
Daniel Horowitz – Director of Platform Developer Tools, NVIDIA,

Robert (Bob) Knight – Principal System Software Engineer, NVIDIA

Mike Hallock - Research Programmer, U.Illinois at Urbana Champaign

John Stone – Senior Research Programmer, U.Illinos at Urbana Champaign

March 26, 2018

OPTIMIZING HPC SIMULATION AND
VISUALIZATION CODE USING
NVIDIA NSIGHT SYSTEMS

2

INTRODUCING NSIGHT SYSTEMS

System-wide Performance Analysis Tool

Focus on the application’s algorithm – a unique perspective

Scale your application efficiently across any number of CPUs & GPUs

3.2x-4.1x Speedup Achieved on Visual Molecular Dynamics!

Stay tuned for the details

3

NSIGHT PRODUCT FAMILY

Standalone Performance Tools

Nsight Systems - System-wide application algorithm tuning

Nsight Compute - Debug/optimize specific CUDA kernel

- Use NVIDIA Visual Profiler today

Nsight Graphics - Debug/optimize specific graphics shader

IDE Plugins

Nsight Visual Studio/Eclipse Edition – editor, debugger, some perf analysis

Workflow

Nsight
Systems

Nsight
Compute

Nsight
Graphics

available @next
major CUDA release

Start
Here

4

NSIGHT SYSTEMS USER

5

MAXIMIZE YOUR GPU INVESTMENT

Find the right optimization opportunities

Balance your workload across CPUs and GPUs

Achieve real-time performance requirements

Optimize for HPC environments – minimum time to solution

6

FEATURES
User Instrumentation

NVidia Tools eXtension
- aka NVTX

API Tracing

CUDA, OpenGL,

cuDNN, cuBLAS

System strace-lite

Backtrace Collection

Sampled IPs

Blocked state

7

APPLICATION ALGORITHM

Zoom Out

Four Distinct
Phases of

VMD
Algorithm
Become
Visible

8

CORRELATION TIES API TO GPU BEHAVIOR

Zoom In

Track
Algorithm
from CPU
to GPU or
from GPU
to CPU!

Selecting one

highlights both

cause and effect,

i.e. dependency

analysis

9

BLOCKED STATE BACKTRACE

10

DATA COLLECTION

CLI enables easy
collection on servers and

in containers

Host-Target
Remote Collection

Host Target

Command Line Interface
No connection! Import later

11

REPORT NAVIGATION DEMO

New Tool – Outstanding Interactive Performance and Level of Detail Available

Core Areas

• Algorithm Overview Using NVTX Tags

• OS Thread Timeline including APIs Traced

• Correlation of OS Thread API Use with GPU

Activity

• CPU Sampling Shows Hot OS Thread

Code/Bottlenecks

12

COMMON OPTIMIZATION OPPORTUNITIES

CPU

• Thread synchronization

• Algorithm bottlenecks starve
the GPUs

Single GPU

• Memory operations – blocking,
serial, unnecessary

• Excessive synchronization -
device, context, stream,
default stream, implicit

• CPU/GPU overlap – avoid
excessive communication

Multi GPU

• Communication between GPUs

• Lack of stream overlap in
memory management, kernel
execution

13

MD Simulation

VMD – “Visual Molecular Dynamics”

Cell-Scale Modeling

• Visualization and analysis of:

– Molecular dynamics simulations

– Lattice cell simulations

– Quantum chemistry calculations

– Sequence information

• User extensible scripting and plugins

• http://www.ks.uiuc.edu/Research/vmd/

14

CRYO-EM / CRYO-ET IMAGE
SEGMENTATION

Evaluate 3-D volumetric

electron density maps

and segment them, to

identify key structural

components

Index/label components

so they can be referred

to, colored, analyzed,

and simulated…

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

15

CRYO-EM DENSITY MAP SEGMENTATION
APPROACH, GOALS

Watershed segmentation:

• Smooth/denoise image (e.g. blur)

• Find local minima of image/gradients

• Connect minimum voxels with neighbors of
similar intensity, marking them with the
same “group” number

• “Grow” each group (merging groups where
rules allow) until no more updates occur

Scale-space segmentation variant does
further blurring and group merging

Goals:

• Reach interactive performance
rates (under 1 second) for
common density map sizes
between 1283 to 2563 voxels

• Handle next-generation problem
sizes (7683 to 20483) smoothly with
only a brief wait

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

16

1: INITIAL VMD IMAGE SEGMENTATION TRACE

▪ GPU compute activity shown in BLUE.

