
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

High Performance Molecular
Visualization and Analysis

with GPU Computing
John Stone

Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/Research/gpu/

BI Imaging and Visualization Forum, October 20, 2009

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD – “Visual Molecular Dynamics”
• High performance molecular visualization and analysis
• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Volumetric Data
Cryo-EM density maps,
Electron orbitals,
Electrostatic potential,
MRI scans, …

Sequence Data
Multiple Alignments,
Phylogenetic Trees

Annotations

VMDGraphics, Geometry

Atomic, CG, Particle, QM
Coordinates, Trajectories,

Energies, Forces,
Secondary Structure,

Wavefunctions, …

VMD Handles Diverse Data

GroEL Ethane

Whole cell as
particle system

Efficiency, Performance, Capacity
Load MD trajectories @ ~1GB/sec
Improved disk storage efficiency:
~5GB for 100M atom model

Model size limited only by RAM

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Programmable Graphics Hardware Evolution
Groundbreaking research systems:

AT&T Pixel Machine (1989):
82 x DSP32 processors

UNC PixelFlow (1992-98):
64 x (PA-8000 + 8,192 bit-serial SIMD)

SGI RealityEngine (1990s):
Up to 12 i860-XP processors perform

vertex operations (ucode), fixed-func.
fragment hardware

All mainstream GPUs now incorporate fully
programmable processors

SGI Reality Engine i860
Vertex Processors

UNC PixelFlow Rack

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Benefits of Programmable Shading for
Molecular Visualization

• Potential for superior
image quality with
better shading
algorithms

• Direct rendering of
curved surfaces

• Render density map
data, solvent surfaces

• Offload work from
host CPU to GPU

Fixed-Function
OpenGL

Programmable Shading:
- same tessellation

-better shading

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Ray Traced Sphere Shader

• OpenGL Shading
Language (GLSL)

• High-level C-like language
with vector types and
operations

• Compiled dynamically by
the graphics driver at
runtime

• Compiled machine code
executes on GPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

“GPGPU” and GPU Computing

• Although graphics-specific, programmable
shading languages were (ab)used by early
researchers to experiment with using GPUs for
general purpose parallel computing, known as
“GPGPU”

• Compute-specific GPU languages such as CUDA
and OpenCL have eliminated the need for graphics
expertise in order to use GPUs for general purpose
computation!

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Computing
• Current GPUs provide over >1 TFLOPS of

arithmetic capability!
• Massively parallel hardware, hundreds of

processing units, throughput oriented architecture
• Commodity devices, omnipresent in modern

computers (over a million GPUs sold per week)
• Standard integer and floating point types supported
• Programming tools allow software to be written in

dialects of familiar C/C++ and integrated into
legacy software

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

What Speedups Can GPUs Achieve?
• Single-GPU speedups of 10x to 30x vs. one CPU

core are common
• Best speedups can reach 100x or more, attained on

codes dominated by floating point arithmetic,
especially native GPU machine instructions, e.g.
expf(), rsqrtf(), …

• Amdahl’s Law can prevent legacy codes from
achieving peak speedups with shallow GPU
acceleration efforts

• GPU acceleration provides an opportunity to make
slow, or batch calculations capable of being run
interactively, on-demand…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular orbital

calculation and display:

factor of 120x faster

GPU Computing in VMD

Electrostatic field

calculation, ion placement:

factor of 20x to 44x faster

Imaging of gas migration
pathways in proteins with
implicit ligand sampling:

factor of 20x to 30x faster

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Comparison of CPU and GPU
Hardware Architecture

CPU: Cache heavy,
focused on individual
thread performance

GPU: ALU heavy,
massively parallel,
throughput oriented

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor
Cluster

SM Shared Memory

Streaming Processor Array

Streaming Multiprocessor

Te
xt

ur
e

U
ni

t

Streaming
Processor

ADD, SUB
MAD, Etc…

Special
Function Unit

SIN, EXP,
RSQRT, Etc…

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

SM

SM

Constant Cache

R
ea

d-
on

ly
,

8k
B

 s
pa

tia
l c

ac
he

,
1/

2/
3-

D
 in

te
rp

ol
at

io
n

64kB, read-only

FP64 Unit

FP64 Unit (double precision)

NVIDIA
GT200

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Peak Single-Precision Performance:
Exponential Trend

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Peak Memory Bandwidth:
Linear Trend

GT200

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NVIDIA CUDA Overview
• Hardware and software architecture for GPU

computing, foundation for building higher level
programming libraries, toolkits

• C for CUDA, released in 2007:
– Data-parallel programming model
– Work is decomposed into “grids” of “blocks”

containing “warps” of “threads”, multiplexed onto
massively parallel GPU hardware

– Light-weight, low level of abstraction, exposes many
GPU architecture details/features enabling development
of high performance GPU kernels

