, without introducing any
bias in the simulation.

• usMode < Run umbrella sampling simulation ? >
Acceptable Values: yes or no
Default Value: no
Description: When setting this option, an “umbrella sampling” [26] calculation is per-
formed, supplying a probability distribution for the reaction coordinate, ξ. As an initial
guess of the biases required to overcome the free energy barriers, use can be made of a pre-
vious ABF simulation — cf. inFiles. In addition, specific restraints may be defined using
the restraintList feature described below.
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6.8.4 Including restraints in ABF simulations

In close connection with the possibility to run umbrella sampling simulations, the ABF module
of NAMD also includes the capability to add sets of restraints to confine the system in selected
regions of configurational space. Incorporation of harmonic restraints may be invoked using a
syntax similar in spirit to that adopted in the conformational free energy module of NAMD:

abf restraintList {
angle1 {angle {A 1 CA} {G 1 N3} {G 1 N1} 40.0 30.0}
dihe1 {dihe {A 1 O1} {A 1 CA} {A 1 O2} {G 1 N3} 40.0 0.0}
dihe2 {dihe {A 1 CA} {A 1 O2} {G 1 N2} {G 1 N3} 40.0 0.0}

}

The general syntax of an item of this list is:

name {type atom1 atom2 [atom3] [atom4] k reference}

where name could be any word used to refer to the restraint in the NAMD output. type is the
type of restraint, i.e.a distance, dist, a valence angle, angle, or a dihedral angle, dihe. Definition
of the successive atoms follows the syntax of NAMD conformation free energy calculations. k is
the force constant of the harmonic restraint, the unit of which depends on type. reference is the
reference, target value of the restrained coordinate.

Aside from dist, angle and dihe, which correspond to harmonic restraints, linear ramps have
been added for distances, using the specific keyword distLin. In this particular case, generally
useful in umbrella sampling free energy calculations, the syntax is:

name {distLin atom1 atom2 F r1 r2}

where F is the force in kcal/mol/Å. The restraint is applied over the interval between r1 and
r2.

The harm restraint applies, onto one single atom, a harmonic potential of the form

V (x, y, z) =
1
2
kx(x− x0)2 +

1
2
ky(y − y0)2 +

1
2
kz(z − z0)2

This way, atoms may be restrained to the vicinity of a plane, an axis, or a point, depending on
the number of nonzero force constants. The syntax is:

name {harm atom {kx ky kz} {x0 y0 z0} }

6.8.5 Important recommendations when running ABF simulations

The formalism implemented in NAMD had been originally devised in the framework of uncon-
strained MD. Holonomic constraints may, however, be introduced without interfering with the
computation of the bias and, hence, the PMF, granted that some precautions are taken.

Either of the following strategies may be adopted:

(1) Atoms involved in the computation of Fξ do not participate in constrained degrees of freedom.
If, for instance, chemical bonds between hydrogen and heavy atoms are frozen, ξ could be
chosen as a distance between atoms that are not involved in a constraint.
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In some cases, not all atoms used for defining ξ are involved in the computation of the force
component Fξ. Specifically, reference atoms abf1 in the RC types zCoord and zCoord-1atom
are not taken into account in Fξ. Therefore, constraints involving those atoms have no effect
on the ABF protocol.

(2) The definition of ξ involves atoms forming constrained bonds. In this case, the effect of
constraints on ABF can be eliminated by using a group–based RC built on atom groups
containing both “ends” of all rigid bonds involved, i.e.hydrogens together with their mother
atom.

For example, if the distance from a methane molecule to the center of mass of a water lamella
is studied with the zCoord RC by taking water oxygens as a reference (abf1) and all five atoms of
methane as the group of interest (abf2):

• Water molecules may be constrained because the reference atoms are not used to compute
the force component;

• C—H bonds in methane may be constrained as well, because the contributions of constraint
forces on the carbon and hydrogens to Fξ will cancel out.

6.8.6 Example of input file for computing potentials of mean force

In this example, the system consists of a short, ten-residue peptide, formed by l-alanine amino
acids. Reversible folding/unfolding of this peptide is carried out using as a reaction coordinate
the carbon atom of the first and the last carbonyl groups — ξ, hence, corresponds to a a simple
interatomic distance, defined by the keyword distance. The reaction pathway is explored between
12 and 32 Å, i.e., over a distance of 20 Å, in a single window. The variations of the free energy
derivative are soft enough to warrant the use of bins with a width of 0.2 Å, in which forces are
accrued.

source ~/abf/abf.tcl

abf coordinate distance

abf abf1 4
abf abf2 99

abf dxi 0.2
abf xiMin 12.0
abf xiMax 32.0
abf outFile deca-alanine.dat
abf fullSamples 500
abf inFiles {}
abf distFile deca-alanine.dist
abf dSmooth 0.4

Here, the ABF is applied after 500 samples have been collected, which, in vacuum, have proven
to be sufficient to get a reasonable estimate of 〈Fξ〉.
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6.9 Alchemical Free Energy Perturbation Calculations

This feature has been contributed to NAMD by the following authors:

Surjit B. Dixit and Christophe Chipot

Equipe de dynamique des assemblages membranaires
Institut nancéien de chimie moléculaire,
UMR CNRS/UHP 7565,
Université Henri Poincaré,
BP 239,
54506 Vandœuvre–lès–Nancy cedex, France

6.9.1 Introduction and theoretical background

A method to perform alchemical free energy perturbation (FEP) [28, 4, 27, 25, 16, 12, 17, 9] within
NAMD has now been implemented. In FEP, the free energy difference between two states, a and
b, is expressed by:

∆Aa→b = −kBT ln
〈

exp
[
−Hb(r,p)−Ha(r,p)

kBT

]〉
a

(7)

wherein kB is the Boltzmann constant, T is the temperature, and Ha(r,p) and Hb(r,p) are the
Hamiltonians characteristic of states a and b, respectively. 〈· · ·〉a denotes an ensemble average over
configurations representative of the initial state, a. In practice, the transformation between the two
thermodynamic states is replaced by a series of transformations between non–physical, intermediate
states along a pathway that connects a to b. This pathway is characterized by a variable, referred
to as “coupling parameter”, [4, 17, 15] λ, that makes the free energy a continuous function of this
parameter between a and b:

∆Aa→b = −kBT
N∑

k=1

ln
〈

exp
[
−H(r,p;λk+1)−H(r,p;λk)

kBT

]〉
k

(8)

Here, N stands for the number of intermediate states, or “windows” between the initial and the
final states.

