
NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Experiences Developing and

Maintaining Scientific Applications on

GPU-Accelerated Platforms

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

Big Red 2 Workshop

IUPUI Indianapolis, January 24, 2014

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Goal: A Computational Microscope
Study the molecular machines in living cells

Ribosome: target for antibiotics Poliovirus

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

1990 1994 1998 2002 2006 2010
104

105

106

107

108

2014

Lysozyme ApoA1

ATP Synthase

STMV

Ribosome

HIV capsid

N
u
m

b
e
r

o
f
at

o
m

s

1986

NAMD and VMD Use GPUs & Petascale Computing to Meet

Computational Biology’s Insatiable Demand for Processing Power

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

First Simulation of a Virus Capsid (2006)

MD showed that STMV capsid collapses
without its RNA core

1 million atoms
A huge system for 2006

Freddolino et al., Structure, 14:437 (2006)

Satellite Tobacco Mosaic Virus (STMV)

First MD simulation of a complete virus capsid

STMV smallest available capsid structure

STMV simulation, visualization, and analysis
pushed us toward GPU computing!

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Electrons in
Vibrating Buckyball

Cellular Tomography,

 Cryo-electron Microscopy

Poliovirus

Ribosome Sequences

VMD – “Visual Molecular Dynamics”

Whole Cell Simulations

• Visualization and analysis of:

– molecular dynamics simulations

– quantum chemistry calculations

– particle systems and whole cells

– sequence data

• User extensible w/ scripting and plugins

• http://www.ks.uiuc.edu/Research/vmd/

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing

• Commodity devices, omnipresent in modern
computers (over a million sold per week)

• Massively parallel hardware, hundreds of processing
units, throughput oriented architecture

• Standard integer and floating point types supported

• Programming tools allow software to be written in
dialects of familiar C/C++ and integrated into legacy
software

• GPU algorithms are often multicore friendly due to
attention paid to data locality and data-parallel
work decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What Speedups Can GPUs Achieve?

• Single-GPU speedups of 10x to 30x vs. one
CPU core are common

• Best speedups can reach 100x or more,
attained on codes dominated by floating
point arithmetic, especially native GPU
machine instructions, e.g. expf(), rsqrtf(), …

• Amdahl’s Law can prevent legacy codes
from achieving peak speedups with shallow
GPU acceleration efforts

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA GPU-Accelerated Trajectory

Analysis and Visualization in VMD
GPU-Accelerated Feature

or Kernel

Typical speedup vs.

a single CPU core

Molecular orbital display 120x

Radial distribution function 92x

Ray tracing w/ shadows 46x

Electrostatic field calculation 44x

Molecular surface display 40x

Ion placement 26x

MDFF density map synthesis 26x

Implicit ligand sampling 25x

Root mean squared fluctuation 25x

Radius of gyration 21x

Close contact determination 20x

Dipole moment calculation 15x

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Peak Arithmetic Performance: Exponential Trend

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Peak Memory Bandwidth: Linear Trend

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Comparison of CPU and GPU

Hardware Architecture

CPU: Cache heavy,
focused on individual
thread performance

GPU: ALU heavy,
massively parallel,
throughput oriented

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NVIDIA Kepler GPU Streaming Multiprocessor - SMX

GPC GPC GPC GPC

1536KB

Level 2

Cache

SMX SMX

Tex Unit

48 KB Tex + Read-only Data Cache

64 KB L1 Cache / Shared Memory

~3-6 GB DRAM Memory w/ ECC 64 KB Constant Cache

SP SP SP DP
SFU LDST

SP SP SP DP

16 × Execution block =

 192 SP, 64 DP,

32 SFU, 32 LDST

SP SP SP DP
SFU LDST

SP SP SP DP

 Graphics Processor

 Cluster

GPC GPC GPC GPC

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What Runs on a GPU?

