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Overview

« My perspective about directive-based accelerator
programming today and in the near-term ramp up to
exascale computing

« Based on our ongoing work developing VMD and NAMD
molecular modeling tools supported by our NIH-funded
center since the mid-90’s

 What is a person like me doing using directives? I'm
the same guy that likes to give talks about CUDA and
OpenCL, x86 intrinsics, and similarly lower level
programming techniques. Why am | here?
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Spollers:

Directives are a key solution in the “all options on the table” type
of approach that | believe is required as we work toward exascale
computing

There aren’t enough HPC developers in the world to write
everything entirely in low level APIs fast enough to keep pace

Science is an ever changing landscape — significant
methodological developments come every few years in active fields
like biomolecular modeling...

Code gets (re)written for new science methodologies before
you’ve finished optimizing the old code for the previous

Hardware is still changing very rapidly, and more disruptively
than during the blissful heyday of “Peak Moore’s Law”
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VMD - “Visual Molecular Dynamlcs

« Visualization and analysis of:
— Molecular dynamics simulations
— Lattice cell simulations
— Quantum chemistry calculations
— Sequence information
* User extensible scripting and plugins

« http://www.ks.uiuc.edu/Research/vmd/
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Goal: A Computational Microscope

Study the molecular machines in living cells

Ribosome: target for antibiotics Poliovirus




Exemplary Hetereogeneous
Computing Challenges

Tuning, adapting, or developing software for
multiple processor types

Decomposition of problem(s) and load balancing
work across heterogeneous resources for best
overall performance and work-efficiency

Managing data placement in disjoint memory
systems with varying performance attributes

Transferring data between processors, memory
systems, interconnect, and I/O devices
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Major Approaches For Programming
Hybrid Architectures

Use drop-in libraries in place of CPU-only libraries

— Little or no code development

— Examples: MAGMA, BLAS-variants, FFT libraries, etc.

— Speedups limited by Amdahl’s Law and overheads associated with
data movement between CPUs and GPU accelerators

Generate accelerator code as a variant of CPU source, e.qg.

using OpenMP and OpenACC directives, and similar

Write lower-level accelerator-specific code, e.g. using
CUDA, OpenCL, other approaches
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Challenges Adapting Large Software Systems
for State-of-the-Art Hardware Platforms

 Initial focus on key computational kernels eventually gives way to the
need to optimize an ocean of less critical routines, due to
observance of Amdahl’s Law

« Even though these less critical routines might be easily ported to
CUDA or similar, the sheer number of routines often poses a
challenge

* Need a low-cost approach for getting “some” speedup out of these
second-tier routines

* In many cases, it is completely sufficient to achieve memory-
bandwidth-bound GPU performance with an existing algorithm
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Amdahl’'s Law and Role of Directives

« Initial partitioning of algorithm(s) between host CPUs and accelerators
is typically based on initial performance balance point

« Time passes and accelerators get MUCH faster...
 Formerly harmless CPU code ends up limiting overall performance!
* Need to address bottlenecks in increasing fraction of code

« Directives provide low cost, low burden, approach to improve
incrementally vs. status quo

« Directives are complementary to lower level approaches such as
CPU intrinsics, CUDA, OpenCL, and they all need to coexist and
interoperate very gracefully alongside each other
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Accelerate (Short-range cutoff)and (lat

Multilevel Summation on the GPU:
An Amdahl’'s Law Example From Our Previous Work

Hardware platform is Intel

00 CPU and NVIDIA
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How Do Directives Fit In?

Single code base is typically maintained
Almost “deceptively” simple to use
Easy route for incremental, “gradual buy in”

Rapid development cycle, but success often follows
minor refactoring and/or changes to data structure layout

Higher abstraction level than other techniques for
programming accelerators

In many cases, performance can be “good enough”
due to memory-bandwidth limits, or based on return on
developer time or some other metric
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Why Not Use Directives Exclusively?

