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Goal: A Computational Microscope
• Study the molecular machines in living cells
Ribosome: synthesizes proteins 
from genetic information, target 

for antibiotics

Silicon nanopore: 
bionanodevice for sequencing 

DNA efficiently
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Electrons in 
Vibrating Buckyball

Cellular Tomography,
Cryo-electron Microscopy

Poliovirus

Ribosome Sequences

VMD – “Visual Molecular Dynamics”

Whole Cell Simulations

• Visualization and analysis of:
– molecular dynamics simulations
– quantum chemistry calculations
– particle systems and whole cells
– sequence data

• User extensible w/ scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Meeting the Diverse Needs of the 
Molecular Modeling Community

• Over 212,000 registered users
– 18% (39,000) are NIH-funded
– Over 49,000 have downloaded 

multiple VMD releases

• Over 6,600 citations
• User community runs VMD on:

– MacOS X, Unix, Windows 
operating systems

– Laptops, desktop workstations
– Clusters, supercomputers

• VMD user support and 
service efforts:
– 20,000 emails, 2007-2011
– Develop and maintain 

VMD tutorials and topical 
mini-tutorials; 11 in total

– Periodic user surveys
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VMD Interoperability –
Linked to Today’s Key Research Areas

• Unique in its interoperability with a broad 
range of modeling tools: AMBER, 
CHARMM, CPMD, DL_POLY, GAMESS, 
GROMACS, HOOMD, LAMMPS, NAMD, 
and many more …

• Supports key data types, file formats, and 
databases, e.g. electron microscopy, quantum 
chemistry, MD trajectories, sequence 
alignments, super resolution light microscopy

• Incorporates tools for simulation preparation, 
visualization, and analysis
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GPU Accelerated Trajectory Analysis 
and Visualization in VMD

GPU-Accelerated Feature Speedup vs. 
single CPU core

Molecular orbital display 120x

Radial distribution function 92x

Electrostatic field calculation 44x

Molecular surface display 40x
Ion placement 26x
MDFF density map synthesis 26x
Implicit ligand sampling 25x
Root mean squared fluctuation 25x
Radius of gyration 21x
Close contact determination 20x
Dipole moment calculation 15x
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Ongoing VMD GPU Development
• Development of new CUDA kernels for common 

molecular dynamics trajectory analysis tasks, 
faster surface renderings, and more…

• Support for CUDA in MPI-enabled builds of 
VMD for analysis runs
– GPU accelerated commodity clusters
– GPU-accelerated Cray XK6/XK7 supercomputers: 

NCSA Blue Waters, ORNL Titan
• Updating existing CUDA kernels to take 

advantage of new hardware features on the new 
NVIDIA “Kepler” GPUs
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Molecular Visualization and Analysis 
Challenges for Petascale Simulations

• Very large structures (10M to over 100M atoms)
– 12-bytes per atom per trajectory frame
– One 100M atom trajectory frame: 1200MB!

• Long-timescale simulations produce huge trajectories
– MD integration timesteps are on the femtosecond timescale    

(10-15 sec) but many important biological processes occur on 
microsecond to millisecond timescales

– Even storing trajectory timesteps infrequently, resulting 
trajectories frequently contain millions of frames

• Terabytes to petabytes of data, often too large to move
• Viz and analysis must be done primarily on the 

supercomputer where the data already resides
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Approaches for Visualization and Analysis of 
Petascale Molecular Simulations with VMD

• Abandon conventional approaches, e.g. bulk download of 
trajectory data to remote viz/analysis machines
– In-place processing of trajectories on the machine running the simulations
– Use remote visualization techniques: Split-mode VMD with remote front-

end instance, and back-end viz/analysis engine running in parallel on 
supercomputer

• Large-scale parallel analysis and visualization via distributed 
memory MPI version of VMD

