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VMD – “Visual Molecular Dynamics”
• High performance molecular visualization and analysis
• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Volumetric Data
Cryo-EM density maps,
Electron orbitals,
Electrostatic potential, 
MRI scans, …

Sequence Data
Multiple Alignments,
Phylogenetic Trees

Annotations

VMDGraphics, Geometry

Atomic, CG, Particle, QM
Coordinates, Trajectories,

Energies, Forces, 
Secondary Structure, 

Wavefunctions, …

VMD Handles Diverse Data

GroEL Ethane

Whole cell as
particle system

Efficiency, Performance, Capacity
Load MD trajectories @ ~1GB/sec 
Improved disk storage efficiency:   
~5GB for 100M atom model

Model size limited only by RAM
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Programmable Graphics Hardware Evolution
Groundbreaking research systems:

AT&T Pixel Machine (1989): 
82 x DSP32 processors

UNC PixelFlow (1992-98): 
64 x (PA-8000 + 8,192 bit-serial SIMD)

SGI RealityEngine (1990s):
Up to 12 i860-XP processors perform 

vertex operations (ucode), fixed-func. 
fragment hardware

All mainstream GPUs now incorporate fully 
programmable processors

SGI Reality Engine i860 
Vertex Processors

UNC PixelFlow Rack
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Benefits of Programmable Shading for 
Molecular Visualization

• Potential for superior 
image quality with 
better shading 
algorithms

• Direct rendering of 
curved surfaces

• Render density map 
data, solvent surfaces

• Offload work from 
host CPU to GPU

Fixed-Function 
OpenGL

Programmable Shading: 
- same tessellation

-better shading
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VMD Ray Traced Sphere Shader

• OpenGL Shading 
Language (GLSL)

• High-level C-like language 
with vector types and 
operations

• Compiled dynamically by 
the graphics driver at 
runtime

• Compiled machine code 
executes on GPU
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“GPGPU” and GPU Computing

• Although graphics-specific, programmable 
shading languages were (ab)used by early 
researchers to experiment with using GPUs for 
general purpose parallel computing, known as 
“GPGPU”

• Compute-specific GPU languages such as CUDA 
and OpenCL have eliminated the need for graphics 
expertise in order to use GPUs for general purpose 
computation!
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GPU Computing
• Current GPUs provide over >1 TFLOPS of 

arithmetic capability!
• Massively parallel hardware, hundreds of 

processing units, throughput oriented architecture
• Commodity devices, omnipresent in modern 

computers (over a million GPUs sold per week)
• Standard integer and floating point types supported
• Programming tools allow software to be written in 

dialects of familiar C/C++ and integrated into 
legacy software
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What Speedups Can GPUs Achieve?
• Single-GPU speedups of 10x to 30x vs. one CPU 

core are common
• Best speedups can reach 100x or more, attained on 

codes dominated by  floating point arithmetic, 
especially native GPU machine instructions, e.g. 
expf(), rsqrtf(), …

• Amdahl’s Law can prevent legacy codes from 
achieving peak speedups with shallow GPU 
acceleration efforts

• GPU acceleration provides an opportunity to make 
slow, or batch calculations capable of being run 
interactively, on-demand…
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Molecular orbital  

calculation and display:

factor of 120x faster

GPU Computing in VMD

Electrostatic field 

calculation, ion placement:

factor of 20x to 44x faster

Imaging of gas migration 
pathways in proteins with 
implicit ligand sampling:

factor of 20x to 30x faster
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Comparison of CPU and GPU           
Hardware Architecture

CPU: Cache heavy, 
focused on individual 
thread performance 

GPU: ALU heavy, 
massively parallel, 
throughput oriented
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GPU Peak Single-Precision Performance:
Exponential Trend
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GPU Peak Memory Bandwidth:
Linear Trend

GT200
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NVIDIA CUDA Overview
• Hardware and software architecture for GPU 

computing, foundation for building higher level 
programming libraries, toolkits

• C for CUDA, released in 2007: 
– Data-parallel programming model
– Work is decomposed into “grids” of “blocks”

containing “warps” of “threads”, multiplexed onto 
massively parallel GPU hardware