« Some projects do...but:

— Back-end runtimes for compiler directives sometimes have
unexpected extra overheads that could be a showstopper in
critical algorithm steps

— High abstraction level may mean lack of access to hardware
features exposed only via CUDA or other lower level APIs

— Fortunately, interoperability APls enable directive-based
approaches to be used side-by-side with hand-coded kernels,
libraries, etc.

— Presently, sometimes-important capabilities like JIT
compilation of runtime-generated kernels only exist within
lower level APIs such as CUDA and OpenCL
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What Do Existing Accelerated
Applications Look Like?

I'll provide examples from digging into modern versions of VMD and

NAMD that both have already incorporated acceleration in a deep way.

Questions:
« How much code needs to be “fast”
 What fraction runs on accelerator now?

« Using directives, how much more coverage can be achieved, and
with what speedup?

* Do |l lose access to any points of execution or resource control that
are critical for the application’s performance?

- Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
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VMD: 10 Years of GPU-Accelerated Computing

» Has stood the test of time Blast from the past:
* Modeling, Visualization, CUDA starting with version 0.7 !!!
Rendering, and Analysis Quad core Intel QX6700, three NVIDIA

GeForce 8800GTX GPUs, RHEL4 Linux

Accelerating molecular modeling applications with graphics
processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L.
Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.



VMD Petascale Visualization and Analysis

« Analyze/visualize large trajectories too large to
transfer off-site:

— User-defined parallel analysis operations, data types

— Parallel rendering, movie making

« Supports GPU-accelerated Cray XK7 nodes for both
visualization and analysis:

— GPU accelerated trajectory analysis w/ CUDA

— OpenGL and GPU ray tracing for visualization and
movie rendering

« Parallel I/O rates up to 275 GB/sec on 8192 Cray . \ )
XE6 nodes — can read in 231 TB in 15 minutes! NCSA Blue Waters Hybrid Cray XE6 / XK7

22,640 XE6 dual-Opteron CPU nodes
Parallel VMD currently available on: 4,224 XK7 nodes w/ Telsa K20X GPUs

ORNL Titan, NCSA Blue Waters, Indiana Big Red I,
CSCS Piz Daint, and similar systems
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GPUs Can Reduce MDFF Trajectory Analysis
Runtimes from Hours to Minutes

GPUs enable laptops and
desktop workstations to
handle tasks that would have
previously required a cluster,
or a very long watt...

LT
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GPU-accelerated petascale
supercomputers enable
analyses that were previously
impractical, allowing detailed
study of very large structures

such as viruses GPU-accelerated MDFF Cross Correlation Timeline
Regions with poor fit Regions with good fit




Parallel MDFF Cross Correlation Analysis on Cray XK7

Relative CC
-0.0032 0.02
Rabbit Hemorrhagic Disease Virus (RHDV) —
Traj. frames 10,000
Structure 720 &
component E
selections g
Single-node XK7 336 hours (14 days) =
(projected) A
128-node XK7 3.2 hours
105x speedup
2048-node XK7 19.5 minutes RHDYV colored 48 62 76 90 107 105 45 164
1035x speedup by relative CC

Time
Calculation of 7M CCs would take

) . ) Stone et al., Faraday Discuss., 169:265-283, 2014.
5 years using serial CPU algorithm!



Example of VMD Module Connectivity

« Early progress focused acceleration =N =L N
efforts on handful of high level oL R = e
analysis routines that were the most e b e s =
computationally demanding T ey =N D W
* Future hardware requires pervasive kg
acceleration

« Top image shows script interface
links to top level analytical routines

» Bottom image shows links among
subset of data analytics algorithms to
leaf-node functions
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VMD Software Decomposition