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Threads, Blocks, Grids
• GPUs use hardware multithreading to hide latency

and achieve high ALU utilization
• For high performance, a GPU must be saturated

with concurrent work: >10,000 threads
• “Grids” of hundreds of “thread blocks” are

scheduled onto a large array of SIMT cores
• Each core executes several thread blocks of 64-

512 threads each, switching among them to hide
latencies for slow memory accesses, etc…

• 32 thread “warps” execute in lock-step (e.g. in
SIMD-like fashion)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Memory Accessible in CUDA
• Mapped host memory: up to 4GB, ~5.7GB/sec

bandwidth (PCIe), accessible by multiple GPUs
• Global memory: up to 4GB, high latency (~600

clock cycles), 140GB/sec bandwidth, accessible
by all threads, atomic operations (slow)

• Texture memory: read-only, cached, and
interpolated/filtered access to global memory

• Constant memory: 64KB, read-only, cached,
fast/low-latency if data elements are accessed in
unison by peer threads

• Shared memory:16KB, low-latency, accessible
among threads in the same block, fast if accessed
without bank conflicts

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

An Approach to Writing CUDA Kernels
• Find an algorithm that exposes substantial parallelism,

thousands of independent threads…
• Loops in a sequential code become a multitude of

simultaneously executing threads organized into blocks of
cooperating threads, and a grid of independent blocks…

• Identify appropriate GPU memory subsystems for storage
of data used by kernel, design data structures accordingly

• Are there trade-offs that can be made to exchange
computation for more parallelism?
– “Brute force” methods that expose significant

parallelism do surprisingly well on current GPUs

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Electrostatic Potential Maps
• Electrostatic potentials

evaluated on 3-D lattice:

• Applications include:
– Ion placement for

structure building
– Time-averaged potentials

for simulation
– Visualization and

analysis Isoleucine tRNA synthetase

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation
• Each lattice point accumulates electrostatic potential

contribution from all atoms:
potential[j] += charge[i] / rij

atom[i]

rij: distance
from lattice[j]

to atom[i]
Lattice point j

being evaluated

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation on the GPU

• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of

independent threads, multiplexed onto hundreds of
GPU processing units

• Single-precision FP arithmetic is adequate for intended
application

• Numerical accuracy can be improved by compensated
summation, spatially ordered summation groupings, or
accumulation of potential in double-precision

• Starting point for more sophisticated linear-time
algorithms like multilevel summation

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

DCS CUDA Block/Grid Decomposition
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:
64-256 threads

…

Unrolling increases
computational tile size

Threads compute
up to 8 potentials,

skipping by half-warps

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation on the GPU
Host

Atomic
Coordinates

Charges

Threads compute
up to 8 potentials,

skipping by half-warps

Thread blocks:
64-256 threads

Grid of thread blocks

Lattice padding

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation Runtime

GPU
underutilized

GPU fully utilized,
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

Lower
is better

Cold start GPU
initialization time:

~110ms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation Performance

CUDA-Simple:
14.8x faster,

33% of fastest
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU,
291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in
significant performance variation for small workloads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation
• Each lattice point accumulates electrostatic potential

contribution from atoms within cutoff distance:
if (rij < cutoff)

potential[j] += (charge[i] / rij) * s(rij)
• Smoothing function s(r) is algorithm dependent

Cutoff radius rij: distance
from lattice[j]

to atom[i]

Lattice point j
being evaluated atom[i]

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation on the GPU

Global memory Constant memory
Offsets for bin
neighborhood

Shared memory

atom bin

Potential
map

regions Bins of atoms

Each thread block cooperatively
loads atom bins from surrounding
neighborhood into shared memory
for evaluation

Atoms are spatially hashed into fixed-size bins
CPU handles overflowed bins (GPU kernel can be very aggressive)
GPU thread block calculates corresponding region of potential map,
Bin/region neighbor checks costly; solved with universal table look-up

Look-up table
encodes “logic” of
spatial geometry

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with

CPU overlap:
17x-21x faster than

CPU core

If asynchronous
stream blocks due
to queue filling,

performance will
degrade from

peak…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

GPU computes short-range cutoff and lattice cutoff parts:
Factor of 26x faster

Multilevel summation of electrostatic potentials using graphics processing units.

D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds,
46x faster than single CPU core

Electrostatics needed to build full
structural model, place ions, study

macroscopic properties

Partial model:
~10M atoms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Computing Molecular Orbitals
• Visualization of MOs aids in

understanding the chemistry of
molecular system

• MO spatial distribution is
correlated with electron
probability density

• Calculation of high resolution
MO grids can require tens to
hundreds of seconds on CPUs

• >100x speedup allows
interactive animation of MOs
@ 10 FPS C60

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing
and render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Block/Grid Decomposition

Padding optimizes glob. mem
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread
blocks afford large
per-thread register
count, shared mem.
Threads compute
one MO lattice
point each.

…

MO 3-D lattice decomposes into
2-D slices (CUDA grids)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:
largest component of
runtime, due to expf()

Loop over angular
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

float exponent = basis_array[prim_counter];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j;

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

}

} …..