– Light-weight, low level of abstraction, exposes many 
GPU architecture details/features enabling development 
of high performance GPU kernels
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CUDA Threads, Blocks, Grids
• GPUs use hardware multithreading to hide latency 

and achieve high ALU utilization
• For high performance, a GPU must be saturated

with concurrent work: >10,000 threads
• “Grids” of hundreds of “thread blocks” are 

scheduled onto a large array of SIMT cores
• Each core executes several thread blocks of 64-

512 threads each, switching among them to hide 
latencies for slow memory accesses, etc…

• 32 thread “warps” execute in lock-step (e.g. in 
SIMD-like fashion)
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GPU Memory Accessible in CUDA
• Mapped host memory: up to 4GB, ~5.7GB/sec 

bandwidth (PCIe), accessible by multiple GPUs
• Global memory: up to 4GB, high latency (~600 

clock cycles), 140GB/sec bandwidth, accessible 
by all threads, atomic operations (slow)

• Texture memory: read-only, cached, and 
interpolated/filtered access to global memory

• Constant memory: 64KB, read-only, cached, 
fast/low-latency if data elements are accessed in 
unison by peer threads

• Shared memory:16KB, low-latency, accessible 
among threads in the same block, fast if accessed 
without bank conflicts
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An Approach to Writing CUDA Kernels 
• Find an algorithm that exposes substantial parallelism, 

thousands of independent threads…
• Loops in a sequential code become a multitude of 

simultaneously executing threads organized into blocks of 
cooperating threads, and a grid of independent blocks…

• Identify appropriate GPU memory subsystems for storage 
of data used by kernel, design data structures accordingly

• Are there trade-offs that can be made to exchange 
computation for more parallelism?
– “Brute force” methods that expose significant 

parallelism do surprisingly well on current GPUs
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Electrostatic Potential Maps
• Electrostatic potentials 

evaluated on 3-D lattice:

• Applications include:
– Ion placement for 

structure building
– Time-averaged potentials 

for simulation
– Visualization and 

analysis Isoleucine tRNA synthetase
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Direct Coulomb Summation
• Each lattice point accumulates electrostatic potential 

contribution from all atoms: 
potential[j] +=  charge[i] / rij

atom[i]

rij: distance 
from lattice[j] 

to atom[i]
Lattice point j 

being evaluated
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Direct Coulomb Summation on the GPU

• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of 

independent threads, multiplexed onto hundreds of 
GPU processing units

• Single-precision FP arithmetic is adequate for intended 
application

• Numerical accuracy can be improved  by compensated 
summation, spatially ordered summation groupings, or 
accumulation of potential in double-precision

• Starting point for more sophisticated linear-time 
algorithms like multilevel summation
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DCS CUDA Block/Grid Decomposition 
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks: 
64-256 threads

…

Unrolling increases 
computational tile size

Threads compute
up to 8 potentials, 

skipping by half-warps
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Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation on the GPU
Host

Atomic
Coordinates

Charges

Threads compute
up to 8 potentials, 

skipping by half-warps

Thread blocks:
64-256 threads

Grid of thread blocks

Lattice padding
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Direct Coulomb Summation Runtime

GPU 
underutilized

GPU fully utilized, 
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. 

J. Comp. Chem., 28:2618-2640, 2007.

Lower 
is better

Cold start GPU 
initialization time: 

~110ms 
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Direct Coulomb Summation Performance

CUDA-Simple: 
14.8x faster,

33% of fastest 
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU, 
291 GFLOPS on 

GeForce 8800GTX

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in 
significant performance variation for small workloads
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Cutoff Summation
• Each lattice point accumulates electrostatic potential 

contribution from atoms within cutoff distance:
if (rij < cutoff)

potential[j] += (charge[i] / rij) * s(rij)
• Smoothing function s(r) is algorithm dependent