Externally developed collective

VMD Core (~230,000 LoC) variables module:
e C++: 140,000 LoC e C++: 20,000 LOC
« Headers: 36,000 LoC - Headers: 11,000 LOC
e C: 14,000 LoC
« Tcl bindings: 12,000 LoC Internally+externally developed scripts
* Python bindings: 8,000 LoC - Tcl/ Python scripts: 284,000 LoC
Hand-coded accelerator and vectorization:
« CUDA: 17,000 LoC VMD “plugin” shared lib modules:
 Intel x86 intrinsics: 2,500 LoC - C 102,000 LoC
« IBM POWER intrinsics: 500 LoC » C++ 36,000 LoC
- ARM NEON intrinsics: 100 LoC *  Headers: 17,000 LoC
« CUDA: 5,000 LoC
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VMD Software Decomposition

All hand-written accelerated or
vectorized code (CUDA + CPU Type of Code
intrinsics) represents only 9% of

core VMD source code mCH+
Percent coverage of leaf-node

analytical functions is lower yet mC
Need to evolve VMD toward high = CUDA
coverage of performance-critical

analysis code with fine-grained

parallelism on accelerators and " Headers

vectorization
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Directive-Based Parallel Programming
with OpenACC

Annotate loop nests in existing code with #pragma compiler directives:

— Annotate opportunities for parallelism

— Annotate points where host-GPU memory transfers are best performed,
indicate propagation of data
Evolve original code structure to improve efficacy of parallelization
— Eliminate false dependencies between loop iterations
— Revise algorithms or constructs that create excess data movement

How well does this work if we stick with “low cost, low burden”
philosophy | claim to support?
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Clustering Analysis of Molecular
Dynamics Trajectories
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GPU-Accelerated Molecular Dynamics Clustering Analysis with
OpenACC. J.E. Stone, J.R. Perilla, C. K. Cassidy, and K. Schulten.

In, Robert Farber, ed., Parallel Programming with OpenACC, Morgan
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Serial QCP RMSD Inner Product Loop

for (int 1=0; I<cnt; I++) {
double x1, x2, y1, y2, z1, z2;

x1 = crdx1[l];

Simple example where 2 o
directive based parallelism GT 4=xtxt + 1yt + 2021

. . x2 = crdx2[l];

can be applied easily and 12 -
effe Ctlve | y G2 += x2*x2 + y2*y2 + 22*z2;

Such a loop is inherently a Dty

memory-bandwidth-bound T

. y a3 +=y :x,

algorithm, so that’s the goal i

for acceleration a6 =21

:8+;:1*)z(2;

}
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OpenACC QCP RMSD Inner Product Loop

Il excerpted code that has been abridged for brevity...

Simple example where et framecount, const flaa  restrict crs,
d I reCtlve based paral lel ISM ::)r:'ggl’ni,aka;cc kernels copyin(crds[0:tsz]), copy(rmsdmat[0:msz])
can be applied easily and J compute triangutar matrix index * n 3 helper function
effectively I confiicts or dependencies between loop fterations

acc_idx2sub_tril(long(framecount-1), k, &i, &j);

SUCh a |OOp |S inherently a long x1addr = j * 3L * framecrdsz;
. long x2addr =i * 3L * framecrdsz;
memory-bandwidth-bound °
. y #pragma acc loop vector(256
algorithm, so that’s the goal Ptor (long 1<0; Iecnt tor) {

. Il abridged for brevity ...
for acceleration
rmsdmat[k]=rmsd; // store linearized triangular matrix
}
}
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OpenACC QCP RMSD Inner Product Loop
Performance Results

Xeon 2867W v3, w/ hand-coded AVX and FMA intrinsics: 20.7s
Tesla K80 w/ OpenACC: 6.5s (3.2x speedup)

OpenACC on K80 achieved 65% of theoretical peak memory
bandwidth, with 2016 compiler and just a few lines of #pragma
directives. Excellent speedup for minimal changes to code.

Future OpenACC compiler revs should provide higher
performance yet
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Caveat Emptor

Compilers are not all equal...
...Sometimes they make me want to scream...
...but they all improve with time

If we begin using directives now to close the gap on
impending doom arising from Amdahl’s Law, the
compilers should be robust and performant when it
really counts
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Directives and

Hardware Evolution

* Ongoing hardware advancements are addressing

ease-of-use gaps t
both directives and

* Unified memory: e

nat remained a problem for
hand-coded kernels

Iminate many cases where

programmer used to have to hand-code memory
transfers explicitly, blurs CPU/GPU boundary

What about distributing data structures across

multiple NVLink-connected GPUs?