In a typical FEP setup, that involves the transformation of one chemical species into another
one, the atoms in the molecular topology can be separated into three groups: (i) a group of atoms
that do not change during the simulation — e.g.the environment, (ii) those atoms describing the
initial state, a, of the system, and (iii) those that correspond to the final state, b, at the end of the
alchemical transformation. The atoms representative of state a do not interact with those of state
b throughout the entire molecular dynamics simulation. Such a setup, in which atoms pertaining
to both the initial and the final states of the system are present in the molecular topology file —
i.e.the psf file — is referred to as “dual topology” paradigm. [2, 19] The hybrid Hamiltonian of the
system, which is a function of the coupling parameter λ, that smoothly connects state a to state b,
is evaluated as:

H(λ) = H0 + λHa + (1− λ)Hb (9)
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where Ha is the Hamiltonian for the group of atoms representative of the initial state, a, and
Hb characterizes the final state, b. H0 is the Hamiltonian for those atoms that do not undergo any
transformation during the MD simulation.

For instance, in a transformation involving the mutation of an alanine side chain into that of
glycine, using the FEP methodology, the topology of both the methyl group of alanine and the
hydrogen borne by the Cα in glycine co–exist throughout the simulation (see Figure 5).
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Figure 5: Dual topology description for an alchemical simulation. Case example of the mutation
of alanine into glycine. The lighter color denotes the non–interacting, alternate state.

The energy and forces are defined as a function of λ, in such a fashion that the interaction of the
methyl group of alanine with the rest of the protein is effective at the beginning of the simulation,
i.e.λ = 0, while the glycine Cα hydrogen does not interact with the rest of the protein, and vice
versa at the end of the simulation, i.e.λ = 1. For intermediate values of λ, both the alanine and the
glycine side chains participate in the non–bonded interactions with the rest of the protein, scaled
on the basis of the current value of λ. It should be emphasized that these side chains, however, do
not interact with each other.

It is, therefore, necessary to exclude explicitly in the setup those atoms that are created from
those that will be annihilated in the course of the FEP calculation (see “A tutorial to set up
alchemical free energy perturbation calculations in NAMD” available from the NAMD website).

It is also worth noting that the free energy calculation does not alter intramolecular potentials,
i.e.bond stretch, valence angle deformation, torsions etc, during the simulation. In calculations
targetted at the estimation of free energy differences between two states characterized by distinct
environments — e.g.a ligand bound to a protein in the first simulation, and solvated in water, in
the second — as is the case for most free energy calculations that make use of a thermodynamic
cycle, perturbation of intramolecular terms, e.g.chemical bonds, can be safely avoided. [5]

6.9.2 Implementation of free energy perturbation in NAMD

The procedure implemented in NAMD is particularly adapted for performing free energy calcula-
tions that split the reaction path into a number of non–physical, intermediate λ–states, or “win-
dows”. Separate simulations can be started for each window. Alternatively, the Tcl scripting
ability of NAMD can be employed advantageously to perform the complete simulation in a single
run. An example making use of such script is supplied at the end of this section.
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The following keywords can be used to control free energy calculations aimed at alchemical
transformations.

• fep < Is alchemical FEP to be performed? >
Acceptable Values: on or off
Default Value: off
Description: Turns on Hamiltonian scaling and ensemble averaging for alchemical FEP.

• lambda < Coupling parameter value >
Acceptable Values: positive decimal between 0.0 and 1.0
Description: The coupling parameter value determining the progress of the perturba-
tion. The non–bonded interactions involving the atoms vanishing in the course of the MD
simulation are scaled by (1-lambda), while those of the growing atoms are scaled by lambda.

• lambda2 < Coupling parameter comparison value >
Acceptable Values: positive decimal between 0.0 and 1.0
Description: The lambda2 value corresponds to the coupling parameter to be used for
sampling in the next window. The free energy difference between lambda2 and lambda is
calculated. Through simulations at progressive values of lambda and lambda2 the total free
energy difference may be determined.

• fepEquilSteps < Number of equilibration steps in the window, before data collection >
Acceptable Values: positive integer less than numSteps or run
Default Value: 0
Description: In each window fepEquilSteps steps of equilibration can be performed
before ensemble averaging is initiated. The output also contains the data gathered during
equilibration and is meant for analysis of convergence properties of the FEP calculation.

• fepFile < pdb file with perturbation flags >
Acceptable Values: filename
Default Value: coordinates
Description: pdb file to be used for indicating the FEP status for each of the atoms
pertaining to the system. If this parameter is not declared specifically, then the pdb file
containing the initial coordinates specified by coordinates is utilized for this information.

• fepCol < Column in the fepFile that carries the perturbation flag >
Acceptable Values: X, Y, Z, O or B
Default Value: B
Description: Column of the pdb file to use for retrieving the FEP status of each atom, i.e.a
flag that indicates which atom will be perturbed in the course of the simulation. A value of
-1 in the specified column indicates the atom will vanish during the FEP calculation, whereas
a value of 1 indicates that the atom will grow.

• fepOutFreq < Frequency of FEP energy output in time–steps >
Acceptable Values: positive integer
Default Value: 5
Description: Every fepOutFreq number of MD steps, the output file fepOutFile is
updated by dumping energies that are used for ensemble averaging. This variable could
be set to 1 to include all the configurations for ensemble averaging. Yet, it is recommended to
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update fepOutFile energies at longer intervals to avoid large correlation between consecutive
configurations.

• fepOutFile < FEP energy output filename >
Acceptable Values: filename
Default Value: outfilename
Description: An output file named fepOutFile.fep, generated by NAMD, contains the
FEP energies, dumped every fepOutFreq steps.

Note: Free energy calculations that rely upon equation (7) make use of an average temperature,
which, in principle, should coincide with the value of the thermostat. Rather than employing the
computed average of T , ∆Aa→b is estimated with the target value of the temperature defined by
the user. It is, therefore, necessary to activate some constant–temperature scheme to carry out
FEP calculations.

6.9.3 Example of an input file for running FEP alchemical transformations

The following example illustrates the use of Tcl scripting for running the alchemical FEP feature
of NAMD:

fep on
fepfile ion.fep
fepCol X
fepOutfile ion.fepout
fepOutFreq 5
fepEquilSteps 5000

set step 0.0
set dstep 0.1

while {$step <= 0.9} {
lambda $step
set step [expr $step+$dstep]
lambda2 $step
run 10000
}

Here, the pdb file read by NAMD to extract the information about perturbed atoms is biotin.fep.
The pertinent information is present in the X column. The output file of the free energy calculation
is biotinr.fepout, in which energies are written every 5 steps. δλ, the width of the windows, is set
to 0.1. 5000 MD steps are performed in each window to equilibrate the system. In this particular
instance, the current value of λ is controlled by the statement set step. The FEP calculation is
run until λ reaches the value 0.9. In every window, 10000 MD steps are performed.