Cutoff radius rij: distance 
from lattice[j] 

to atom[i]

Lattice point j 
being evaluated atom[i]
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Cutoff Summation on the GPU

Global memory Constant memory
Offsets for bin 
neighborhood

Shared memory

atom bin

Potential 
map 

regions Bins of atoms

Each thread block cooperatively 
loads atom bins from surrounding 
neighborhood into shared memory 
for evaluation

Atoms are spatially hashed into fixed-size bins
CPU handles overflowed bins (GPU kernel can be very aggressive)
GPU thread block calculates corresponding region of potential map, 
Bin/region neighbor checks costly; solved with universal table look-up

Look-up table 
encodes “logic” of 
spatial geometry 
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GPU acceleration of cutoff pair potentials for molecular modeling applications. 
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with 

CPU overlap:
17x-21x faster than 

CPU core

If asynchronous 
stream blocks due 
to queue filling, 

performance will 
degrade from 

peak…
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Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for  1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

GPU computes  short-range cutoff and lattice cutoff parts:
Factor of 26x faster

Multilevel summation of electrostatic potentials using graphics processing units.

D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.
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Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic 
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds, 
46x faster than single CPU core

Electrostatics needed to build full 
structural model, place ions, study 

macroscopic properties

Partial model:    
~10M atoms
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Computing Molecular Orbitals
• Visualization of MOs aids in 

understanding the chemistry of 
molecular system

• MO spatial distribution is 
correlated with electron 
probability density

• Calculation of high resolution 
MO grids can require tens to 
hundreds of seconds on CPUs

• >100x speedup allows 
interactive animation of MOs 
@ 10 FPS C60
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Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid 

Apply user coloring/texturing 
and render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

For each trj frame, for   
each MO shown

Initialize Pool of GPU 
Worker Threads
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CUDA Block/Grid Decomposition

Padding optimizes glob. mem 
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread 
blocks afford large 
per-thread register 
count, shared mem.
Threads compute 
one MO lattice 
point each.

…

MO 3-D lattice decomposes into   
2-D slices (CUDA grids)
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MO Kernel for One Grid Point  (Naive C)

Loop over atoms

Loop over shells

Loop over primitives: 
largest component of 
runtime, due to expf()

Loop over angular 
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) {

float exponent      = basis_array[prim_counter ];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j; 

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

} 

} …..
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Preprocessing of Atoms, Basis Set, and 
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating 

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set 

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced 
GPU global memory accesses, CPU SSE loads
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GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive 
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each 
timestep, and for   

each MO

Constant for all MOs, 
all timesteps

Strictly sequential memory references
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Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tile data in shared mem is broadcast to 64 threads in a block
– Nested loops traverse multiple coefficient arrays of varying 

length, complicates things significantly…
– Key to performance is to locate tile loading checks outside of 

the two performance-critical inner loops
– Tiles sized large enough to service entire inner loop runs
– Only 27% slower than hardware caching provided by 

constant memory (GT200)
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Coefficient array in GPU global memory

Array tile loaded in GPU shared memory.  Tile size is a power-of-two, 
multiple of coalescing size, and allows simple indexing in inner loops 
(array indices are merely offset for reference within loaded tile).

64-Byte memory 
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of 
loop iterations
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VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd.  We used an unusually-high resolution MO grid for 
accurate timings.  A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),                                    
cannot be used for zero-valued MO isosurfaces
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Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores 
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,     
Sun Ultra 24, GeForce GTX 285 

GPU MO grid calc. 0.016 s

CPU surface gen, 
volume gradient, 
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU 
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

tryptophane
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VMD Multi-GPU Molecular Orbital 
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead, 

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel 
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%
CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%
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Future Work
• Near term work on GPU acceleration:

– Radial distribution functions, histogramming
– Secondary structure rendering
– Isosurface extraction, volumetric data processing
– Principle component analysis

• Replace CPU SSE code with OpenCL
• Port some of the existing CUDA GPU kernels 

to OpenCL where appropriate
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