• Exploit GPUs to increase per-node analytical capabilities      , 
e.g. NCSA Blue Waters Cray XK6/XK7
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Parallel VMD Analysis w/ MPI
• Analyze trajectory frames, 

structures, or sequences in 
parallel supercomputers:
– Parallelize user-written analysis 

scripts with minimum difficulty
– Parallel analysis of independent 

trajectory frames
– Parallel structural analysis using 

custom parallel reductions
– Parallel rendering, movie making

• Dynamic load balancing:
– Tested with 15,360 CPU cores on 

Blue Waters Early Science System

• Supports GPU-accelerated 
clusters and supercomputers

VMD

VMD

VMD

Sequence/Structure Data, 
Trajectory Frames, etc…

Gathered Results

Data-Parallel
Analysis in 

VMD
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Quantifying GPU Performance and 
Energy Efficiency in HPC Clusters

• NCSA “AC” Cluster
• Power monitoring 

hardware on one node 
and its attached Tesla 
S1070 (4 GPUs)

• Power monitoring logs 
recorded separately for 
host node and attached 
GPUs

• Logs associated with 
batch job IDs

•32 HP XW9400 nodes
•128 cores, 128 Tesla C1060 GPUs  
•QDR Infiniband
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Tweet-a-Watt
• Kill-a-watt power meter
• Xbee wireless transmitter
• Power, voltage, shunt sensing 

tapped from op amp
• Lower transmit rate to smooth 

power through large capacitor
• Readout software upload 

samples to local database
• We built 3 transmitter units 

and one Xbee receiver
• Currently integrated into 

AC cluster as power monitor

Imaginations unbound
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Time-Averaged Electrostatics Analysis 
on Energy-Efficient GPU Cluster

• 1.5 hour job (CPUs) reduced to 
3 min (CPUs+GPU)

• Electrostatics of thousands of 
trajectory frames averaged 

• Per-node power consumption on 
NCSA “AC” GPU cluster:
– CPUs-only: 299 watts
– CPUs+GPUs: 742 watts

• GPU Speedup: 25.5x
• Power efficiency gain: 10.5x

Quantifying the Impact of GPUs on Performance and Energy 
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. 

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.  
The Work in Progress in Green Computing, pp. 317-324, 2010.
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AC Cluster GPU Performance and 
Power Efficiency Results

Application GPU 
speedup

Host 
watts

Host+GPU 
watts

Perf/watt 
gain

NAMD 6 316 681 2.8
VMD 25 299 742 10.5

MILC 20 225 555 8.1

QMCPACK 61 314 853 22.6
Quantifying the Impact of GPUs on Performance and Energy Efficiency 
in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. 
Esler, V. Kindratenko, J. Stone, J. Phillips.  The Work in Progress in Green 

Computing, pp. 317-324, 2010.
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Power Profiling: Example Log

• Mouse-over value displays
• Under curve totals displayed
• If there is user interest, we may support calls to add custom tags from 

application
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NCSA Blue Waters Early Science System
Cray XK6 nodes w/ NVIDIA Tesla X2090 GPUs
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Time-Averaged Electrostatics Analysis on 
NCSA Blue Waters Early Science System

NCSA Blue Waters Node Type Seconds per 
trajectory frame for 
one compute node

Cray XE6 Compute Node:
32 CPU cores (2xAMD 6200 CPUs)

9.33

Cray XK6 GPU-accelerated Compute Node:
16 CPU cores + NVIDIA X2090 (Fermi) GPU

2.25

Speedup for GPU XK6 nodes vs. CPU XE6 nodes GPU nodes are 
4.15x faster overall

Preliminary performance for VMD time-averaged 
electrostatics w/ Multilevel Summation Method on the 

NCSA Blue Waters Early Science System
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Early Experiences with Kepler
Preliminary Observations

• Arithmetic is cheap, memory references are costly
(trend is certain to continue & intensify…)

• Different performance ratios for registers, shared mem, 
and various floating point operations vs. Fermi  

• Kepler GK104 (e.g. GeForce 680) brings improved 
performance for some special functions vs. Fermi:
CUDA Kernel Dominant