6.9.4 Description of FEP simulation output

The fepOutFile contains electrostatic and van der Waals energy data calculated at λ and λ2, writ-
ten every fepOutFreq steps. The column dE is the instantaneous energy difference for the current
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configuration. dE avg and dG are the accumulated energy ensemble average and the corresponding
free energy at the current time step, respectively. The temperature is specified in the penultimate
column. Upon completion of fepEquilSteps steps, the calculation of dE avg and dG is restarted.
The accumulated net free energy change is output at each λ–value and at the end of the simulation.
The cumulative average energy dE avg value may be summed using, for instance, the trapezoidal
rule, or a Gaussian quadrature, to obtain an approximate TI estimate for the free energy change
during the run.

6.10 Locally Enhanced Sampling

Locally enhanced sampling (LES) [21, 22, 23] increases sampling and transition rates for a portion
of a molecule by the use of multiple non-interacting copies of the enhanced atoms. These enhanced
atoms experience an interaction (electrostatics, van der Waals, and covalent) potential that is
divided by the number of copies present. In this way the enhanced atoms can occupy the same
space, while the multiple instances and reduces barriers increase transition rates.

6.10.1 Structure Generation

To use LES, the structure and coordinate input files must be modified to contain multiple copies of
the enhanced atoms. psfgen provides the multiply command for this purpose. NAMD supports
a maximum of 15 copies, which should be sufficient.

Begin by generating the complete molecular structure and guessing coordinates as described
in Sec. 4. As the last operation in your script, prior to writing the psf and pdb files, add the
multiply command, specifying the number of copies desired and listing segments, residues, or
atoms to be multiplied. For example, multiply 4 BPTI:56 BPTI:57 will create four copies of the
last two residues of segment BPTI. You must include all atoms to be enhanced in a single multiply
command in order for the bonded terms in the psf file to be duplicated correctly. Calling multiply
on connected sets of atoms multiple times will produce unpredictable results, as may running other
commands after multiply.

The enhanced atoms are duplicated exactly in the structure—they have the same segment,
residue, and atom names. They are distinguished only by the value of the B (beta) column in the
pdb file, which is 0 for normal atoms and varies from 1 to the number of copies created for enhanced
atoms. The enhanced atoms may be easily observed in VMD with the atom selection beta != 0.

6.10.2 Simulation

In practice, LES is a simple method used to increase sampling; no special output is generated. The
following parameters are used to enable LES:

• les < is locally enhanced sampling active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not LES is active.

lesFactor < number of LES images to use >
Acceptable Values: positive integer equal to the number of images present
Description: This should be equal to the factor used in multiply when creating the
structure. The interaction potentials for images is divided by lesFactor.
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• lesReduceTemp < reduce enhanced atom temperature? >
Acceptable Values: on or off
Default Value: off
Description: Enhanced atoms experience interaction potentials divided by lesFactor.
This allows them to enter regions that would not normally be thermally accessible. If this
is not desired, then the temperature of these atoms may be reduced to correspond with the
reduced potential. This option affects velocity initialization, reinititialization, reassignment,
and the target temperature for langevin dynamics. Langevin dynamics is recommended with
this option, since in a constant energy simulation energy will flow into the enhanced degrees
of freedom until they reach thermal equilibrium with the rest of the system. The reduced
temperature atoms will have reduced velocities as well, unless lesReduceMass is also enabled.

• lesReduceMass < reduce enhanced atom mass? >
Acceptable Values: on or off
Default Value: off
Description: Used with lesReduceTemp to restore velocity distribution to enhanced atoms.
If used alone, enhanced atoms would move faster than normal atoms, and hence a smaller
timestep would be required.

•

• lesFile < PDB file containing LES flags >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to specify the LES image number of each atom. If this parameter
is not specified, then the PDB file containing initial coordinates specified by coordinates is
used.

• lesCol < column of PDB file containing LES flags >
Acceptable Values: X, Y, Z, O, or B
Default Value: B
Description: Column of the PDB file to specify the LES image number of each atom.
This parameter may specify any of the floating point fields of the PDB file, either X, Y, Z,
occupancy, or beta-coupling (temperature-coupling). A value of 0 in this column indicates
that the atom is not enhanced. Any other value should be a positive integer less than
lesFactor.

6.11 Pair Interaction Calculations

NAMD supportes the calculation of interaction energy calculations between two groups of atoms.
When enabled, pair interaction information will be calculated and printed in the standard output
file on its own line at the same frequency as energy output. The format of the line is PAIR
INTERACTION: STEP: step VDW FORCE: fx fy fz ELECT FORCE: fx fy fz. The displayed force is the
force on atoms in group 1 and is units of kcal/mol/Å.

For trajectory analysis the recommended way to use this set of options is to use the NAMD Tcl
scripting interface as described in Sec. 2.2.2 to run for 0 steps, so that NAMD prints the energy
without performing any dynamics.
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• pairInteraction < is pair interaction calculation active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether pair interaction calculation is active.

• pairInteractionFile < PDB file containing pair interaction flags >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to specify atoms to use for pair interaction calculations. If this
parameter is not specified, then the PDB file containing initial coordinates specified by
coordinates is used.

• pairInteractionCol < column of PDB file containing pair interaction flags >
Acceptable Values: X, Y, Z, O, or B
Default Value: B
Description: Column of the PDB file to specify which atoms to use for pair interaction
calculations. This parameter may specify any of the floating point fields of the PDB file,
either X, Y, Z, occupancy, or beta-coupling (temperature-coupling).

• pairInteractionSelf < compute within-group interactions instead of bewteen groups >
Acceptable Values: on or off
Default Value: off
Description: When active, NAMD will compute bonded and nonbonded interactions only
for atoms within group 1.

• pairInteractionGroup1 < Flag to indicate atoms in group 1? >
Acceptable Values: integer
Description:

• pairInteractionGroup2 < Flag to indicate atoms in group 2? >
Acceptable Values: integer
Description: These options are used to indicate which atoms belong to each interac-
tion group. Atoms with a value in the column specified by pairInteractionCol equal to
pairInteractionGroup1 will be assigned to group 1; likewise for group 2.

6.12 Pressure Profile Calculations

NAMD supports the calculation of lateral pressure profiles as a function of the z-coordinate
in the system. The algorithm is essentially that described by Lindahl and Edholm. The
simulation space is partitioned into slabs, and the virial due to the interaction between two
particles is distributed across the slabs containing the particles as well as the slabs that
lie between the particles (taking periodic boundary conditions into account). The diagonal
components of the pressure tensor for each slab are recorded in the NAMD output file. The
units of pressure are the same as in the regular NAMD pressure output; i.e., bar.