▪ Memory transfer activity shown in RED.

▪ Trace shows memory transfers taking a lot of the time in the second phase…

▪ What is the algorithm doing here? Why?

17

2: VMD PROFILE W/ NVTX TAGS

▪ Added NVTX tags clearly show algorithm phases in the Nsight System timeline.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

18

2: VMD IMAGE SEGMENTATION W/ NVTX

▪ Can easily zoom in on NVTX tags (double click) so they fill horizonal view.

▪ Selected yellow “Segmentation test script” view relevant work

▪ Tags shown are algorithm phases, sub-phases, iterations, kernels, and

CUDA API calls…

Total time: 3.14s

Total speedup: 1.0x

Phases:

Constructors: 0.1s

Watershed: 0.9s

Scale-Space: 2.13s

Other: 0.014s

19

2: IDENTIFIED BOGUS COPIES, SLOW CPU INIT

▪ CPU init routine is slow (30% of Watershed time).

▪ Scale-space algorithm phase dominated by GPU-host memory transfers that

shouldn’t be there!

20

2: DETAIL: IDENTIFIED BOGUS GPU-HOST COPIES

▪ Bogus memory copies!

▪ Create gaps in GPU execution

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

21

3: BOGUS COPIES ELIMINATED

▪ Bogus copies eliminated.

Total time: 2.21s

Total speedup: 1.4x

Phases:

Constructors: 0.1s

Watershed: 0.9s

Scale-Space: 1.25s

Other: -

22

3: DETAIL: BOGUS COPIES ELIMINATED

▪ Bogus copies eliminated.

▪ Gaps between GPU kernels are now very short.

▪ Speedup for just the scale-space algorithm phase is 1.7x

23

3: DETAIL: SLOW CPU INIT ROUTINE

▪ Watershed algorithm CPU init takes 310ms.

▪ Total Watershed runtime is 894ms.

▪ CPU init taking 34% of the runtime for this phase!??!

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

24

4: FAST GPU INIT ROUTINE

▪ GPU-based Watershed init kernel 13.4ms.

▪ Speedup over CPU-based initialization: 23x
Total time: 1.91s

Total speedup: 1.6x

Phases:

Constructors: 0.1s

Watershed: 0.59s

Scale-Space: 1.25s

Other: -

25

4: DETAIL: SLOW SCALE-SPACE MERGE GROUPS KERNEL

▪ GPU kernel for scale-space group merge operations is slow compared to

other kernels, opportunity!

▪ Write new special-case scale-space merge kernels for problem sizes small

enough to allow atomic ops in shared memory rather than global memory.

26

5: FASTER MERGE GROUPS KERNELS

▪ Use Nsight Compute to examine kernel in detail.

▪ New problem-size-specific shared memory kernels speed up

scale-space segmentation phase by 3x over original kernel.

Total time: 1.07s

Total speedup: 2.9x

Phases:

Constructors: 0.1s

Watershed: 0.59s

Scale-Space: 0.4s

Other: -

27

5: DETAIL: FASTER MERGE GROUPS KERNELS

▪ New problem-size-specific shared memory kernels speed up scale-

space segmentation phase by 3x over original kernel.