Arithmetic 
Operations

Kepler (GeForce 680) 
Speedup vs.
Fermi (Quadro 7000)

Direct Coulomb summation rsqrtf() 2.4x

Molecular orbital grid evaluation expf(), exp2f(),
Multiply-Add

1.7x
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Molecular Surface Visualization

Poliovirus

• Large biomolecular 
complexes are difficult to 
interpret with atomic detail 
graphical representations

• Even secondary structure 
representations become 
cluttered

• Surface representations are 
easier to use when greater 
abstraction is desired, but 
are computationally costly

• Existing surface display 
methods incapable of 
animating dynamics of 
large structures
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• Displays continuum of structural detail:
– All-atom models
– Coarse-grained models
– Cellular scale models
– Multi-scale models: All-atom + CG,  Brownian + Whole Cell
– Smoothly variable between full detail, and reduced resolution 

representations of very large complexes

VMD “QuickSurf” Representation

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle 
System Trajectories.  

M. Krone, J. Stone, T. Ertl, K. Schulten. EuroVis – Short Papers, pp. 67-71, 2012.
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• Uses multi-core CPUs and GPU acceleration to enable smooth 
real-time animation of MD trajectories 

• Linear-time algorithm, scales to millions of particles, as limited 
by memory capacity

VMD “QuickSurf” Representation

Satellite Tobacco Mosaic Virus Lattice Cell Simulations
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Discretized lattice models derived 
from continuous model shown in a 

surface representation

Continuous particle 
based model – often 70 
to 300 million particles

QuickSurf Representation of 
Lattice Cell Models

Lattice Microbes: High-Performance Stochastic Simulation Method for the                
Reaction-Diffusion Master Equation.  

Elijah Roberts, John E. Stone, Zaida Luthey-Schulten.  2012. (Submitted)
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QuickSurf Algorithm Overview
• Build spatial acceleration 

data structures, optimize 
data for GPU

• Compute 3-D density map, 
3-D volumetric texture map:

• Extract isosurface for a 
user-defined density value

3-D density map 
lattice and 

extracted surface
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Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses Grid of thread blocks

Small 8x8 thread 
blocks afford large 
per-thread register 
count, shared 
memory

QuickSurf 3-D density map 
decomposes into thinner 3-D 

slabs/slices (CUDA grids)

…0,0 0,1

1,1

… …

…

…

Inactive threads, 
region of 
discarded 
output

Each thread 
computes 
one density 
map lattice 
point.

Threads 
producing 
results that 
are used1,0

… 
Chunk 2
Chunk 1
Chunk 0

Large volume 
computed in 
multiple passes, or 
multiple GPUs

QuickSurf GPU Parallel Decomposition
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QuickSurf and Limited GPU Global Memory
• High resolution molecular surfaces require a fine lattice spacing
• Memory use grows cubically with decreased lattice spacing
• Not typically possible to compute a surface in a single pass, so we 

loop over sub-volume “chunks” until done…
• Chunks pre-allocated and sized to GPU global mem capacity to 

prevent unexpected memory allocation failure while animating…
• Complication:

– Thrust allocates GPU mem. on-demand, no recourse if insufficient memory, 
have to re-gen QuickSurf data structures if caught by surprise!

• Workaround:
– Pre-allocate guesstimate workspace for Thrust
– Free the Thrust workspace right before use
– Newest Thrust allows user-defined allocator code… 
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QuickSurf Particle Sorting, Bead 
Generation, Spatial Hashing

• Particles sorted into spatial acceleration grid:
– Selected atoms or residue “beads” converted lattice 

coordinate system
– Each particle/bead assigned cell index, sorted 

w/NVIDIA Thrust template library
– Once particles are assigned cell indices and are 

sorted, a second kernel generates a cell lookup table 
to translate cell indices into a starting and ending 
indices in the sorted particle array

– The cell lookup table is used by the density map 
algorithm to loop over all of the atoms contained 
within a given cell