The total virial contains contributions from three components: kinetic energy, bonded interac-
tions, and nonbonded interactions. The kinetic and bonded components are easily calculated
every timestep, and thus may be computed during a normal simulation run. The nonbonded
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component, however, adds significant overhead and has not been implemented for PME cal-
culations. The calculation of the nonbonded contribution should be performed offline, using
the saved frames of the trajectory file and a long nonbonded cutoff.

Pressure profile calculations may be performed in either constant volume or constant pressure
conditions. If constant pressure is enabled, the slabs thickness will be rescaled along with
the unit cell; the dcdUnitCell option will also be switched on so that unit cell information is
stored in the trajectory file.

Periodic boundary conditions must also be enabled.

• pressureProfile < compute pressure profile >
Acceptable Values: on or off
Default Value: off
Description: When active, NAMD will compute kinetic and bonded contributions to
the pressure profile. Results will be recorded in the NAMD output file in lines with the
format PRESSUREPROFILE: ts Axx Ayy Azz Bxx Byy Bzz ... , where ts is the timestep,
followed by the three diagonal components of the pressure tensor in the first slab (the slab
with lowest z), then the next lowest slab, and so forth. NAMD will also output the pres-
sure profile averaged over all the steps since the last output. The format of this line is
PRESSUREPROFILEAVG: ts Axx Ayy Azz ... ; i.e., exactly as for the instantaneous pres-
sure. It is recommended to use the averaged pressure profile instead of the instantaneous value
as this will give better statistics and may prevent artifacts when using multiple timestepping.

• pressureProfileSlabs < Number of slabs in the spatial partition >
Acceptable Values: Positive integer
Default Value: 10
Description: NAMD divides the entire periodic cell into horizontal slabs of equal thickness;
pressureProfileSlabs specifies the number of such slabs.

• pressureProfileFreq < How often to output pressure profile data >
Acceptable Values: Positive integer
Default Value: 1
Description: Specifies the number of timesteps between output of pressure profile data.

• pressureProfileNonbonded < Compute nonbonded pressure profile contribution >
Acceptable Values: on or off
Default Value: off
Description: When enabled, only the nonbonded contribution to the pressure profile will
be computed. For trajectory analysis the recommended way to use this option is to use the
NAMD Tcl scripting interface as described in Sec. 2.2.2 to run for 0 steps, so that NAMD
prints the pressure profile without performing any dynamics.

Here is an example snippet from a NAMD input that can be used to compute the nonbonded
component of the pressure profile. It assumes that the coordinates were saved in three dcd files
(pp01.dcd, pp02.dcd, and pp03.dcd) every 500 timesteps. The pressureProfileSlabs must be
the same as was used for the calculation of the bonded part of the pressure. Note the use of no
switching function; this way the calculated electrostatic energy will be closest to what would be
calculated by PME.
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switching off
cutoff 20.0
pairlistdist 20.5

pressureProfile on
pressureProfileSlabs 60
pressureProfileFreq 100
pressureProfileNonbonded on

# Assume that coordinates were written to the dcd files every 500 timesteps.
set ts 500
foreach dcd { pp01.dcd pp02.dcd pp03.dcd } {

coorfile open dcd $dcd
while { [coorfile read] != -1 } {

firstTimestep $ts
run 0
incr ts 500

}
coorfile close

}
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7 Translation between NAMD and X-PLOR configuration param-
eters

NAMD was designed to provide many of the same molecular dynamics functions that X-PLOR
provides. As such, there are many similarities between the types of parameters that must be
passed to both X-PLOR and NAMD. This section describes relations between similar NAMD and
X-PLOR parameters.

• NAMD Parameter: cutoff
X-PLOR Parameter: CTOFNB
When full electrostatics are not in use within NAMD, these parameters have exactly the
same meaning — the distance at which electrostatic and van der Waals forces are truncated.
When full electrostatics are in use within NAMD, the meaning is still very similar. The
van der Waals force is still truncated at the specified distance, and the electrostatic force is
still computed at every timestep for interactions within the specified distance. However, the
NAMD integration uses multiple time stepping to compute electrostatic force interactions
beyond this distance every stepspercycle timesteps.

• NAMD Parameter: vdwswitchdist
X-PLOR Parameter: CTONNB
Distance at which the van der Waals switching function becomes active.

• NAMD Parameter: pairlistdist
X-PLOR Parameter: CUTNb
Distance within which interaction pairs will be included in pairlist.

• NAMD Parameter: 1-4scaling
X-PLOR Parameter: E14Fac
Scaling factor for 1-4 pair electrostatic interactions.

• NAMD Parameter: dielectric
X-PLOR Parameter: EPS
Dielectric constant.

• NAMD Parameter: exclude
X-PLOR Parameter: NBXMod
Both parameters specify which atom pairs to exclude from non-bonded interactions. The
ability to ignore explicit exclusions is not present within NAMD, thus only positive values of
NBXMod have NAMD equivalents. These equivalences are

– NBXMod=1 is equivalent to exclude=none — no atom pairs excluded,

– NBXMod=2 is equivalent to exclude=1-2 — only 1-2 pairs excluded,

– NBXMod=3 is equivalent to exclude=1-3 — 1-2 and 1-3 pairs excluded,

– NBXMod=4 is equivalent to exclude=1-4 — 1-2, 1-3, and 1-4 pairs excluded,

– NBXMod=5 is equivalent to exclude=scaled1-4 — 1-2 and 1-3 pairs excluded, 1-4 pairs
modified.
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• NAMD Parameter: switching
X-PLOR Parameter: SHIFt, VSWItch, and TRUNcation
Activating the NAMD option switching is equivalent to using the X-PLOR options SHIFt
and VSWItch. Deactivating switching is equivalent to using the X-PLOR option TRUNcation.

• NAMD Parameter: temperature
X-PLOR Parameter: FIRSttemp
Initial temperature for the system.

• NAMD Parameter: rescaleFreq
X-PLOR Parameter: IEQFrq
Number of timesteps between velocity rescaling.

• NAMD Parameter: rescaleTemp
X-PLOR Parameter: FINAltemp
Temperature to which velocities are rescaled.

• NAMD Parameter: restartname
X-PLOR Parameter: SAVE
Filename prefix for the restart files.

• NAMD Parameter: restartfreq
X-PLOR Parameter: ISVFrq
Number of timesteps between the generation of restart files.

• NAMD Parameter: DCDfile
X-PLOR Parameter: TRAJectory
Filename for the position trajectory file.

• NAMD Parameter: DCDfreq
X-PLOR Parameter: NSAVC
Number of timesteps between writing coordinates to the trajectory file.

• NAMD Parameter: velDCDfile
X-PLOR Parameter: VELOcity
Filename for the velocity trajectory file.

• NAMD Parameter: velDCDfreq
X-PLOR Parameter: NSAVV
Number of timesteps between writing velocities to the trajectory file.