▪ New kernels have comparable runtime to neighboring scale space

kernels, no longer an outstanding optimization opportunity.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

28

5: DETAIL: EXCESSIVE ERROR CHECKING

▪ Excessive synchronizations happening here

▪ Many calls to cudaDeviceSynchronize(), checking error status, etc.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

29

6: DETAIL: STREAMLINED ERROR CHECKING

▪ Excessive cudaDeviceSynchronize() calls eliminated

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

Total time: 1.05s

Total speedup: 3.0x

Phases:

Constructors: 0.1s

Watershed: 0.59s

Scale-Space: 0.4s

Other: -

30

6: DETAIL: ITERATED MALLOC/FREE

▪ Several areas of trace show CUDA malloc/free calls in iterative algorithm phase

▪ (Re)allocation APIs create gaps in GPU execution stream

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

31

7: MADE WORK BUFFERS PERSISTENT

▪ All VMD kernel work buffers persistent across iterations

Total time: 1.01s

Total speedup: 3.1x

Phases:

Constructors: 0.1s

Watershed: 0.57s

Scale-Space: 0.35s

Other: -

32

7: DETAIL: … EXCEPT THRUST SCAN()

▪ Thrust scan performs GPU malloc/free

▪ Allocations disrupt GPU work stream slightly

▪ Can use special allocation scheme or use CUB instead

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

33

8: DETAIL: CUB SCAN PERSISTENT WORK BUFFERS

▪ Persistent CUB work area eliminates iterated GPU malloc/free

▪ No significant interruptions in GPU work stream now

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

Total time: 1.00s

Total speedup: 3.1x

Phases:

Constructors: 0.1s

Watershed: 0.57s

Scale-Space: 0.35s

Other: -

34

9: DETAIL: USE OF CUDA ASYNC APIS

▪ Use of cudaMemcpyToSymbolAsync() allows CPU to enqueue subsequent

kernel and result copy-back efficiently while first copy is still running

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

35

9: DETAIL: CONSTRUCTOR HOST-GPU COPY

▪ Extra copy: side effect of a C++ class constructor

▪ Eliminate via tiny refactoring

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign – www.ks.uiuc.edu

36

10: FINAL RESULT

Total time: 0.98s

Total speedup: 3.2x

Phases:

Constructors: 0.03s

Watershed: 0.57s

Scale-Space: 0.36s

Other: -

37

VMD CRYO-EM SEGMENTATION:
LESSONS LEARNED

• Nsight Sytems helped identify unintentional copies caused by indirect side-effects
of C++ class designs

• Demonstrates the value of applying profiling tool during ongoing algorithm
development

• Final performance result on Quadro GP100 is 3.2x faster

• Speedup on Tesla V100 (Volta) is even more dramatic:

• Initial runtime 2.66 seconds

• Final optimized runtime: 0.64 seconds, 4.1x faster

• VMD GPU image segmentation is now 12x faster than competing tools

38

Lattice Microbes

Glucose/Agar

BMC Sys. Biol. 2015

Biophys. J. 2015

Biopolymers, 2016

• Whole-cell modeling and simulation, including

heterogeneous environments and kinetic

network of thousands of reactions

• Incorporate multiple forms of experimental

imaging for model construction

• Scriptable in Python

http://www.scs.illinois.edu/schulten/lm

39

LATTICE MICROBES DESCRIPTION
Simulate cell dynamics
on biologically
relevant timescales
using a lattice-based
model

Earnest, et al. J. Physical Chemistry B, 121(15): 3871-

3881, 2017.

40

LATTICE MICROBES SIMULATION

X-axis Diffusion

Y-axis Diffusion

Z-axis Diffusion

Reactions

Simulation Timestep Loop

Check Overflows
Simulation Lattice

41

DEFAULT STREAM SYNCHRONIZATION

Default stream – Implicitly Synchronized

Synchronized
Twice

42

DEFAULT STREAM SYNCHRONIZATION 2

cudaMemcpy replaced with
zero-copy-memory

20% performance gain

43

LATTICE MICROBES MULTI-GPU SIMULATION

X-axis Diffusion

Y-axis Diffusion

Z-axis Diffusion

Reactions

Simulation Timestep Loop

Check Overflows

• Divide the cell into chunks for each GPU to process
• Communicate particles on the edge of each volume

to neighboring GPU

Send Lattice Edges

Receive Lattice Edges

44

Using System API trace

pthread_cond_broadcast

Replaced with CPU spinlock

60us faster on average!