Coarse resolution 
spatial acceleration grid
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QuickSurf Density Map Algorithm
• Spatial acceleration grid cells are 

sized to match the cutoff radius for  
the exponential, beyond which density 
contributions are negligible

• Density map lattice points computed 
by summing density contributions 
from particles in 3x3x3 grid of 
neighboring spatial acceleration cells

• Volumetric texture map is computed 
by summing particle colors 
normalized by their individual density 
contribution

3-D density map 
lattice point and 
the neighboring 

spatial acceleration 
cells it references
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QuickSurf Density Map
Kernel Optimizations

• Compute reciprocals, prefactors, other math prior to 
kernel launch

• Use of intN and floatN vector types for improved global 
memory bandwidth

• Thread coarsening: one thread computes multiple output 
densities and colors

• Input data and register tiling: share blocks of input, 
partial distances in regs shared among multiple outputs

• Global memory (L1 cache) broadcasts: all threads in the 
block traverse the same atom/particle at the same time 
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QuickSurf Density Map Kernel Snippet…
for (zab=zabmin; zab<=zabmax; zab++) {

for (yab=yabmin; yab<=yabmax; yab++) {

for (xab=xabmin; xab<=xabmax; xab++) {

int abcellidx = zab * acplanesz + yab * acncells.x + xab;

uint2 atomstartend = cellStartEnd[abcellidx];

if (atomstartend.x != GRID_CELL_EMPTY) {

for (unsigned int atomid=atomstartend.x; atomid<atomstartend.y; atomid++) {

float4 atom = sorted_xyzr[atomid];

float dx = coorx - atom.x;            float dy = coory - atom.y;         float dz = coorz - atom.z;

float dxy2 = dx*dx + dy*dy;

float r21 = (dxy2 + dz*dz) * atom.w;

densityval1 += exp2f(r21);

/// Loop unrolling and register tiling benefits begin here……

float dz2 = dz + gridspacing;

float r22 = (dxy2 + dz2*dz2) * atom.w;

densityval2 += exp2f(r22);

/// More loop unrolling ….
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QuickSurf Marching Cubes 
Isosurface Extraction

• Isosurface is extracted from each density map “chunk”, and 
either copied back to the host, or rendered directly out of 
GPU global memory via CUDA/OpenGL interop

• All MC memory buffers are pre-allocated to prevent 
significant overhead when animating a simulation trajectory

QuickSurf 3-D density map 
decomposes into thinner 3-D 

slabs/slices (CUDA grids)

… 
Chunk 2
Chunk 1
Chunk 0

Large volume 
computed in 
multiple passes
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(Very) Brief Marching Cubes 
Isosurface Extraction Overview

• Given a 3-D volume of scalar density values and a requested 
surface density value, marching cubes computes vertices and 
triangles that compose the requested surface triangle mesh 

• Each MC “cell” (a cube with 8 density values at its vertices) 
produces a variable number of output vertices depending on how 
many edges of the cell contain the requested isovalue…

• Use scan() to compute the output indices so that each worker 
thread has conflict-free output of vertices/triangles



NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
U. Illinois at Urbana-Champaign

(Very) Brief Marching Cubes 
Isosurface Extraction Overview

• Once the output vertices have been computed and stored, we 
compute surface normals and colors for each of the vertices

• Although the separate normals+colors pass reads the density map 
again, molecular surfaces tend to generate a small percentage of 
MC cells containing triangles, we avoid wasting interpolation work

• We use CUDA tex3D() hardware 3-D texture mapping:
– Costs double the texture memory and a one copy from GPU global memory 

to the target texture map with cudaMemcpy3D()
– Still roughly 2x faster than doing color interpolation without the texturing 

hardware, at least on GT200 and Fermi hardware
– Kepler has new texture cache memory path that may make it feasible to do 

our own color interpolation and avoid the use of extra 3-D texture memory 
and associated copy, with acceptable performance
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QuickSurf Marching Cubes 
Isosurface Extraction

