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Goal: A Computational Microscope 
Study the molecular machines in living cells 

Ribosome: target for antibiotics Poliovirus 
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NAMD and VMD Use GPUs & Petascale Computing to Meet 

Computational Biology’s Insatiable Demand for Processing Power 
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First Simulation of a Virus Capsid (2006) 

MD showed that STMV capsid collapses 
without its RNA core 

1 million atoms                             
A huge system for 2006 

Freddolino et al., Structure, 14:437 (2006) 

Satellite Tobacco Mosaic Virus (STMV) 

First MD simulation of a complete virus capsid 

STMV smallest available capsid structure 

STMV simulation, visualization, and analysis 
pushed us toward GPU computing! 
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Electrons in 
Vibrating Buckyball 

Cellular Tomography, 

 Cryo-electron Microscopy 

Poliovirus 

Ribosome Sequences 

VMD – “Visual Molecular Dynamics” 

Whole Cell Simulations 

• Visualization and analysis of: 

– molecular dynamics simulations 

– quantum chemistry calculations 

– particle systems and whole cells 

– sequence data 

• User extensible w/ scripting and plugins 

• http://www.ks.uiuc.edu/Research/vmd/ 
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GPU Computing 

• Commodity devices, omnipresent in modern 
computers (over a million sold per week) 

• Massively parallel hardware, hundreds of processing 
units, throughput oriented architecture 

• Standard integer and floating point types supported 

• Programming tools allow software to be written in 
dialects of familiar C/C++ and integrated into legacy 
software 

• GPU algorithms are often multicore friendly due to 
attention paid to data locality and data-parallel 
work decomposition 
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What Speedups Can GPUs Achieve? 

• Single-GPU speedups of 10x to 30x vs. one 
CPU core are common 

• Best speedups can reach 100x or more, 
attained on codes dominated by  floating 
point arithmetic, especially native GPU 
machine instructions, e.g. expf(), rsqrtf(), … 

• Amdahl’s Law can prevent legacy codes 
from achieving peak speedups with shallow 
GPU acceleration efforts 
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CUDA GPU-Accelerated Trajectory 

Analysis and Visualization in VMD 
GPU-Accelerated Feature         

or Kernel 

Typical speedup vs. 

a single CPU core 

Molecular orbital display 120x 

Radial distribution function 92x 

Ray tracing w/ shadows 46x 

Electrostatic field calculation 44x 

Molecular surface display 40x 

Ion placement 26x 

MDFF density map synthesis  26x 

Implicit ligand sampling 25x 

Root mean squared fluctuation 25x 

Radius of gyration 21x 

Close contact determination 20x 

Dipole moment calculation 15x 
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Peak Arithmetic Performance: Exponential Trend 
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Peak Memory Bandwidth: Linear Trend 
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Comparison of CPU and GPU           

Hardware Architecture 

CPU: Cache heavy, 
focused on individual 
thread performance  

GPU: ALU heavy, 
massively parallel, 
throughput oriented 
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NVIDIA Kepler GPU Streaming Multiprocessor - SMX 

GPC GPC GPC GPC 

1536KB 

Level 2 

Cache 

SMX SMX 

Tex Unit 

48 KB  Tex + Read-only Data Cache 

64 KB L1 Cache / Shared Memory 

~3-6 GB DRAM Memory w/ ECC 64 KB Constant Cache 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

16 × Execution block = 

 192 SP, 64 DP,  

32 SFU, 32 LDST 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

 Graphics Processor 

         Cluster 

GPC GPC GPC GPC 
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What Runs on a GPU? 