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, Univers

ity of lllinois at Urbana-Champaign - www.ks.uiuc.edu



Performance Tuning, Profiling Wish List

* Some simple examples on my wish list:

— Make directive runtimes more composable with external resource
management, tasking frameworks, and runtime systems, interop APIs
are already a start, to build more commonality there.

— Help profiling tools to clearly identify functions, call chains, and
resources associated with code produced by compiler directives and
their runtime system(s), to clearly differentiate from hand-coded
kernels, and resources used by other runtimes

— Allow directive-based programming systems support things like
application-determined hardware scheduling priorities that
encompass both hand-coded and directive-generated kernels

— Allow programmer oversight about what resources directive kernels
are allowed to use, CPU affinity, etc
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Using CPUs to Optimize Accelerator Performance

« Optimization strategy:
— Use the CPU to “regularize” the GPU workload

— Use optimal/fixed-size data structures, idealize layout for
GPU traversal

— Handle exceptional or irregular work units on the CPUs;
GPUs processes the bulk of the work concurrently

— On average, the GPUs are kept highly occupied,
attaining a high fraction of peak performance

- Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
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Heterogeneous Compute Node

« Dense PCle-based | .. | :
multi-GPU compute node i ] | e

 Application would ideally |
exploit all of the CPU, ﬁq Eﬂ
GPU, and I/O resources

® |2 ~12GBIs
concurrently... [ ][ [‘

(/0O devs not shown) } { A]

\(a) y
Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations
Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten.

Journal of Parallel Computing, 40:86-99, 2014.

http://dx.doi.org/10.1016/j.parco.2014.03.009
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Ongoing VMD Work on POWER
« Early observations about P8+CUDA+NVLink:

— P8 single-thread perf more of an issue than on x86 for small untuned
parts of existing code — greater need for GPU offload of formerly
insignificant host code

— P8+CUDA NUMA-correctness w/ NVLink much more important
than PCle (e.g. x86) due to larger benefits/penalties when NVLink
is used effectively vs. not

— P8 “Minsky” systems get extra benefits for algorithms that have lots
of host-GPU DMA transfers, where the NVLink interconnect speeds
greatly outpeform PCle
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Benefits of P8+NVLink for VMD

« Rapid access to host-side data too large to fit entirely in P100

GPU memory

— Many existing VMD CUDA kernels already used this strategy w/
PCle, performance gains from NVLink are large and immediate

« Rapid peer-to-peer GPU data transfers:

— Bypass host whenever possible, perform nearest-neighbor
exchanges for pairwise calculations, e.g. those that arise in
algorithms for simulation trajectory clustering

— Use aggregate GPU memory to collectively store/cache large data:

+ Distribute time-varying trajectory timesteps among memories of multiple GPUs
» High-fidelity ray tracing of scenes containing massive amounts of geometry
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Think of ORNL Summit node as an “entry point” to potential future possibilities...

Directives and Potential Hardware Evolution

Questions:

Would the need for ongoing growth in memory bandwidth among tightly connected
accelerators w/ HBM predict even denser nodes?
— Leadership systems use 6-GPU nodes now, how many in 2022 or thereafter?

As accelerated systems advance, will directives encompass peer-to-peer
accelerator operations better?

What if future accelerators can directly RDMA to remote accelerators (over a
communication fabric) via memory accesses?

In the future, will directives make it easier to program potentially complex collective
operations, reductions, fine-grained distributed-shared-memory data structures
among multiple accelerators?
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“‘When | was a young man, my goal was to look wi
inside of cells, one atom at a time, to decipher how living systems work. That is what | strived for and
I never deflected from this goal.” — Klaus Schulten
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