• Our optimized MC implementation computes per-vertex 
surface normals, colors, and outperforms the NVIDIA SDK 
sample on Fermi GPUs by using vector intN and floatN
types to achieve better memory bandwidth on scan() etc…

• Complications:
– Even on a 6GB Quadro 7000, GPU global memory is under great 

strain when working with large molecular complexes, e.g. viruses
– Marching cubes involves a parallel prefix sum (scan) to compute 

target indices for writing resulting vertices
– We use Thrust for scan, has the same memory allocation issue 

mentioned earlier for the sort, so we use the same workaround
– Worst-case number of output vertices can be huge, but we rarely 

have sufficient GPU memory for this – we use a fixed size vertex 
output buffer and hope our heuristics don’t fail us
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QuickSurf Performance
GeForce GTX 580

Molecular 
system

Atoms Resolution Tsort Tdensity TMC # vertices FPS

MscL 111,016 1.0Å 0.005 0.023 0.003 0.7 M 28

STMV capsid 147,976 1.0Å 0.007 0.048 0.009 2.4 M 13.2

Poliovirus 
capsid

754,200 1.0Å 0.01 0.18 0.05 9.2 M 3.5

STMV w/ water 955,225 1.0Å 0.008 0.189 0.012 2.3 M 4.2

Membrane 2.37 M 2.0Å 0.03 0.17 0.016 5.9 M 3.9

Chromatophore 9.62 M 2.0Å 0.16 0.023 0.06 11.5 M 3.4

Membrane w/ 
water

22.77 M 4.0Å 4.4 0.68 0.01 1.9 M 0.18

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and 
Particle System Trajectories.  

M. Krone, J. Stone, T. Ertl, K. Schulten. EuroVis – Short Papers, pp. 67-71, 2012.
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Extensions and Analysis Uses for QuickSurf 
Triangle Mesh

• Curved PN triangles:
– We have performed tests with post-processing the resulting triangle 

mesh and using curved PN triangles to generate smooth surfaces 
with a larger grid spacing, for increased performance

– Initial results demonstrate some potential, but there can be 
pathological cases where MC generates long skinny triangles, 
causing unsightly surface creases

• Analysis uses (beyond visualization):
– Minor modifications to the density map algorithm allow rapid 

computation of solvent accessible surface area by summing the 
areas in the resulting triangle mesh

– Modifications to the density map algorithm will allow it to be used 
for MDFF (molecular dynamics flexible fitting)

– Surface triangle mesh can be used as the input for computing the 
electrostatic potential field for mesh-based algorithms
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New Interactive Display & Analysis of Terabytes of Data:
Out-of-Core Trajectory I/O w/ Solid State Disks

• Timesteps loaded on-the-fly (out-of-core)
– Eliminates memory capacity limitations, even for multi-terabyte trajectory files
– High performance achieved by new trajectory file formats, optimized data structures, and 

efficient I/O

• Analyze long trajectories significantly faster using just a personal computer

Immersive out-of-core visualization of large-size and long-timescale 
molecular dynamics trajectories. J. Stone, K. Vandivort, and K. Schulten. 

Lecture Notes in Computer Science, 6939:1-12, 2011.

Commodity SSD, SSD RAID

A DVD movie per 
second!

450MB/sec 
to 4GB/sec
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Challenges for Immersive Visualization of Dynamics 
of Large Structures

• Graphical representations re-generated for each 
simulation timestep:

– Dependent on user-defined atom selections

• Although visualizations often focus on interesting 
regions of substructure, fast display updates 
require rapid traversal of molecular data structures

• Optimized per-frame atom selection traversal:
– Increased performance of per-frame updates by ~10x for 

116M atom BAR case with 200,000 selected atoms

• New GLSL point sprite sphere shader:
– Reduce host-GPU bandwidth for displayed geometry
– Over 20x faster than old GLSL spheres drawn using 

display lists — drawing time is now inconsequential

• Optimized all graphical representation generation 
routines for large atom counts, sparse selections