HOST THREAD PARALLEL OPTIMIZATION

Conditions
(original)

Spinlocks
(optimized)

Synchronization
Histogram

Analyzed via Python

~25% performance gain

45

INTER-GPU TRANSFER IMPROVEMENTS

Reduce transfer overhead by packing multiple transfers in to one

Eliminate small D2D Copies

46

INTER-GPU TRANSFER IMPROVEMENTS

Only one copy to each neighbor

10 - 75% performance gain
based on cell size

47

4-WAY DGX INTER-GPU TRANSFERS WITH NVLINK

A kernel directly accessing remote lattice via P2P copies can achieve concurrent bidirectional transfers

Communicate Compute

Larger Size Cells

Communicate Compute

Smaller Size Cells

5 - 28% performance gain
kernel-based P2P copy

48

COMMON OPTIMIZATION OPPORTUNITIES

CPU

• Thread synchronization

• Algorithm bottlenecks starve the
GPUs

Single GPU

• Memory operations – blocking,
serial, unnecessary

• Too much synchronization -
device, context, stream, default
stream, implicit

• CPU GPU Overlap – avoid
excessive communication

Multi GPU

• Communication between GPUs

• Lack of Stream Overlap in memory
management, kernel execution

49

TOOL COMPARISON
NVIDIA ©

Nsight ™

Systems

NVIDIA©

Nsight™

Compute

NVIDIA©

Visual Profiler

Intel ©

VTune ™

Amplifier

Linux perf

OProfile

Target OS Linux Linux,

Windows

Linux, Mac, Windows Linux, Windows Linux

GPUs Pascal, Volta, Future Pascal, Volta,

Future

Kepler, Maxwell, Pascal,

Volta, Future

None None

CPUs x86_64 x86_64 x86, x86_64, Power x86, x86_64 x86, x86_64,

Power

Trace NVTX, CUDA, OpenGL,

CuDNN, CuBLAS,

System

NVTX,

CUDA

MPI, CUDA,

OpenACC

MPI, ITT Kernel

PC

Sampling
High Speed No Yes High Speed High Speed

UVM, NVLINK,

Power,Thermal
Future Yes No No

Src Code View No Yes Yes Yes No

Compare

Sessions
No Yes Yes Yes No

50

NSIGHT SYSTEMS

• When can you get it?

• Soon. Fixing the last issues now.

• Where can you get it?

• http://developer.nvidia.com/nsight-systems

• Questions/Requests/Comments?

• nsight-systems@nvidia.com

Visit us at the NVIDIA booth in the exhibit hall for a live demo!

Workflow

Nsight
Systems

Nsight
Compute

Nsight
Graphics

For Tegra-based systems
Codeworks

JetPack
DriveInstall

Note: Currently still
NVIDIA System Profiler

in some packages

http://developer.nvidia.com/nsight-systems
mailto:nsight-systems@nvidia.com

51

NSIGHT SYSTEMS

Upcoming features:

• NVIDIA GPU Cloud (near future)

• Future GPUs

• Future CUDA Releases

• Windows targets

• Many more HPC and cluster features

52

DON’T MISS THESE PRESENTATIONS

S8481: CUDA Kernel Profiling: Deep-Dive Into NVIDIA's Next-Gen Tools (Thursday 11:00AM)

S8337: NVIDIA SDK Manager - Simplify Your Development Environment Setup
(Wednesday 3:30 PM)

S8275: Introducing NVIDIA's New Graphics Debugger (Wednesday 4:00 PM)

S8665: VMD: Biomolecular Visualization from Atoms to Cells Using Ray Tracing,
Rasterization, and VR (Thursday 11:00AM)

S8709: Accelerating Molecular Modeling Tasks on Desktop and Pre-Exascale
Supercomputers (Monday 4:00PM)

Show floor demos available:

Tuesday 11-1 and 5:30-7:30; Wednesday 12-2 and 5-7; Thursday 12-2

53

Q & A

54

BACKUP

55

COMMAND LINE INTERFACE