• GPUs run data-parallel programs called 

“kernels” 

• GPUs are managed by a host CPU thread: 

– Create a CUDA context 

– Allocate/deallocate GPU memory 

– Copy data between host and GPU memory 

– Launch GPU kernels 

– Query GPU status 

– Handle runtime errors 
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CUDA Stream of Execution 

• Host CPU thread 

launches a CUDA 

“kernel”, a memory 

copy, etc. on the GPU 

• GPU action runs to 

completion 

• Host synchronizes 

with completed GPU 

action 

CPU GPU 

CPU code 
running 

CPU waits for 
GPU, ideally doing 

something 
productive 

CPU code 
running 
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CUDA Grid/Block/Thread Decomposition 

Padding arrays out to full blocks 
optimizes global memory performance 
by guaranteeing memory coalescing 

1-D, 2-D, or 3-D (SM >= 2.x) 
Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

… 

1-D, 2-D, or 3-D 
Computational Domain 

1-D, 2-D, 3-D 
thread block: 
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CUDA Work Abstractions: 

 Grids, Thread Blocks, Threads 
1-D, 2-D, or 3-D (SM >= 2.x) 
Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… 

… 

… 

… 

1-D, 2-D, 3-D 
thread block: 

SM / SMX 

Thread blocks are 
scheduled onto pool 
of GPU SMs… 
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An Approach to Writing CUDA Kernels  
• Find an algorithm that can expose substantial parallelism, 

we’ll ultimately need thousands of independent threads… 

• Identify appropriate GPU memory or texture subsystems 

used to store data used by kernel 

• Are there trade-offs that can be made to exchange 

computation for more parallelism? 

– Though counterintuitive, past successes resulted from this strategy 

– “Brute force” methods that expose significant parallelism do 

surprisingly well on GPUs 

• Analyze the real-world use case for the problem and select 

a specialized kernel for the problem sizes that will be 

heavily used 
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GPUs Require ~20,000 Independent Threads 

for Full Utilization, Latency Hidding 

GPU 

underutilized 

GPU fully utilized, 

~40x faster than CPU 

Accelerating molecular modeling applications with graphics processors. 

J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.   

J. Comp. Chem., 28:2618-2640, 2007. 

Lower  

is better 

Host thread 

 GPU Cold Start: 

context init, 

device binding, 

kernel PTX JIT: 

~110ms  
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Getting Performance From GPUs 

• Don’t worry (much) about counting arithmetic 

operations…at least until you have nothing else left to do 

• GPUs provide tremendous memory bandwidth, but even 

so, memory bandwidth often ends up being the 

performance limiter 

• Keep/reuse data in registers as long as possible 

• The main consideration when programming GPUs is 

accessing memory efficiently, and storing operands in 

the most appropriate memory system according to data 

size and access pattern 
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GPU Memory Systems 
• GPU arithmetic rates dwarf memory bandwidth 

• For Kepler K20 hardware: 

– ~2 TFLOPS vs. ~250 GB/sec 

– The ratio is roughly 40 FLOPS per memory 

reference for single-precision floating point 

• GPUs include multiple fast on-chip memories to 

help narrow the gap: 

– Registers 

– Constant memory (64KB) 

– Shared memory (48KB / 16KB) 

– Read-only data cache / Texture cache (48KB) 
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Loop Unrolling, Register Tiling 
…for (atomid=0; atomid<numatoms; atomid++) { 

      float dy = coory - atominfo[atomid].y; 

      float dysqpdzsq = (dy * dy) + atominfo[atomid].z; 

      float x = atominfo[atomid].x; 

      float dx1 = coorx1 - x; 

      float dx2 = coorx2 - x; 

      float dx3 = coorx3 - x; 

      float dx4 = coorx4 - x; 

      float charge = atominfo[atomid].w; 

      energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq); 

      energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq); 

      energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq); 

      energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq); 

    } 

Compared to non-unrolled 
kernel: memory loads are 

decreased by 4x, and FLOPS 
per evaluation are reduced, but 

register use is increased… 
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Avoid Output Conflicts,  

Conversion of Scatter to Gather 

• Many CPU codes contain algorithms that “scatter” 
outputs to memory, to reduce arithmetic 

• Scattered output can create bottlenecks for GPU 
performance due to bank conflicts 

• On the GPU, it’s often better to do more 
arithmetic, in exchange for a regularized output 
pattern, or to convert “scatter” algorithms to 
“gather” approaches 
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Avoid Output Conflicts:  