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Preprocessing of Atoms, Basis Set, and
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced
GPU global memory accesses, CPU SSE loads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each
timestep, and for

each MO

Constant for all MOs,
all timesteps

Strictly sequential memory references

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tile data in shared mem is broadcast to 64 threads in a block
– Nested loops traverse multiple coefficient arrays of varying

length, complicates things significantly…
– Key to performance is to locate tile loading checks outside of

the two performance-critical inner loops
– Tiles sized large enough to service entire inner loop runs
– Only 27% slower than hardware caching provided by

constant memory (GT200)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Coefficient array in GPU global memory

Array tile loaded in GPU shared memory. Tile size is a power-of-two,
multiple of coalescing size, and allows simple indexing in inner loops
(array indices are merely offset for reference within loaded tile).

64-Byte memory
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of
loop iterations

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd. We used an unusually-high resolution MO grid for
accurate timings. A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),
cannot be used for zero-valued MO isosurfaces

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,
Sun Ultra 24, GeForce GTX 285

GPU MO grid calc. 0.016 s

CPU surface gen,
volume gradient,
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

tryptophane

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Multi-GPU Molecular Orbital
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead,

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%
CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Future Work
• Near term work on GPU acceleration:

– Radial distribution functions, histogramming
– Secondary structure rendering
– Isosurface extraction, volumetric data processing
– Principle component analysis

• Replace CPU SSE code with OpenCL
• Port some of the existing CUDA GPU kernels

to OpenCL where appropriate

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements
• Additional Information and References:

– http://www.ks.uiuc.edu/Research/gpu/
• Questions, source code requests:

– John Stone: johns@ks.uiuc.edu
• Acknowledgements:

• J. Phillips, D. Hardy, J. Saam,
UIUC Theoretical and Computational Biophysics Group,
NIH Resource for Macromolecular Modeling and Bioinformatics

• Prof. Wen-mei Hwu, Christopher Rodrigues, UIUC IMPACT Group
• CUDA team at NVIDIA
• UIUC NVIDIA CUDA Center of Excellence
• NIH support: P41-RR05969

http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications
http://www.ks.uiuc.edu/Research/gpu/

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone.
Communications of the ACM, 52(10):34-41, 2009.

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi,
M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on Parallel
Programming on Accelerator Clusters (PPAC), IEEE Cluster 2009. In press.

• Long time-scale simulations of in vivo diffusion using GPU hardware.
E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09:
Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed
Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular Orbitals on
GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu,
K. Schulten, 2nd Workshop on General-Purpose Computation on Graphics
Pricessing Units (GPGPU-2), ACM International Conference Proceeding Series,
volume 383, pp. 9-18, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units.
D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications (cont)
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.
J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the
2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips.
Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. Stone,
J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem.,
28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A.
Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal,
93:4006-4017, 2007.

	High Performance Molecular Visualization and Analysis� with GPU Computing
	VMD – “Visual Molecular Dynamics”
	VMD Handles Diverse Data
	Programmable Graphics Hardware Evolution
	Benefits of Programmable Shading for Molecular Visualization
	VMD Ray Traced Sphere Shader
	“GPGPU” and GPU Computing
	GPU Computing
	What Speedups Can GPUs Achieve?
	GPU Computing in VMD
	Comparison of CPU and GPU Hardware Architecture
	GPU Peak Single-Precision Performance:�Exponential Trend
	GPU Peak Memory Bandwidth:� Linear Trend
	NVIDIA CUDA Overview
	CUDA Threads, Blocks, Grids
	GPU Memory Accessible in CUDA
	An Approach to Writing CUDA Kernels
	Electrostatic Potential Maps
	Direct Coulomb Summation
	Direct Coulomb Summation on the GPU
	DCS CUDA Block/Grid Decomposition � (unrolled, coalesced)
	Direct Coulomb Summation on the GPU
	Direct Coulomb Summation Runtime
	Direct Coulomb Summation Performance
	Cutoff Summation
	Cutoff Summation on the GPU
	Cutoff Summation Runtime
	Multilevel Summation on the GPU
	Computing Molecular Orbitals
	Molecular Orbital Computation and Display Process
	CUDA Block/Grid Decomposition
	MO Kernel for One Grid Point (Naive C)
	Preprocessing of Atoms, Basis Set, and �Wavefunction Coefficients
	GPU Traversal of Atom Type, Basis Set,� Shell Type, and Wavefunction Coefficients
	Use of GPU On-chip Memory
	VMD MO Performance Results for C60�Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	Performance Evaluation:�Molekel, MacMolPlt, and VMD� Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	VMD Orbital Dynamics Proof of Concept
	VMD Multi-GPU Molecular Orbital �Performance Results for C60
	Future Work
	Acknowledgements
	Publications�http://www.ks.uiuc.edu/Research/gpu/
	Publications (cont)�http://www.ks.uiuc.edu/Research/gpu/