• GPUs run data-parallel programs called

“kernels”

• GPUs are managed by a host CPU thread:

– Create a CUDA context

– Allocate/deallocate GPU memory

– Copy data between host and GPU memory

– Launch GPU kernels

– Query GPU status

– Handle runtime errors

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Stream of Execution

• Host CPU thread

launches a CUDA

“kernel”, a memory

copy, etc. on the GPU

• GPU action runs to

completion

• Host synchronizes

with completed GPU

action

CPU GPU

CPU code
running

CPU waits for
GPU, ideally doing

something
productive

CPU code
running

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Grid/Block/Thread Decomposition

Padding arrays out to full blocks
optimizes global memory performance
by guaranteeing memory coalescing

1-D, 2-D, or 3-D (SM >= 2.x)
Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

1-D, 2-D, or 3-D
Computational Domain

1-D, 2-D, 3-D
thread block:

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Work Abstractions:

 Grids, Thread Blocks, Threads
1-D, 2-D, or 3-D (SM >= 2.x)
Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

…

…

…

1-D, 2-D, 3-D
thread block:

SM / SMX

Thread blocks are
scheduled onto pool
of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

An Approach to Writing CUDA Kernels
• Find an algorithm that can expose substantial parallelism,

we’ll ultimately need thousands of independent threads…

• Identify appropriate GPU memory or texture subsystems

used to store data used by kernel

• Are there trade-offs that can be made to exchange

computation for more parallelism?

– Though counterintuitive, past successes resulted from this strategy

– “Brute force” methods that expose significant parallelism do

surprisingly well on GPUs

• Analyze the real-world use case for the problem and select

a specialized kernel for the problem sizes that will be

heavily used

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPUs Require ~20,000 Independent Threads

for Full Utilization, Latency Hidding

GPU

underutilized

GPU fully utilized,

~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.

J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

Lower

is better

Host thread

 GPU Cold Start:

context init,

device binding,

kernel PTX JIT:

~110ms

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Getting Performance From GPUs

• Don’t worry (much) about counting arithmetic

operations…at least until you have nothing else left to do

• GPUs provide tremendous memory bandwidth, but even

so, memory bandwidth often ends up being the

performance limiter

• Keep/reuse data in registers as long as possible

• The main consideration when programming GPUs is

accessing memory efficiently, and storing operands in

the most appropriate memory system according to data

size and access pattern

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Memory Systems
• GPU arithmetic rates dwarf memory bandwidth

• For Kepler K20 hardware:

– ~2 TFLOPS vs. ~250 GB/sec

– The ratio is roughly 40 FLOPS per memory

reference for single-precision floating point

• GPUs include multiple fast on-chip memories to

help narrow the gap:

– Registers

– Constant memory (64KB)

– Shared memory (48KB / 16KB)

– Read-only data cache / Texture cache (48KB)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Loop Unrolling, Register Tiling
…for (atomid=0; atomid<numatoms; atomid++) {

 float dy = coory - atominfo[atomid].y;

 float dysqpdzsq = (dy * dy) + atominfo[atomid].z;

 float x = atominfo[atomid].x;

 float dx1 = coorx1 - x;

 float dx2 = coorx2 - x;

 float dx3 = coorx3 - x;

 float dx4 = coorx4 - x;

 float charge = atominfo[atomid].w;

 energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq);

 energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq);

 energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq);

 energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq);

 }

Compared to non-unrolled
kernel: memory loads are

decreased by 4x, and FLOPS
per evaluation are reduced, but

register use is increased…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoid Output Conflicts,

Conversion of Scatter to Gather

• Many CPU codes contain algorithms that “scatter”
outputs to memory, to reduce arithmetic

• Scattered output can create bottlenecks for GPU
performance due to bank conflicts

• On the GPU, it’s often better to do more
arithmetic, in exchange for a regularized output
pattern, or to convert “scatter” algorithms to
“gather” approaches

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoid Output Conflicts:

Privatization Schemes
• Privatization: use of private work areas for workers

– Avoid/reduce the need for thread synchronization barriers

– Avoid/reduce the need atomic increment/decrement
operations during work, use parallel reduction at the end…

• By working in separate memory buffers, workers
avoid read/modify/write conflicts of various kinds

• Huge GPU thread counts make it impractical to
privatize data on a per-thread basis, so GPUs must use
coarser granularity: warps, thread-blocks

• Use of the on-chip shared memory local to each SM
can often be considered a form of privatization

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example: avoiding output conflicts when

summing numbers among threads in a block

N-way output conflict:
Correct results require costly barrier
synchronizations or atomic memory
operations ON EVERY ADD to prevent
threads from overwriting each other…

Parallel reduction: no output
conflicts, Log2(N) barriers

+=

=

+=

+=

+=

+=

Accumulate sums in thread-
local registers before doing any

reduction among threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Using the CPU to Optimize GPU Performance

• GPU performs best when the work evenly divides

into the number of threads/processing units

• Optimization strategy:

– Use the CPU to “regularize” the GPU workload

– Use fixed size bin data structures, with “empty” slots

skipped or producing zeroed out results

– Handle exceptional or irregular work units on the CPU;

GPU processes the bulk of the work concurrently

– On average, the GPU is kept highly occupied, attaining

a high fraction of peak performance

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Science 5: Quantum Chemistry Visualization

• Chemistry is the result of
atoms sharing electrons

• Electrons occupy “clouds”
in the space around atoms

• Calculations for visualizing
these “clouds” are costly:
tens to hundreds of
seconds on CPUs – non-
interactive

• GPUs enable the dynamics
of electronic structures to be
animated interactively for
the first time

VMD enables interactive display of QM simulations, e.g.
Terachem, GAMESS

Taxol: cancer drug

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Solution: Computing C60 Molecular Orbitals

Device CPUs,

GPUs

Runtime

(s)

Speedup

2x Intel X5550-SSE 8 4.13 1

GeForce GTX 480 1 0.255 16

GeForce GTX 480 4 0.081 51

2-D CUDA grid
on one GPU

3-D orbital lattice:
millions of points

Lattice slices
computed on

multiple GPUs
GPU threads
each compute

one point.

CUDA thread
blocks

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Inner Loop, Hand-Coded x86 SSE

Hard to Read, Isn’t It? (And this is the “pretty” version!)

for (shell=0; shell < maxshell; shell++) {

 __m128 Cgto = _mm_setzero_ps();

 for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

 float exponent = -basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2);

 __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval));

 Cgto = _mm_add_ps(contracted_gto, ctmp);

 prim_counter += 2;

 }

 __m128 tshell = _mm_setzero_ps();

 switch (shell_types[shell_counter]) {

 case S_SHELL:

 value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto)); break;

 case P_SHELL:

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist));

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist));

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist));

 value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto)); break;

Writing SSE kernels for CPUs requires
assembly language, compiler intrinsics,

various libraries, or a really smart
autovectorizing compiler and lots of luck...

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

for (shell=0; shell < maxshell; shell++) {

 float contracted_gto = 0.0f;

 for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

 float exponent = const_basis_array[prim_counter];

 float contract_coeff = const_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * exp2f(-exponent*dist2);

 prim_counter += 2;

 }

 float tmpshell=0;

 switch (const_shell_symmetry[shell_counter]) {

 case S_SHELL:

 value += const_wave_f[ifunc++] * contracted_gto; break;

 case P_SHELL:

 tmpshell += const_wave_f[ifunc++] * xdist;

 tmpshell += const_wave_f[ifunc++] * ydist

 tmpshell += const_wave_f[ifunc++] * zdist;

 value += tmpshell * contracted_gto; break;

Molecular Orbital Inner Loop in CUDA

Aaaaahhhh….

Data-parallel CUDA kernel
looks like normal C code for

the most part….

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NAMD Titan XK7 Performance August 2013

HIV-1 Data: ~1.2 TB/day @
4096 XK7 nodes

NAMD XK7 vs. XE6

Speedup: 3x-4x

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Petascale Visualization and Analysis

• Analyze/visualize large trajectories too
large to transfer off-site:

– Compute time-averaged electrostatic fields,
MDFF quality-of-fit, etc.

– User-defined parallel analysis operations,
data types

– Parallel rendering, movie making

• Parallel I/O rates up to 275 GB/sec on
8192 Cray XE6 nodes – can read in
231 TB in 15 minutes!

• Multi-level dynamic load balancing
tested with up to 262,144 CPU cores

• Supports GPU-accelerated Cray
XK7 nodes for both visualization and
analysis usage

NCSA Blue Waters Hybrid
Cray XE6 / XK7 Supercomputer

22,640 XE6 CPU nodes

4,224 XK7 nodes w/ GPUs support
fast VMD OpenGL movie
rendering and visualization

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD for Demanding Analysis Tasks

Parallel VMD Analysis w/ MPI

• Compute time-averaged
electrostatic fields, MDFF
quality-of-fit, etc.