Privatization Schemes 
• Privatization: use of private work areas for workers 

– Avoid/reduce the need for thread synchronization barriers 

– Avoid/reduce the need atomic increment/decrement 
operations during work, use parallel reduction at the end… 

• By working in separate memory buffers, workers 
avoid read/modify/write conflicts of various kinds 

• Huge GPU thread counts make it impractical to 
privatize data on a per-thread basis, so GPUs must use 
coarser granularity: warps, thread-blocks 

• Use of the on-chip shared memory local to each SM 
can often be considered a form of privatization 
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Example: avoiding output conflicts when 

summing numbers among threads in a block 

N-way output conflict:                 
Correct results require costly barrier 
synchronizations or atomic memory 
operations ON EVERY ADD to prevent 
threads from overwriting each other… 

Parallel reduction: no output 
conflicts, Log2(N) barriers 

+= 

= 

+= 

+= 

+= 

+= 

Accumulate sums in thread-
local registers before doing any 

reduction among threads 
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Using the CPU to Optimize GPU Performance 

• GPU performs best when the work evenly divides 

into the number of threads/processing units 

• Optimization strategy:  

– Use the CPU to “regularize” the GPU workload 

– Use fixed size bin data structures, with “empty” slots 

skipped or producing zeroed out results 

– Handle exceptional or irregular work units on the CPU; 

GPU processes the bulk of the work concurrently 

– On average, the GPU is kept highly occupied, attaining 

a high fraction of peak performance 
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Science 5: Quantum Chemistry Visualization  

• Chemistry is the result of 
atoms sharing electrons 

• Electrons occupy “clouds” 
in the space around atoms 

• Calculations for visualizing 
these “clouds” are costly:  
tens to hundreds of 
seconds on CPUs – non-
interactive 

• GPUs enable the dynamics 
of electronic structures to be 
animated interactively for 
the first time 

VMD enables interactive display of QM simulations, e.g. 
Terachem, GAMESS 

Taxol: cancer drug 
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GPU Solution: Computing C60 Molecular Orbitals 

Device CPUs,  

GPUs 

Runtime 

(s) 

Speedup 

2x Intel X5550-SSE 8 4.13 1 

GeForce GTX 480 1 0.255 16 

GeForce GTX 480 4 0.081 51 

2-D CUDA grid 
on one GPU 

              

3-D orbital lattice: 
millions of points 

              

Lattice slices 
computed on 

multiple GPUs 
GPU threads 
each compute 

one point. 

CUDA thread 
blocks 
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Molecular Orbital Inner Loop, Hand-Coded x86 SSE 

Hard to Read, Isn’t It?  (And this is the “pretty” version!) 

for (shell=0; shell < maxshell; shell++) { 

    __m128 Cgto = _mm_setzero_ps(); 

    for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) { 

        float exponent         = -basis_array[prim_counter      ]; 

        float contract_coeff =  basis_array[prim_counter + 1]; 

        __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2); 

        __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval)); 

        Cgto = _mm_add_ps(contracted_gto, ctmp); 

        prim_counter += 2; 

    } 

    __m128 tshell = _mm_setzero_ps(); 

    switch (shell_types[shell_counter]) { 

        case S_SHELL: 

            value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto));    break; 

        case P_SHELL: 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist)); 

            value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));       break; 

Writing SSE kernels for CPUs requires 
assembly language, compiler intrinsics, 

various libraries, or a really smart 
autovectorizing compiler and lots of luck... 
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for (shell=0; shell < maxshell; shell++) { 

      float contracted_gto = 0.0f; 

      for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {  

        float exponent          = const_basis_array[prim_counter     ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff * exp2f(-exponent*dist2); 

        prim_counter += 2; 

      } 

      float tmpshell=0; 

      switch (const_shell_symmetry[shell_counter]) { 

        case S_SHELL: 

          value += const_wave_f[ifunc++] * contracted_gto;    break; 

        case P_SHELL: 

          tmpshell += const_wave_f[ifunc++] * xdist; 

          tmpshell += const_wave_f[ifunc++] * ydist 

          tmpshell += const_wave_f[ifunc++] * zdist; 

          value += tmpshell * contracted_gto;   break; 

Molecular Orbital Inner Loop in CUDA 
 

Aaaaahhhh…. 