• NAMD Parameter: numsteps
X-PLOR Parameter: NSTEp
Number of simulation timesteps to perform.
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8 Sample configuration files

This section contains some simple example NAMD configuration files to serve as templates.
This file shows a simple configuration file for alanin. It performs basic dynamics with no output

files or special features.

# protocol params
numsteps 1000

# initial config
coordinates alanin.pdb
temperature 300K
seed 12345

# output params
outputname /tmp/alanin
binaryoutput no

# integrator params
timestep 1.0

# force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20
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This file is again for alanin, but shows a slightly more complicated configuration. The system
is periodic, a coordinate trajectory file and a set of restart files are produced.

# protocol params
numsteps 1000

# initial config
coordinates alanin.pdb
temperature 300K
seed 12345

# periodic cell
cellBasisVector1 33.0 0 0
cellBasisVector2 0 32.0 0
cellBasisVector3 0 0 32.5

# output params
outputname /tmp/alanin
binaryoutput no
DCDfreq 10
restartfreq 100

# integrator params
timestep 1.0

# force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20
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This file shows another simple configuration file for alanin, but this time with full electrostatics
using PME and multiple timestepping.

# protocol params
numsteps 1000

# initial config
coordinates alanin.pdb
temperature 300K
seed 12345

# periodic cell
cellBasisVector1 33.0 0 0
cellBasisVector2 0 32.0 0
cellBasisVector3 0 0 32.5

# output params
outputname /tmp/alanin
binaryoutput no
DCDfreq 10
restartfreq 100

# integrator params
timestep 1.0
fullElectFrequency 4

# force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20

# full electrostatics
PME on
PMEGridSizeX 32
PMEGridSizeY 32
PMEGridSizeZ 32
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This file demonstrates the analysis of a DCD trajectory file using NAMD. The file pair.pdb
contains the definition of pair interaction groups; NAMD will compute the interaction energy and
force between these groups for each frame in the DCD file. It is assumed that coordinate frames
were written every 1000 timesteps. See Sec. 6.11 for more about pair interaction calculations.

# initial config
coordinates alanin.pdb
temperature 0

# output params
outputname /tmp/alanin-analyze
binaryoutput no

# integrator params
timestep 1.0

# force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20

# Atoms in group 1 have a 1 in the B column; group 2 has a 2.
pairInteraction on
pairInteractionFile pair.pdb
pairInteractionCol B
pairInteractionGroup1 1
pairInteractionGroup2 2

# First frame saved was frame 1000.
set ts 1000

coorfile open dcd /tmp/alanin.dcd

# Read all frames until nonzero is returned.
while { ![coorfile read] } {

# Set firstTimestep so our energy output has the correct TS.
firstTimestep $ts
# Compute energies and forces, but don’t try to move the atoms.
run 0
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incr ts 1000
}
coorfile close

110



9 Running NAMD

NAMD runs on a variety of serial and parallel platforms. While it is trivial to launch a serial
program, a parallel program depends on a platform-specific library such as MPI to launch copies
of itself on other nodes and to provide access to a high performance network such as Myrinet if one
is available.

For typical workstations (Windows, Linux, Mac OS X, or other Unix) with only ethernet net-
working (100 Megabit or Gigabit), NAMD uses the Charm++ native communications layer and
the program charmrun to launch namd2 processes for parallel runs (either exclusively on the local
machine with the ++local option or on other hosts as specified by a nodelist file). The namd2
binaries for these platforms can also be run directly (known as standalone mode) for single process
runs.

For workstation clusters and other massively parallel machines with special high-performance
networking, NAMD uses the system-provided MPI library (with a few exceptions) and standard
system tools such as mpirun are used to launch jobs. Since MPI libraries are very often incompatible
between versions, you will likely need to recompile NAMD and its underlying Charm++ libraries
to use these machines in parallel (the provided non-MPI binaries should still work for serial runs.)
The provided charmrun program for these platforms is only a script that attempts to translate
charmrun options into mpirun options, but due to the diversity of MPI libraries it often fails to
work.

9.1 Mac OS X Users Must Install the IBM XL C/C++ Run-Time Library

The IBM XL C/C++ compiler provides a significant performance boost to NAMD on PowerPC
G4 and G5 processors. Unfortunately, the runtime library cannot be statically linked, so you must
download it from http://ftp.software.ibm.com/aix/products/ccpp/vacpp-rte-macos/ and
install it based on the the README file in that directory. If the library is not installed, running
NAMD will product this error:

dyld: ./namd2 can’t open library: /opt/ibmcmp/lib/libibmc++.A.dylib

9.2 Individual Windows, Linux, Mac OS X, or Other Unix Workstations

Individual workstations use the same version of NAMD as workstation networks, but running
NAMD is much easier. If your machine has only one processor you can run the namd2 binary
directly:

namd2 <configfile>

For multiprocessor workstations, Windows and Solaris released binaries are based on SMP
versions of Charm++ that can run multiple threads. For best performance use one thread per
processor with the +p option:

namd2 +p<procs> <configfile>

Since the SMP versions of NAMD are relatively new, there may be bugs that are only present
when running multiple threads. You may want to try running with charmrun (see below) if you
experience crashes.
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For other multiprocessor workstations the included charmrun program is needed to run multiple
namd2 processes. The ++local option is also required to specify that only the local machine is
being used:

charmrun namd2 ++local +p<procs> <configfile>

You may need to specify the full path to the namd2 binary.

9.3 Linux, Mac OS X, or Other Unix Workstation Networks

The same binaries used for individual workstations as described above can be used with charmrun to
run in parallel on a workstation network. The only difference is that you must provide a “nodelist”
file listing the machines where namd2 processes should run, for example:

group main
host brutus
host romeo

The “group main” line defines the default machine list. Hosts brutus and romeo are the two
machines on which to run the simulation. Note that charmrun may run on one of those machines,
or charmrun may run on a third machine. All machines used for a simulation must be of the same
type and have access to the same namd2 binary.

By default, the “rsh” command (“remsh” on HPUX) is used to start namd2 on each node
specified in the nodelist file. You can change this via the CONV RSH environment variable, i.e.,
to use ssh instead of rsh run “setenv CONV RSH ssh” or add it to your login or batch script.
You must be able to connect to each node via rsh/ssh without typing your password; this can be
accomplished via a .rhosts files in your home directory, by an /etc/hosts.equiv file installed by your
sysadmin, or by a .ssh/authorized keys file in your home directory. You should confirm that you
can run “ssh hostname pwd” (or “rsh hostname pwd”) without typing a password before running
NAMD. Contact your local sysadmin if you have difficulty setting this up. If you are unable to use
rsh or ssh, then add “setenv CONV DAEMON” to your script and run charmd (or charmd faceless,
which produces a log file) on every node.