• Parallel rendering, movie making

• User-defined parallel reduction
operations, data types

• Parallel I/O on Blue Waters:

– 109 GB/sec on 512 nodes

– 275 GB/sec on 8,192 nodes

• Timeline per-residue SASA
calc. achieves 800x speedup @
1000 BW XE6 nodes

• Supports GPU-accelerated
clusters and supercomputers

VMD

VMD

VMD

Sequence/Structure Data,

Trajectory Frames, etc…

Gathered Results

Data-parallel

analysis in
VMD

w/ dynamic
load

balancing

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD as an Analysis Platform

Over 60 VMD Plugins Developed by Users

• VMD/NAMD sister programs,
VMD is crucial for simulation
analysis

• VMD user-extensible scripting w/
Tcl/Tk, Python

• Compiled C/C++ plugins loaded
from shared libraries at runtime via
dlopen()

• 70 molfile plugins provide access to
molecular file formats

• Built-in analysis commands
exploit XE6 multi-core CPUs,
XK7Tesla K20X GPUs

• New VMD collective ops and
work scheduling interfaces
enable existing code to be
parallelized easily

VMD Core

Molfile

Plugins

Graphical

Interface

Plugins

Text

Plugins

Tcl/Tk Python
Plugin

Interface

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Radial Distribution Function

• RDFs describes how
atom density varies
with distance

• Can be compared with
experiments

• Shape indicates phase
of matter: sharp peaks
appear for solids,
smoother for liquids

• Normalized histogram
of particle pair
distances

Solid

Liquid

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU RDF Performance

• 4 NVIDIA GTX480
GPUs 30 to 92x faster
than 4-core Intel X5550
CPU

• Fermi GPUs ~3x faster
than GT200 GPUs:
larger on-chip shared
memory

Solid

Liquid

Fast Analysis of Molecular Dynamics Trajectories
with Graphics Processing Units – Radial Distribution
Functions. B. Levine, J. Stone, and A. Kohlmeyer. 2010.

J. Comp. Physics, 230(9):3556-3569, 2011.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Time-Averaged Electrostatics Analysis

on Energy-Efficient GPU Cluster
• 1.5 hour job (CPUs) reduced to

3 min (CPUs+GPU)

• Electrostatics of thousands of
trajectory frames averaged

• Per-node power consumption on
NCSA “AC” GPU cluster:

– CPUs-only: 448 Watt-hours

– CPUs+GPUs: 43 Watt-hours

• GPU Speedup: 25.5x

• Power efficiency gain: 10.5x

Quantifying the Impact of GPUs on Performance and Energy
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M.

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.
The Work in Progress in Green Computing, pp. 317-324, 2010.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Time-Averaged Electrostatics Analysis on

NCSA Blue Waters

Preliminary performance for VMD time-averaged electrostatics w/ Multilevel
Summation Method on the NCSA Blue Waters Early Science System

NCSA Blue Waters Node Type Seconds per trajectory

frame for one compute

node

Cray XE6 Compute Node:

32 CPU cores (2xAMD 6200 CPUs)

9.33

Cray XK6 GPU-accelerated Compute Node:

16 CPU cores + NVIDIA X2090 (Fermi) GPU

2.25

Speedup for GPU XK6 nodes vs. CPU XE6 nodes XK6 nodes are 4.15x

faster overall

Tests on XK7 nodes indicate MSM is CPU-bound with

the Kepler K20X GPU.

Performance is not much faster (yet) than Fermi X2090

Need to move spatial hashing, prolongation,

interpolation onto the GPU…

In progress….

XK7 nodes 4.3x faster

overall

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

Multilevel summation of electrostatic potentials using graphics
processing units. D. Hardy, J. Stone, K. Schulten. J. Parallel

Computing, 35:164-177, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Displays continuum of structural detail:

– All-atom models

– Coarse-grained models

– Cellular scale models

– Multi-scale models: All-atom + CG, Brownian + Whole Cell

– Smoothly variable between full detail, and reduced resolution

representations of very large complexes

VMD “QuickSurf” Representation

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and
Particle System Trajectories.

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Uses multi-core CPUs and GPU acceleration to enable smooth

real-time animation of MD trajectories

• Linear-time algorithm, scales to millions of particles, as limited

by memory capacity

VMD “QuickSurf” Representation

Satellite Tobacco Mosaic Virus Lattice Cell Simulations

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Algorithm Overview
• Build spatial acceleration

data structures, optimize

data for GPU

• Compute 3-D density map,

3-D volumetric texture map:

• Extract isosurface for a

user-defined density value

3-D density map lattice,
spatial acceleration grid,

and extracted surface

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map Algorithm

• Spatial acceleration grid cells are

sized to match the cutoff radius for

the exponential, beyond which density

contributions are negligible

• Density map lattice points computed

by summing density contributions

from particles in 3x3x3 grid of

neighboring spatial acceleration cells

• Volumetric texture map is computed

by summing particle colors

normalized by their individual density

contribution

3-D density map
lattice point and
the neighboring

spatial acceleration
cells it references

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,
guaranteeing coalesced
global memory accesses Grid of thread blocks

Small 8x8 thread

blocks afford large

per-thread register

count, shared

memory

QuickSurf 3-D density map

decomposes into thinner 3-D
slabs/slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Inactive threads,
region of
discarded
output

Each thread

computes

one or more

density map

lattice points

Threads
producing
results that
are used 1,0

…

Chunk 2

Chunk 1

Chunk 0

Large volume

computed in

multiple passes, or

multiple GPUs

QuickSurf Density Parallel Decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Challenge: Support GPU-accelerated QuickSurf

for Large Biomolecular Complexes
• Structures such as HIV

initially needed all XK7 GPU

memory to generate detailed

surface renderings

• Goals and approach:

– Avoid slow CPU-fallback!

– Incrementally change algorithm

phases to use more compact

data types, while maintaining

performance

– Specialize code for different

precision/performance/memory

capacity cases

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Supporting Multiple Data Types for

QuickSurf Density Maps

and Marching Cubes Vertex Arrays

• The major algorithm components of QuickSurf are now

used for many other purposes:

– Gaussian density map algorithm now used for MDFF Cryo EM

density map fitting methods in addition to QuickSurf

– Marching Cubes routines also used for Quantum Chemistry

visualizations of molecular orbitals

• Rather than simply changing QuickSurf to use a particular

internal numerical representation, it is desirable to instead

use CUDA C++ templates to make type-generic versions of

the key objects, kernels, and output vertex arrays

• Accuracy-sensitive algorithms use high-precision data

types, performance and memory capacity sensitive cases

use quantized or reduced precision approaches

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Minimizing the Impact of Generality on

QuickSurf Code Complexity

• A critical factor in the simplicity of supporting multiple

QuickSurf data types arises from the so-called “gather”

oriented algorithm we employ

– Internally, all in-register arithmetic is single-precision

– Compressed or reduced precision data type conversions are

performed on-the-fly as needed

• Small inlined type conversion routines are defined for each

of the cases we want to support

• Key QuickSurf kernels made type-generic using C++

template syntax, and the compiler automatically generates

type-specific kernels as needed

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Templated

Density Map Kernel
template<class DENSITY, class VOLTEX>

__global__ static void

gaussdensity_fast_tex_norm(int natoms,

 const float4 * RESTRICT sorted_xyzr,

 const float4 * RESTRICT sorted_color,

 int3 numvoxels,

 int3 acncells,

 float acgridspacing,

 float invacgridspacing,

 const uint2 * RESTRICT cellStartEnd,

 float gridspacing, unsigned int z,

 DENSITY * RESTRICT densitygrid,

 VOLTEX * RESTRICT voltexmap,

 float invisovalue) {

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Templated

Density Map Kernel
template<class DENSITY, class VOLTEX>

__global__ static void

gaussdensity_fast_tex_norm(…) {

 … Triple-nested and unrolled inner loops here …

 DENSITY densityout;

 VOLTEX texout;

 convert_density(densityout, densityval1);

 densitygrid[outaddr] = densityout;

 convert_color(texout, densitycol1);

 voltexmap[outaddr] = texout;

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Net Result of QuickSurf Memory

Efficiency Optimizations

• Halved overall GPU memory use

• Achieved 1.5x to 2x performance gain:

– The “gather” density map algorithm keeps type

conversion operations out of the innermost loop

– Density map global memory writes reduced to half

– Multiple stages of Marching Cubes operate on smaller

input and output data types

– Same code path supports multiple precisions

• Users now get full GPU-accelerated QuickSurf in

many cases that previously triggered CPU-

fallback, all platforms (laptop/desk/super) benefit!