Data-parallel CUDA kernel 
looks like normal C code for 

the most part…. 
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NAMD Titan XK7 Performance August 2013 

HIV-1 Data: ~1.2 TB/day @ 
4096 XK7 nodes 

NAMD XK7 vs. XE6 

Speedup: 3x-4x 
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VMD Petascale Visualization and Analysis 

• Analyze/visualize large trajectories too 
large to transfer off-site: 

– Compute time-averaged electrostatic fields, 
MDFF quality-of-fit, etc. 

– User-defined parallel analysis operations, 
data types 

– Parallel rendering, movie making 

• Parallel I/O rates up to 275 GB/sec on 
8192 Cray XE6 nodes – can read in   
231 TB in 15 minutes! 

• Multi-level dynamic load balancing 
tested with up to 262,144 CPU cores 

• Supports GPU-accelerated Cray 
XK7 nodes for both visualization and 
analysis usage 

NCSA Blue Waters Hybrid       
Cray XE6 / XK7 Supercomputer 

22,640 XE6 CPU nodes 

4,224 XK7 nodes w/ GPUs support 
fast VMD OpenGL movie 
rendering and visualization 
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VMD for Demanding Analysis Tasks 

Parallel VMD Analysis w/ MPI 

• Compute time-averaged 
electrostatic fields, MDFF 
quality-of-fit, etc. 

• Parallel rendering, movie making 

• User-defined parallel reduction 
operations, data types 

• Parallel I/O on Blue Waters:  

– 109 GB/sec on 512 nodes  

– 275 GB/sec on 8,192 nodes 

• Timeline per-residue SASA 
calc. achieves 800x speedup @ 
1000 BW XE6 nodes 

•  Supports GPU-accelerated 
clusters and supercomputers 

VMD 

VMD 

VMD 

Sequence/Structure Data,  

Trajectory Frames, etc… 

Gathered Results 

Data-parallel 

analysis in 
VMD 

w/ dynamic 
load 

balancing 
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VMD as an Analysis Platform 

Over 60 VMD Plugins Developed by Users 

• VMD/NAMD sister programs, 
VMD is crucial for simulation 
analysis 

• VMD user-extensible scripting w/ 
Tcl/Tk, Python 

• Compiled C/C++ plugins loaded 
from shared libraries at runtime via 
dlopen()  

• 70 molfile plugins provide access to 
molecular file formats 

• Built-in analysis commands 
exploit XE6 multi-core CPUs, 
XK7Tesla K20X GPUs 

• New VMD collective ops and 
work scheduling interfaces 
enable existing code to be 
parallelized easily 

VMD Core 

Molfile 

Plugins 

Graphical 

Interface 

Plugins 

Text 

Plugins 

Tcl/Tk Python 
Plugin 

Interface 
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Radial Distribution Function 

• RDFs describes how 
atom density varies 
with distance 

• Can be compared with 
experiments 

• Shape indicates phase  
of matter: sharp peaks 
appear for solids, 
smoother for liquids 

• Normalized histogram 
of particle pair 
distances 

Solid 

Liquid 
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Multi-GPU RDF Performance 

• 4 NVIDIA GTX480 
GPUs 30 to 92x faster 
than 4-core Intel X5550 
CPU 

• Fermi GPUs ~3x faster 
than GT200 GPUs: 
larger on-chip shared 
memory 

Solid 

Liquid 

Fast Analysis of Molecular Dynamics Trajectories 
with Graphics Processing Units – Radial Distribution 
Functions.  B. Levine, J. Stone, and A. Kohlmeyer. 2010. 