You should now be able to try running NAMD as:

charmrun namd2 +p<procs> <configfile>

If this fails or just hangs, try adding the ++verbose option to see more details of the startup
process. You may need to specify the full path to the namd2 binary. Charmrun will start the
number of processes specified by the +p option, cycling through the hosts in the nodelist file as
many times as necessary. You may list multiprocessor machines multiple times in the nodelist file,
once for each processor.

You may specify the nodelist file with the “++nodelist” option and the group (which defaults
to “main”) with the “++nodegroup” option. If you do not use “++nodelist” charmrun will first
look for “nodelist” in your current directory and then “.nodelist” in your home directory.

Some automounters use a temporary mount directory which is prepended to the path returned
by the pwd command. To run on multiple machines you must add a “++pathfix” option to your
nodelist file. For example:
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group main ++pathfix /tmp\_mnt /
host alpha1
host alpha2

There are many other options to charmrun and for the nodelist file. These are documented at
in the Charm++ Installation and Usage Manual available at http://charm.cs.uiuc.edu/manuals/
and a list of available charmrun options is available by running charmrun without arguments.

If your workstation cluster is controlled by a queueing system you will need build a nodelist
file in your job script. For example, if your queueing system provides a HOST FILE environment
variable:

set NODES = ‘cat $HOST_FILE‘
set NODELIST = $TMPDIR/namd2.nodelist
echo group main >! $NODELIST
foreach node ( $nodes )

echo host $node >> $NODELIST
end
@ NUMPROCS = 2 * $#NODES
charmrun namd2 +p$NUMPROCS ++nodelist $NODELIST <configfile>

Note that NUMPROCS is twice the number of nodes in this example. This is the case for
dual-processor machines. For single-processor machines you would not multiply $#NODES by
two.

Note that these example scripts and the setenv command are for the csh or tcsh shells. They
must be translated to work with sh or bash.

9.4 Windows Workstation Networks

Windows is the same as other workstation networks described above, except that rsh is not available
on this platform. Instead, you must run the provided daemon (charmd.exe) on every node listed in
the nodelist file. Using charmd faceless rather than charmd will eliminate consoles for the daemon
and node processes.

9.5 BProc-Based Clusters (Scyld and Clustermatic)

Scyld and Clustermatic replace rsh and other methods of launching jobs via a distributed process
space. There is no need for a nodelist file or any special daemons, although special Scyld or
Clustermatic versions of charmrun and namd2 are required. In order to allow access to files, the
first NAMD process must be on the master node of the cluster. Launch jobs from the master node
of the cluster via the command:

charmrun namd2 +p<procs> <configfile>

For best performance, run a single NAMD job on all available nodes and never run multiple
NAMD jobs at the same time. You should probably determine the number of processors via a
script, for example on Scyld:

@ NUMPROCS = ‘bpstat -u‘ + 1
charmrun namd2 +p$NUMPROCS <configfile>

113



You may safely suspend and resume a running NAMD job on these clusters using kill -STOP and
kill -CONT on the process group. Queueing systems typically provide this functionality, allowing
you to suspend a running job to allow a higher priority job to run immediately.

If you want to run multiple NAMD jobs simultaneously on the same cluster you can use the
charmrun options ++startpe and ++endpe to specify the range of nodes to use. The master node
(-1) is always included unless the ++skipmaster option is given. The requested number of processes
are assigned to nodes round-robin as with other network versions, or the ++ppn option can be
used to specify the number of processes per node. To limit the master node to one process use the
++singlemaster option.

9.6 SGI Altix

Be sure that the MPI DSM DISTRIBUTE environment variable is set, then use the Linux-ia64-MPT
version of NAMD along with the system mpirun:

mpirun -np <procs> <configfile>

9.7 Compaq AlphaServer SC

If your machine as a Quadrics interconnect you should use the Elan version of NAMD, other wise
select the normal MPI version. In either case, parallel jobs are run using the “prun” command as
follows:

prun -n <procs> <configfile>

There are additional options. Consult your local documentation.

9.8 IBM POWER Clusters

Run the MPI version of NAMD as you would any POE program. The options and environment
variables for poe are various and arcane, so you should consult your local documentation for rec-
ommended settings. As an example, to run on Blue Horizon one would specify:

poe namd2 <configfile> -nodes <procs/8> -tasks_per_node 8

9.9 Origin 2000

For small numbers of processors (1-8) use the non-MPI version of namd2. If your stack size limit is
unlimited, which DQS may do, you will need to set it with “limit stacksize 64M” to run on multiple
processors. To run on ¡procs¿ processors call the binary directly with the +p option:

namd2 +p<procs> <configfile>

For better performance on larger numbers of processors we recommend that you use the MPI
version of NAMD. To run this version, you must have MPI installed. Furthermore, you must set
two environment variables to tell MPI how to allocate certain internal buffers. Put the following
commands in your .cshrc or .profile file, or in your job file if you are running under a queuing
system:
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setenv MPI_REQUEST_MAX 10240
setenv MPI_TYPE_MAX 10240

Then run NAMD with the following command:

mpirun -np <procs> namd2 <configfile>

9.10 Memory Usage

NAMD has traditionally used less than 100MB of memory even for systems of 100,000 atoms. With
the reintroduction of pairlists in NAMD 2.5, however, memory usage for a 100,000 atom system
with a 12A cutoff can approach 300MB, and will grow with the cube of the cutoff. This extra
memory is distributed across processors during a parallel run, but a single workstation may run
out of physical memory with a large system.

To avoid this, NAMD now provides a pairlistMinProcs config file option that specifies the
minimum number of processors that a run must use before pairlists will be enabled (on fewer
processors small local pairlists are generated and recycled rather than being saved, the default is
“pairlistMinProcs 1”). This is a per-simulation rather than a compile time option because memory
usage is molecule-dependent.

9.11 Improving Parallel Scaling

While NAMD is designed to be a scalable program, particularly for simulations of 100,000 atoms
or more, at some point adding additional processors to a simulation will provide little or no extra
performance. If you are lucky enough to have access to a parallel machine you should measure
NAMD’s parallel speedup for a variety of processor counts when running your particular simulation.
The easiest and most accurate way to do this is to look at the “Benchmark time:” lines that are
printed after 20 and 25 cycles (usually less than 500 steps). You can monitor performance during
the entire simulation by adding “outputTiming steps” to your configuration file, but be careful to
look at the “wall time” rather than “CPU time” fields on the “TIMING:” output lines produced.
For an external measure of performance, you should run simulations of both 25 and 50 cycles (see
the stepspercycle parameter) and base your estimate on the additional time needed for the longer
simulation in order to exclude startup costs and allow for initial load balancing.