116M atom BAR domain test case:    
200,000 selected atoms,            

stereo trajectory animation 70 FPS, 
static scene in stereo 116 FPS 
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DisplayDevice

OpenGLRenderer CAVE

FreeVR

Windowed OpenGL

Display 
Subsystem

Scene Graph

Molecular Structure Data and Global VMD State

User Interface 
Subsystem

6DOF Input

Position

Buttons

Force
Feedback

Tcl/Python Scripting

Mouse + Windows

VR “Tools”

Graphical  
Representations

Non-Molecular
Geometry

DrawMolecule

Interactive M
D

CAVE Wand

Haptic Device

Spaceball

VRPN

Smartphone
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Ribosome w/ solvent
3M atoms

3 frames/sec w/ HD
60 frames/sec w/ SSDs

Membrane patch w/ solvent
20M atoms

0.4 frames/sec w/ HD
8 frames/sec w/ SSDs

VMD Out-of-Core Trajectory I/O Performance:
SSD-Optimized Trajectory Format, 8-SSD RAID

New SSD Trajectory File Format 2x Faster vs. Existing Formats
VMD I/O rate ~2.1 GB/sec w/ 8 SSDs
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Challenges for High Throughput 
Trajectory Visualization and Analysis

• It is not currently possible to exploit full disk I/O 
bandwidths when streaming data from SSD arrays 
(>4GB/sec) to GPU global memory

• Need to eliminate copies from disk controllers to 
host memory – bypass host entirely and perform 
zero-copy DMA operations straight from disk 
controllers to GPU global memory

• Goal: GPUs directly pull in pages from storage 
systems bypassing host memory entirely
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Radial Distribution Function
• RDFs describes how 

atom density varies 
with distance

• Can be compared with 
experiments

• Shape indicates phase  
of matter: sharp peaks 
appear for solids, 
smoother for liquids

• Quadratic time 
complexity O(N2)

Solid

Liquid
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Computing RDFs
• Compute distances for all pairs of atoms between 

two groups of atoms A and B
• A and B may be the same, or different
• Use nearest image convention for periodic systems
• Each pair distance is inserted into a histogram
• Histogram is normalized one of several ways 

depending on use, but usually according to the 
volume of the spherical shells associated with each 
histogram bin
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Computing RDFs on CPUs
• Atom coordinates can be traversed in a 

strictly consecutive access pattern, yielding 
good cache utilization

• Since RDF histograms are usually small to 
moderate in size, they normally fit entirely 
in L2 cache

• CPUs can compute the entire histogram in a 
single pass, regardless of the problem size 
or number of histogram bins
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Histogramming on the CPU
(slow-and-simple C)

memset(histogram, 0, sizeof(histogram));
for (i=0; i<numdata; i++) {
float val = data[i];
if (val >= minval  && val <= maxval) {

int bin = (val - minval) / bindelta;
histogram[bin]++;

}
}

Fetch-and-increment:
random access updates 

to histogram bins…
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Parallel Histogramming on        
Multi-core CPUs

• Parallel updates to a single histogram bin creates a 
potential output conflict

• CPUs have atomic increment instructions, but they 
often take hundreds of clock cycles; unsuitable…

• SSE can’t be used effectively: lacks ability to 
“scatter” to memory (e.g. no scatter-add, no 
indexed store instructions)

• For small numbers of CPU cores, it is best to 
replicate and privatize the histogram for each 
CPU thread, compute them independently, and 
combine the separate histograms in a final 
reduction step
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Computing RDFs on the GPU
• Need tens of thousands of independent threads
• Each GPU thread computes one or more atom pair 

distances
• Performance is limited by the speed of histogramming
• Histograms are best stored in fast on-chip shared 

memory
• Small size of shared memory severely constrains the 

range of viable histogram update techniques 
• Fast CUDA implementation on Fermi: 30-92x faster 

than CPU
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Computing Atom Pair Distances on 
the GPU

• Memory access pattern is simple
• Primary consideration is amplification of 

effective memory bandwidth, through use 
of GPU on-chip shared memory, caches, 
and broadcast of data to multiple or all 
threads in a thread block
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Radial Distribution Functions on GPUs
• Load blocks of atoms into shared memory and 

constant memory, compute periodic boundary 
conditions and atom-pair distances, all in parallel…

• Each thread computes all pair distances between its 
atom and all atoms in constant memory, incrementing 
the appropriate bin counter in the RDF histogram..