J. Comp. Physics, 230(9):3556-3569, 2011. 
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Time-Averaged Electrostatics Analysis 

on Energy-Efficient GPU Cluster 
• 1.5 hour job (CPUs) reduced to 

3 min (CPUs+GPU) 

• Electrostatics of thousands of 
trajectory frames averaged  

• Per-node power consumption on 
NCSA “AC” GPU cluster: 

– CPUs-only:  448 Watt-hours 

– CPUs+GPUs: 43 Watt-hours 

• GPU Speedup: 25.5x 

• Power efficiency gain: 10.5x 

Quantifying the Impact of GPUs on Performance and Energy 
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. 

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.  
The Work in Progress in Green Computing,  pp. 317-324, 2010. 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Time-Averaged Electrostatics Analysis on  

NCSA Blue Waters 

Preliminary performance for VMD time-averaged electrostatics w/ Multilevel 
Summation Method on the NCSA Blue Waters Early Science System 

NCSA Blue Waters Node Type Seconds per trajectory 

frame for one compute 

node 

Cray XE6 Compute Node: 

32 CPU cores (2xAMD 6200 CPUs) 

9.33 

Cray XK6 GPU-accelerated Compute Node: 

16 CPU cores + NVIDIA X2090 (Fermi) GPU 

2.25 

Speedup for GPU XK6 nodes vs. CPU XE6 nodes XK6 nodes are 4.15x 

faster overall 

Tests on XK7 nodes indicate MSM is CPU-bound with 

the Kepler K20X GPU. 

Performance is not much faster (yet) than Fermi X2090 

Need to move spatial hashing, prolongation, 

interpolation onto the GPU… 

In progress…. 

XK7 nodes 4.3x faster 

overall  
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Multilevel Summation on the GPU 

Computational steps CPU (s) w/ GPU (s) Speedup 

Short-range cutoff 480.07 14.87 32.3 

Long-range anterpolation 0.18 

restriction 0.16 

lattice cutoff 49.47 1.36 36.4 

prolongation 0.17 

interpolation 3.47 

Total 533.52 20.21 26.4 

Performance profile for 0.5 Å map of potential for  1.5 M atoms. 

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280. 

Accelerate  short-range cutoff  and  lattice cutoff  parts 

 

Multilevel summation of electrostatic potentials using graphics 
processing units. D. Hardy, J. Stone, K. Schulten. J. Parallel 

Computing, 35:164-177, 2009. 
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• Displays continuum of structural detail: 

– All-atom models 

– Coarse-grained models 

– Cellular scale models 

– Multi-scale models: All-atom + CG,  Brownian + Whole Cell 

– Smoothly variable between full detail, and reduced resolution 

representations of very large complexes 

VMD “QuickSurf” Representation 

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and 
Particle System Trajectories.   

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012 
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• Uses multi-core CPUs and GPU acceleration to enable smooth 

real-time animation of MD trajectories  

• Linear-time algorithm, scales to millions of particles, as limited 

by memory capacity 

VMD “QuickSurf” Representation 

Satellite Tobacco Mosaic Virus Lattice Cell Simulations 
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QuickSurf Algorithm Overview 
• Build spatial acceleration 

data structures, optimize 

data for GPU 

• Compute 3-D density map, 

3-D volumetric texture map: 

 

 

• Extract isosurface for a 

user-defined density value 

3-D density map lattice, 
spatial acceleration grid, 

and extracted surface 
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QuickSurf Density Map Algorithm 

• Spatial acceleration grid cells are 

sized to match the cutoff radius for  

the exponential, beyond which density 

contributions are negligible 

• Density map lattice points computed 

by summing density contributions 

from particles in 3x3x3 grid of 

neighboring spatial acceleration cells 

• Volumetric texture map is computed 

by summing particle colors 

normalized by their individual density 

contribution 

3-D density map 
lattice point and 
the neighboring 

spatial acceleration 
cells it references 
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Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses Grid of thread blocks 

Small 8x8 thread 

blocks afford large  

per-thread register 

count, shared 

memory 

              
QuickSurf 3-D density map 

decomposes into thinner 3-D 
slabs/slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Inactive threads, 
region of 
discarded 
output 