We provide both standard (UDP) and new TCP based precompiled binaries for Linux clusters.
We have observed that the TCP version is better on our dual processor clusters with gigabit ethernet
while the basic UDP version is superior on our single processor fast ethernet cluster. When using
the UDP version with gigabit you can add the +giga option to adjust several tuning parameters.
Additional performance may be gained by building NAMD against an SMP version of Charm++
such as net-linux-smp or net-linux-smp-icc. This will use a communication thread for each process
to respond to network activity more rapidly. For dual processor clusters we have found it that
running two separate processes per node, each with its own communication thread, is faster than
using the charmrun ++ppn option to run multiple worker threads. However, we have observed that
when running on a single hyperthreaded processor (i.e., a newer Pentium 4) there is an additional
15% boost from running standalone with two threads (namd2 +p2) beyond running two processors
(charmrun namd2 ++local +p2). For a cluster of single processor hyperthreaded machines an SMP
version should provide very good scaling running one process per node since the communication
thread can run very efficiently on the second virtual processor. We are unable to ship an SMP
build for Linux due to portability problems with the Linux pthreads implementation needed by
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Charm++. The new NPTL pthreads library in RedHat 9 fixes these problems so an SMP port can
become the standard shipping binary version in the future.

On some large machines with very high bandwidth interconnects you may be able to in-
crease performance for PME simulations by adding either “+strategy USE MESH” or “+strategy
USE GRID” to the command line. These flags instruct the Charm++ communication optimization
library to reduce the number of messages sent during PME 3D FFT by combining data into larger
messages to be transmitted along each dimension of either a 2D mesh or a 3D grid, respectively.
While reducing the number of messages sent per processor from N to 2*sqrt(N) or 3*cbrt(N), the
total amount of data transmitted for the FFT is doubled or tripled.

Extremely short cycle lengths (less than 10 steps) will also limit parallel scaling, since the atom
migration at the end of each cycle sends many more messages than a normal force evaluation.
Increasing pairlistdist from, e.g., cutoff + 1.5 to cutoff + 2.5, while also doubling stepspercycle
from 10 to 20, may increase parallel scaling, but it is important to measure. When increasing
stepspercycle, also try increasing pairlistspercycle by the same proportion.
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10 NAMD Availability and Installation

NAMD is distributed freely for non-profit use. NAMD 2.6b1 is based on the Charm++ messaging
system and the Converse communication layer (http://charm.cs.uiuc.edu/) which have been
ported to a wide variety of parallel platforms. This section describes how to obtain and install
NAMD 2.6b1.

10.1 How to obtain NAMD

NAMD may be downloaded from http://www.ks.uiuc.edu/Research/namd/. You will be re-
quired to provide minimal registration information and agree to a license before receiving access to
the software. Both source and binary distributions are available.

10.2 Platforms on which NAMD will currently run

NAMD should be portable to any parallel platform with a modern C++ compiler to which Charm
and Converse have been ported. Precompiled NAMD 2.6b1 binaries are available for the following
platforms:

• Windows (NT, etc.) on x86 processors

• Mac OS X (also called Darwin) on PowerPC processors

• AIX on POWER processors (with and without MPI)

• Linux on x86, x86-64 (AMD64/EMT64) and Itanium (IA64) processors

• Scyld Beowulf on x86 processors

• Clustermatic 4/5 on x86 processors

• Solaris on Sparc processors (with and without MPI)

• Tru64 Unix on Alpha processors (with and without MPI)

• Compaq AlphaServer SC (using the Quadrics Elan library)

• SGI Origin 2000 (with and without MPI)

• SGI Altix (with MPI)

10.3 Compiling NAMD

We provide complete and optimized binaries for all platforms to which NAMD has been ported. It
should not be necessary for you to compile NAMD unless you wish to add or modify features or to
improve performance by using an MPI library that takes advantage of special networking hardware.

Directions for compiling NAMD are contained in the release notes, which are available from the
NAMD web site http://www.ks.uiuc.edu/Research/namd/ and are included in all distributions.

10.4 Documentation

All available NAMD documentation is available for download without registration via the NAMD
web site http://www.ks.uiuc.edu/Research/namd/.
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1-4scaling parameter, 46

abf command, 89
alias psfgen command, 34, 37
amber parameter, 23
ambercoor parameter, 23
applyBias parameter, 92
Atoms moving too fast, 42
auto psfgen command, 35

Bad global exclusion count, 42
BerendsenPressure parameter, 63
BerendsenPressureCompressibility parameter,

64
BerendsenPressureFreq parameter, 64
BerendsenPressureRelaxationTime parameter,

64
BerendsenPressureTarget parameter, 64
binaryoutput parameter, 20
binaryrestart parameter, 21
bincoordinates parameter, 20
binvelocities parameter, 20
BOUNDARY energy, 22

callback command, 15
cellBasisVector1 parameter, 61
cellBasisVector2 parameter, 61
cellBasisVector3 parameter, 61
cellOrigin parameter, 61
checkpoint command, 16
COMmotion parameter, 46
consexp parameter, 53
consforcefile parameter, 66
conskcol parameter, 53
conskfile parameter, 53
consref parameter, 53
constantforce parameter, 66
constraints parameter, 53
coord psfgen command, 37
coordinate parameter, 89
coordinates parameter, 19
coordpdb psfgen command, 37
coorfile command, 16
cutoff parameter, 43
cwd parameter, 20

cylindricalBC parameter, 59
cylindricalBCAxis parameter, 60
cylindricalBCCenter parameter, 60
cylindricalBCexp1 parameter, 60
cylindricalBCexp2 parameter, 61
cylindricalBCk1 parameter, 60
cylindricalBCk2 parameter, 60
cylindricalBCl1 parameter, 60
cylindricalBCl2 parameter, 60
cylindricalBCr1 parameter, 60
cylindricalBCr2 parameter, 60

DCDfile parameter, 21
DCDfreq parameter, 21
DCDUnitCell parameter, 21
delatom psfgen command, 36
dielectric parameter, 46
distFile parameter, 91
dSmooth parameter, 90
dxi parameter, 90

eField parameter, 67
eFieldOn parameter, 67
error message

Atoms moving too fast, 42
Bad global exclusion count, 42

exclude parameter, 46
ExcludeFromPressure parameter, 66
ExcludeFromPressureCol parameter, 66
ExcludeFromPressureFile parameter, 66
extendedSystem parameter, 61

fep parameter, 97
fepCol parameter, 97
fepEquilSteps parameter, 97
fepFile parameter, 97
fepOutFile parameter, 98
fepOutFreq parameter, 97
FFTWEstimate parameter, 50
FFTWUseWisdom parameter, 50
FFTWWisdomFile parameter, 50
first psfgen command, 35
firsttimestep parameter, 43
fixedAtoms parameter, 54
fixedAtomsCol parameter, 54
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fixedAtomsFile parameter, 54
fixedAtomsForces parameter, 54
FMA parameter, 48
FMAFFT parameter, 48
FMAFFTBlock parameter, 49
FMALevels parameter, 48
FMAMp parameter, 48
FMAtheta parameter, 49
fMax parameter, 92
forceConst parameter, 90
freeEnergy parameter, 77
freeEnergyConfig parameter, 77
FullDirect parameter, 51
fullElectFrequency parameter, 51
fullSamples parameter, 91