4

2.5Å Each RDF histogram bin 
contains count of particles 
within a certain distance 

range 
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GPU Histogramming
• Tens of thousands of threads concurrently 

computing atom distance pairs…
• Far too many threads for a simple per-thread 

histogram privatization approach like CPU…
• Viable approach: per-warp histograms
• Fixed size shared memory limits histogram size 

that can be computed in a single pass
• Large histograms require multiple passes, but we 

can skip block pairs that are known not to 
contribute to a histogram window
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Per-warp Histogram Approach
• Each warp maintains its own private histogram in 

on-chip shared memory
• Each thread in the warp computes an atom pair 

distance and updates a histogram bin in parallel
• Conflicting histogram bin updates are resolved 

using one of two schemes:
– Shared memory write combining with thread-tagging 

technique (older hardware, e.g. G80, G9x)
– atomicAdd() to shared memory (new hardware)
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RDF Inner Loops (abbreviated, xdist-only)
// loop over all atoms in constant memory

for (iblock=0; iblock<loopmax2; iblock+=3*NCUDABLOCKS*NBLOCK) {

__syncthreads();

for (i=0; i<3; i++) xyzi[threadIdx.x + i*NBLOCK]=pxi[iblock + i*NBLOCK]; // load coords…

__syncthreads();

for (joffset=0; joffset<loopmax; joffset+=3) {

rxij=fabsf(xyzi[idxt3  ] - xyzj[joffset  ]); // compute distance, PBC min image convention

rxij2=celld.x - rxij;

rxij=fminf(rxij, rxij2);

rij=rxij*rxij;

[…other distance components…]

rij=sqrtf(rij + rxij*rxij);

ibin=__float2int_rd((rij-rmin)*delr_inv);

if (ibin<nbins && ibin>=0 && rij>rmin2) {

atomicAdd(llhists1+ibin, 1U);

}

} //joffset

} //iblock
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Writing/Updating Histogram in 
Global Memory

• When thread block completes, add 
independent per-warp histograms together, 
and write to per-thread-block histogram in 
global memory

• Final reduction of all per-thread-block 
histograms stored in global memory

34 1 184815

31 1 14126

34 9 3487

99 11 22122828
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Preventing Integer Overflows
• Since all-pairs RDF calculation computes many 

billions of pair distances, we have to prevent 
integer overflow for the 32-bit histogram bin 
counters (supported by the atomicAdd() routine)

• We compute full RDF calculation in multiple 
kernel launches, so each kernel launch computes 
partial histogram

• Host routines read GPUs and increment large  
(e.g. long, or double) histogram counters in host 
memory after each kernel completes
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Multi-GPU Load Balance
• Many early CUDA codes 

assumed all GPUs were identical 
• Host machines may contain a 

diversity of GPUs of varying 
capability (discrete, IGP, etc)

• Different GPU on-chip and global 
memory capacities may need 
different problem “tile” sizes

• Static decomposition works 
poorly for non-uniform workload, 
or diverse GPUs

GPU 1
14 SMs

GPU N
30 SMs

…
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Multi-GPU Dynamic Work Distribution
// Each GPU worker thread loops over
// subset of work items…
while (!threadpool_next_tile(&parms, 

tilesize, &tile){
// Process one work item…
// Launch one CUDA kernel for each
//   loop iteration taken…
// Shared iterator automatically 
//   balances load on GPUs