Each thread 

computes 

one or more 

density map 

lattice points 

Threads 
producing 
results that 
are used 1,0 

…  

Chunk 2 

Chunk 1 

Chunk 0 

Large volume 

computed in 

multiple passes, or 

multiple GPUs 

QuickSurf  Density Parallel Decomposition 
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Challenge: Support GPU-accelerated QuickSurf 

for Large Biomolecular Complexes 
• Structures such as HIV 

initially needed all XK7 GPU 

memory to generate detailed 

surface renderings 

• Goals and approach:  

– Avoid slow CPU-fallback! 

– Incrementally change algorithm 

phases to use more compact 

data types, while maintaining 

performance 

– Specialize code for different 

precision/performance/memory 

capacity cases 
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Supporting Multiple Data Types for  

QuickSurf Density Maps 

and Marching Cubes Vertex Arrays 

• The major algorithm components of QuickSurf are now 

used for many other purposes: 

– Gaussian density map algorithm now used for MDFF Cryo EM 

density map fitting methods in addition to QuickSurf 

– Marching Cubes routines also used for Quantum Chemistry 

visualizations of molecular orbitals  

• Rather than simply changing QuickSurf to use a particular 

internal numerical representation, it is desirable to instead 

use CUDA C++ templates to make type-generic versions of 

the key objects, kernels, and output vertex arrays 

• Accuracy-sensitive algorithms use high-precision data 

types, performance and memory capacity sensitive cases 

use quantized or reduced precision approaches  
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Minimizing the Impact of Generality on  

QuickSurf Code Complexity 

• A critical factor in the simplicity of supporting multiple 

QuickSurf data types arises from the so-called “gather” 

oriented algorithm we employ 

– Internally, all in-register arithmetic is single-precision 

– Compressed or reduced precision data type conversions are 

performed on-the-fly as needed 

• Small inlined type conversion routines are defined for each 

of the cases we want to support 

• Key QuickSurf kernels made type-generic using C++ 

template syntax, and the compiler automatically generates 

type-specific kernels as needed  
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Example Templated  

Density Map Kernel 
template<class DENSITY, class VOLTEX> 

__global__ static void 

gaussdensity_fast_tex_norm(int natoms, 

                                              const float4 * RESTRICT sorted_xyzr, 

                                              const float4 * RESTRICT sorted_color, 

                                              int3 numvoxels, 

                                              int3 acncells, 

                                             float acgridspacing, 

                                             float invacgridspacing, 

                                             const uint2 * RESTRICT cellStartEnd, 

                                             float gridspacing, unsigned int z, 

                                             DENSITY * RESTRICT densitygrid, 

                                             VOLTEX * RESTRICT voltexmap, 

                                            float invisovalue) { 
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Example Templated  

Density Map Kernel 
template<class DENSITY, class VOLTEX> 

__global__ static void 

gaussdensity_fast_tex_norm( …  ) { 

  

  … Triple-nested and unrolled inner loops here … 

 

  DENSITY densityout; 

  VOLTEX texout; 

  convert_density(densityout, densityval1); 

  densitygrid[outaddr          ] = densityout; 

  convert_color(texout, densitycol1); 

  voltexmap[outaddr          ] = texout; 
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Net Result of QuickSurf Memory 

Efficiency Optimizations 

• Halved overall GPU memory use 

• Achieved 1.5x to 2x performance gain: 

– The “gather” density map algorithm keeps type 

conversion operations out of the innermost loop 

– Density map global memory writes reduced to half 

– Multiple stages of Marching Cubes operate on smaller 

input and output data types 

– Same code path supports multiple precisions 

• Users now get full GPU-accelerated QuickSurf in 

many cases that previously triggered CPU-

fallback, all platforms (laptop/desk/super) benefit! 
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VMD “QuickSurf” Representation, Ray Tracing 