GPRESSAVG, 22
GPRESSURE, 22
grocoorfile parameter, 26
gromacs parameter, 25
grotopfile parameter, 25
guesscoord psfgen command, 37

hgroupCutoff (Å) parameter, 44
historyFile parameter, 91

IMDfreq parameter, 71
IMDignore parameter, 71
IMDon parameter, 70
IMDport parameter, 70
IMDwait parameter, 71
inFiles parameter, 91

lambda parameter, 97
lambda2 parameter, 97
langevin parameter, 56
langevinCol parameter, 56
langevinDamping parameter, 56
langevinFile parameter, 56
langevinHydrogen parameter, 56
LangevinPiston parameter, 65
LangevinPistonDecay parameter, 65
LangevinPistonPeriod parameter, 65
LangevinPistonTarget parameter, 65
LangevinPistonTemp parameter, 65
langevinTemp parameter, 56
last psfgen command, 35
les parameter, 99

lesCol parameter, 100
lesFactor parameter, 99
lesFile parameter, 100
lesReduceMass parameter, 100
lesReduceTemp parameter, 100
longSplitting parameter, 51

margin parameter, 44
margin violations, 41
maximumMove parameter, 55
measure command, 16
minBabyStep parameter, 55
minimization parameter, 55
minimize command, 15
minLineGoal parameter, 55
minTinyStep parameter, 55
MISC energy, 22
molly parameter, 52
mollyIterations parameter, 52
mollyTolerance parameter, 52
moveBoundary parameter, 92
movingConstraints parameter, 67
movingConsVel parameter, 68
MTSAlgorithm parameter, 51
multiply psfgen command, 36
mutate psfgen command, 35

nonbondedFreq parameter, 51
numsteps parameter, 43

OPLS, 47
outFile parameter, 91
output command, 15
outputEnergies parameter, 22
outputFreq parameter, 91
outputMomenta parameter, 22
outputname parameter, 20
outputPairlists parameter, 45
outputPressure parameter, 22
outputTiming parameter, 22

pairInteraction parameter, 101
pairInteractionCol parameter, 101
pairInteractionFile parameter, 101
pairInteractionGroup1 parameter, 101
pairInteractionGroup2 parameter, 101
pairInteractionSelf parameter, 101
pairlistdist parameter, 44
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pairlistGrow parameter, 45
pairlistMinProcs parameter, 45
pairlistShrink parameter, 45
pairlistsPerCycle parameter, 45
pairlistTrigger parameter, 45
parameters parameter, 19
paraTypeCharmm parameter, 19
paraTypeXplor parameter, 19
parmfile parameter, 23
patch psfgen command, 35
pdb psfgen command, 35
pdbalias atom psfgen command, 37
pdbalias residue psfgen command, 34
PME parameter, 49
PMEGridSizeX parameter, 49
PMEGridSizeY parameter, 49
PMEGridSizeZ parameter, 50
PMEInterpOrder parameter, 49
PMEProcessors parameter, 50
PMETolerance parameter, 49
PRESSAVG, 22
pressureProfile parameter, 102
pressureProfileFreq parameter, 102
pressureProfileNonbonded parameter, 102
pressureProfileSlabs parameter, 102
print command, 15
psfcontext psfgen command, 36

readexclusions parameter, 23
readpsf psfgen command, 37
reassignFreq parameter, 58
reassignHold parameter, 58
reassignIncr parameter, 58
reassignTemp parameter, 58
regenerate psfgen command, 36
reinitvels command, 16
reloadCharges command, 16
rescaleFreq parameter, 57
rescaleTemp parameter, 57
rescalevels command, 16
resetpsf psfgen command, 36
residue psfgen command, 35
restartfreq parameter, 21
restartname parameter, 20
restartsave parameter, 21
restraintList parameter, 92
rigidBonds parameter, 47

rigidDieOnError parameter, 47
rigidIterations parameter, 47
rigidTolerance parameter, 47
rotConsAxis parameter, 69
rotConsPivot parameter, 69
rotConstraints parameter, 68
rotConsVel parameter, 69
run command, 15

scnb parameter, 23
seed parameter, 47
segment psfgen command, 34
selectConstraints parameter, 53
selectConstrX parameter, 54
selectConstrY parameter, 54
selectConstrZ parameter, 54
SMD parameter, 70
SMDDir parameter, 70
SMDFile parameter, 70
SMDk parameter, 70
SMDOutputFreq parameter, 70
SMDVel parameter, 70
source command, 15
sphericalBC parameter, 58
sphericalBCCenter parameter, 59
sphericalBCexp1 parameter, 59
sphericalBCexp2 parameter, 59
sphericalBCk1 parameter, 59
sphericalBCk2 parameter, 59
sphericalBCr1 parameter, 59
sphericalBCr2 parameter, 59
splitPatch parameter, 44
stepspercycle parameter, 43
StrainRate parameter, 66
structure parameter, 19
SurfaceTensionTarget parameter, 65
switchdist parameter, 44
switching parameter, 44

tclBC parameter, 74
tclBCArgs parameter, 75
tclBCScript parameter, 75
tclForces parameter, 71
tclForcesScript parameter, 71
tCouple parameter, 57
tCoupleCol parameter, 57
tCoupleFile parameter, 57
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tCoupleTemp parameter, 57
TEMPAVG, 22
temperature parameter, 46
timestep parameter, 43
topology psfgen command, 34
TOTAL2 energy, 22
TOTAL3 energy, 22

units used for output, 22
useConstantArea parameter, 63
useConstantRatio parameter, 63
useDPME parameter, 50
useFlexibleCell parameter, 63
useGroupPressure parameter, 63
useSettle parameter, 48
usMode parameter, 92

vdwGeometricSigma parameter, 47
velDCDfile parameter, 21
velDCDfreq parameter, 22
velocities parameter, 19
velocityQuenching parameter, 55

wrapAll parameter, 62
wrapNearest parameter, 62
wrapWater parameter, 62
writepdb psfgen command, 37
writepsf psfgen command, 37
writeXiFreq parameter, 91

xiMax parameter, 90
xiMin parameter, 90
XSTfile parameter, 61
XSTfreq parameter, 61
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