}

GPU 1 GPU N
…

Dynamic work 
distribution
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Multi-GPU RDF Calculation
• Distribute combinations of 

tiles of atoms and histogram 
regions to different GPUs

• Decomposed over two 
dimensions to obtain enough 
work units to balance GPU 
loads

• Each GPU computes its own 
histogram, and all results are 
combined for final histogram

GPU 1
14 SMs

GPU N
30 SMs

…
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Multi-GPU Runtime 
Error/Exception Handling

• Competition for resources 
from other applications can 
cause runtime failures, e.g. 
GPU out of memory half way 
through an algorithm

• Handle exceptions, e.g. 
convergence failure, NaN 
result, insufficient compute 
capability/features

• Handle and/or reschedule 
failed tiles of work

GPU 1
SM 1.1
128MB

GPU N
SM 2.0

3072MB

…

Original 
Workload

Retry Stack
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Multi-GPU RDF Performance
• 4 NVIDIA GTX480 

GPUs 30 to 92x faster 
than 4-core Intel X5550 
CPU

• Fermi GPUs ~3x faster 
than GT200 GPUs: 
larger on-chip shared 
memory

Fast Analysis of Molecular Dynamics Trajectories with Graphics 
Processing Units – Radial Distribution Functions. B. Levine, J. Stone, 

and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-3569, 2011.



NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
U. Illinois at Urbana-Champaign

Acknowledgements
• Theoretical and Computational Biophysics Group, 

Luthey-Schulten Group,                               
IMPACT Group,                                          
University of Illinois at Urbana-Champaign

• NCSA Blue Waters Team
• NCSA Innovative Systems Lab
• Ben Levine (MSU), Axel Kohlmeyer (Temple)
• NVIDIA CUDA Center of Excellence, University 

of Illinois at Urbana-Champaign
• The CUDA team at NVIDIA
• NIH support: P41-RR005969



NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Lattice Microbes: High-Performance Stochastic Simulation Method 
for the Reaction-Diffusion Master Equation.  E. Roberts, J. Stone,   
Z. Luthey-Schulten.  2012. (Submitted)

• Fast Visualization of Gaussian Density Surfaces for Molecular 
Dynamics and Particle System Trajectories. M. Krone, J. Stone,       
T. Ertl, and K. Schulten. EuroVis – Short Papers, pp. 67-71, 2012.

• Immersive Out-of-Core Visualization of Large-Size and Long-
Timescale Molecular Dynamics Trajectories. J. Stone, K. Vandivort, 
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Kindratenko, J. Stone, J Phillips. International Conference on Green Computing, 
pp. 317-324, 2010.
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J. Stone, D. Gohara, G. Shi.  Computing in Science and Engineering, 12(3):66-
73, 2010.
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Hwu.  ASPLOS ’10: Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating Systems, pp. 
347-358, 2010.
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• GPU Clusters for High Performance Computing.  V. Kindratenko, J. Enos, G. 
Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu.  Workshop on 
Parallel Programming on Accelerator Clusters (PPAC), In Proceedings IEEE 
Cluster 2009, pp. 1-8, Aug. 2009.

• Long time-scale simulations of in vivo diffusion using GPU hardware.                  
E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: 
Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed 
Computing, pp. 1-8, 2009.
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Orbitals on GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. 
Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-Purpose 
Computation on Graphics Pricessing Units (GPGPU-2), ACM International 
Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Probing Biomolecular Machines with Graphics Processors.  J. Phillips, J. 
Stone.  Communications of the ACM, 52(10):34-41, 2009.

• Multilevel summation of electrostatic potentials using graphics processing 
units. D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.
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• Adapting a message-driven parallel application to GPU-accelerated clusters.         
J. Phillips, J. Stone, K. Schulten.  Proceedings of the 2008 ACM/IEEE Conference 
on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling 
applications.    C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. 
Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. 
Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. 
Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. 
Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. 
Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal, 
93:4006-4017, 2007. 