VMD “QuickSurf” Representation 

All-atom HIV capsid simulations w/ up to 64M atoms on Blue Waters 
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Ray Tracing Molecular Graphics 

VMD w/ new GPU ray tracing engine 
based on CUDA + OptiX 

• Ambient occlusion lighting, 
shadows, reflections, 
transparency, and more… 

• Satellite tobacco mosaic virus 
capsid w/ ~75K atoms 

 Standard OpenGL 
rasterization 
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Lighting Comparison 
Two lights, no 

shadows 

Two lights,              

hard shadows,           

1 shadow ray per light 

Ambient occlusion 

+ two lights,       

144 AO rays/hit 
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BW VMD/Tachyon Movie Generation 

480 XE6 nodes for 85m @ 4096x2400 
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BW VMD/Tachyon Movie Generation 

360 XE6 nodes for 3h50m @ 4096x2400 
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GPU Ray Tracing of HIV-1 on Blue Waters 

• Ambient occlusion lighting, 

shadows, transparency, 

antialiasing, depth cueing, 

144 rays/pixel minimum 

• 64 million atom virus 

simulation 

• 1000+ movie frames 

• Surface generation and ray 

tracing stages each use >= 

75% of GPU memory 
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VMD GPU Ray Tracing of HIV-1 Capsid 
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HIV-1 Parallel HD Movie Rendering on 

Blue Waters Cray XE6/XK7 

 Node Type 

and Count 

Script Load 

Time 

State Load 

Time 

Geometry + 

Ray Tracing 

Total 

Time 

256 XE6 CPUs 7 s 160 s 1,374 s 1,541 s 

512 XE6 CPUs 13 s 211 s 808 s 1,032 s 

  64 XK7 Tesla K20X GPUs 2 s 38 s 655 s 695 s 

128 XK7 Tesla K20X GPUs 4 s 74 s 331 s 410 s 

256 XK7 Tesla K20X GPUs 7 s 110 s 171 s 288 s 

New “TachyonL-OptiX” on XK7 vs. Tachyon on XE6:                 
K20X GPUs yield up to eight times geom+ray tracing speedup 

GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.              
Stone et al. In UltraVis'13: Eighth Workshop on Ultrascale Visualization Proceedings, 2013. 
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2011. 

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in HPC Clusters. J. Enos, 

C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J Phillips. International 

Conference on Green Computing, pp. 317-324, 2010. 

• GPU-accelerated molecular modeling coming of age.  J. Stone, D. Hardy, I. Ufimtsev, K. Schulten.  

J. Molecular Graphics and Modeling, 29:116-125, 2010. 

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing. J. Stone, D. Gohara, 

G. Shi.  Computing in Science and Engineering, 12(3):66-73, 2010. 

• An Asymmetric Distributed Shared Memory Model for Heterogeneous Computing Systems.  I. 
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Arnold, J. Stone, J. Phillips, W. Hwu.  Workshop on Parallel Programming on Accelerator Clusters 

(PPAC), In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009. 

• Long time-scale simulations of in vivo diffusion using GPU hardware.  E. Roberts, J. Stone, L. 

Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: Proceedings of the 2009 IEEE International 

Symposium on Parallel & Distributed Computing, pp. 1-8, 2009. 

• High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and 

Multi-core CPUs.    J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd Workshop on 

General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM International 

Conference Proceeding Series, volume 383, pp. 9-18, 2009. 

• Probing Biomolecular Machines with Graphics Processors.  J. Phillips, J. Stone.  Communications of 

the ACM, 52(10):34-41, 2009. 

• Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy, J. Stone, 

K. Schulten. J. Parallel Computing, 35:164-177, 2009. 
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J. Phillips, J. Stone, K. Schulten.  Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, 

IEEE Press, 2008. 

• GPU acceleration of cutoff pair potentials for molecular modeling applications.                                

C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the 2008 Conference On 

Computing Frontiers, pp. 273-282, 2008. 

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. Proceedings of the 

IEEE, 96:879-899, 2008. 

• Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, P. 

Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007. 

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J. Hüve, M. 
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