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD “QuickSurf” Representation, Ray Tracing

VMD “QuickSurf” Representation

All-atom HIV capsid simulations w/ up to 64M atoms on Blue Waters

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Ray Tracing Molecular Graphics

VMD w/ new GPU ray tracing engine
based on CUDA + OptiX

• Ambient occlusion lighting,
shadows, reflections,
transparency, and more…

• Satellite tobacco mosaic virus
capsid w/ ~75K atoms

 Standard OpenGL
rasterization

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Lighting Comparison
Two lights, no

shadows

Two lights,

hard shadows,

1 shadow ray per light

Ambient occlusion

+ two lights,

144 AO rays/hit

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

BW VMD/Tachyon Movie Generation

480 XE6 nodes for 85m @ 4096x2400

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

BW VMD/Tachyon Movie Generation

360 XE6 nodes for 3h50m @ 4096x2400

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Ray Tracing of HIV-1 on Blue Waters

• Ambient occlusion lighting,

shadows, transparency,

antialiasing, depth cueing,

144 rays/pixel minimum

• 64 million atom virus

simulation

• 1000+ movie frames

• Surface generation and ray

tracing stages each use >=

75% of GPU memory

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD GPU Ray Tracing of HIV-1 Capsid

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

HIV-1 Parallel HD Movie Rendering on

Blue Waters Cray XE6/XK7

 Node Type

and Count

Script Load

Time

State Load

Time

Geometry +

Ray Tracing

Total

Time

256 XE6 CPUs 7 s 160 s 1,374 s 1,541 s

512 XE6 CPUs 13 s 211 s 808 s 1,032 s

 64 XK7 Tesla K20X GPUs 2 s 38 s 655 s 695 s

128 XK7 Tesla K20X GPUs 4 s 74 s 331 s 410 s

256 XK7 Tesla K20X GPUs 7 s 110 s 171 s 288 s

New “TachyonL-OptiX” on XK7 vs. Tachyon on XE6:
K20X GPUs yield up to eight times geom+ray tracing speedup

GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.
Stone et al. In UltraVis'13: Eighth Workshop on Ultrascale Visualization Proceedings, 2013.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Acknowledgements

• Theoretical and Computational Biophysics Group,

University of Illinois at Urbana-Champaign

• NCSA Blue Waters Team

• NVIDIA CUDA Center of Excellence, University of

Illinois at Urbana-Champaign

• Many of the staff at NVIDIA and Cray

• Funding:

– NSF OCI 07-25070

– NSF PRAC “The Computational Microscope”

– NIH support: 9P41GM104601, 5R01GM098243-02

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• GPU-accelerated molecular visualization on petascale supercomputing platforms. J. E. Stone,
K. L. Vandivort, and Klaus Schulten. In UltraVis'13: Eighth Workshop on Ultrascale Visualization
Proceedings, pp. 6:1-6:8, 2013.

• Early Experiences Scaling VMD Molecular Visualization and Analysis Jobs on Blue Waters.
J. E. Stone, B. Isralewitz, and K. Schulten. In proceedings, Extreme Scaling Workshop, 2013.

• Lattice Microbes: High‐performance stochastic simulation method for the reaction‐diffusion
master equation.
E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

• Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System
Trajectories. M. Krone, J. E. Stone, T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71,
2012.

• Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics
Trajectories. J. Stone, K. Vandivort, and K. Schulten. G. Bebis et al. (Eds.): 7th International
Symposium on Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units – Radial

Distribution Functions. B. Levine, J. Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-3569,

2011.

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in HPC Clusters. J. Enos,

C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J Phillips. International

Conference on Green Computing, pp. 317-324, 2010.

• GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I. Ufimtsev, K. Schulten.

J. Molecular Graphics and Modeling, 29:116-125, 2010.

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing. J. Stone, D. Gohara,

G. Shi. Computing in Science and Engineering, 12(3):66-73, 2010.

• An Asymmetric Distributed Shared Memory Model for Heterogeneous Computing Systems. I.

Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. Hwu. ASPLOS ’10: Proceedings of the 15th

International Conference on Architectural Support for Programming Languages and Operating Systems,

pp. 347-358, 2010.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi, M. Showerman, G.

Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on Parallel Programming on Accelerator Clusters

(PPAC), In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009.

• Long time-scale simulations of in vivo diffusion using GPU hardware. E. Roberts, J. Stone, L.

Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: Proceedings of the 2009 IEEE International

Symposium on Parallel & Distributed Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and

Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd Workshop on

General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM International

Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone. Communications of

the ACM, 52(10):34-41, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy, J. Stone,

K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.

J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,

IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling applications.

C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the 2008 Conference On

Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. Proceedings of the

IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, P.

Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J. Hüve, M.

Kahms, R. Peters, K. Schulten. Biophysical Journal, 93:4006-4017, 2007.

