Temperature quench echoes in proteins
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Temperature quench echoes are analyzed in terms of the temperature—temperature correlation
function in the harmonic approximation, and the resulting expressions are compared with molecular
dynamics simulations. The relationship between the time dependence of the echo depth and the
density of states is demonstrated for harmonic systems. For a protein, which has significant
anharmonicity, the time dependence is dominated by relaxation effects that originate from dephasing
of the periodic motions. A simple relaxation model is shown to provide a good description of the
results observed in the simulations. 95 American Institute of Physics.

I. INTRODUCTION that although the echo depth is related to the density of
) ] ] ) states, the relationship is more complex than initially as-
~Molecular dynamics simulations of biopolymers are nowg,med. We demonstrate that vibrational dephasing due to the
being widely .usezd to study their structure, dynamics and,nparmonicity of the protein plays a dominant role in the
thermodynamics:? Certain properties are difficult to visual- decay of the echo depth with increasing time.
ize directly. Some of these can be revealed through numeri- | gection 11 we describe briefly the molecular dynamics
cal experiments which apply sudden perturbations and monig;qorithm employed. Section Il presents a description of the
tor the response. The temperature quench echo is a 909dmperature echo phenomenon within the harmonic approxi-
example. Temperature quench echoes were first oabserved fHation and shows how it can be expressed in terms of the
simulations of a Lennard-Jones glass by Gresal™ and  emperature—temperature correlation function. In Section IV,
were demonstrated recently4|n a protein, the bovine pancrepe exact relation of the echo depth to the density of states is
atic trypsin inhibitor (BPTI)." A typical quench echo is  gerived and illustrated. Section V uses a simple model to

shown in Fig. 1. A molecular dynamics simulation of a sys-gyamine anharmonicity effects on the temperature echo. In
tem equilibrated at a certain temperature is halted at tim&gction VI, we summarize and discuss the results.

t=0 and then continued with the same positions, but with
zero velocities for all particles. This procedure, which creates
a coherent system, is referred to as a quench. The same
quench is applied a second timetatr. The echo manifests |l METHODS
itself as a brief decrease in the kinetic energy or, according to

the relationship
2 1 5 amino acids and 898 atoms in an all atom model. We used a
T= 3kgN 2. 5 Mvi  (N=number of atoms (1)  ell equilibrated structure obtained by molecular dynamics
simulations at 300 K in vacuum of about 1 ns starting from
as a dip in the temperatuie of the system. the 1.5 A resolution x-ray structufeTo prepare the coordi-
Rahman and co-workers provided an interpretation ohates at=0 in Fig. 1, a 15 ps molecular dynamics simula-
the quench echo phenomenon and showed how it could bion at 300 K was carried out. During the first 5 ps of the
used to study various aspects of the dynamics of a Lennardgimulation, the protein was coupled to a heat bath at 300 K
Jones glas$®~' The authors formulated their analysis in the by rescaling velocities through
harmonic approximation, which was also employed in Ref. 4
to interpret echoes in proteins. In the present paper we refor- v{‘eW:Ui‘"d\/l—)\Jr)\To/T, 2
mulate the harmonic description in terms of the temperature-
temperature correlation function. This provides a basis for avhereT,=300 K, \=0.01 andT is the temperature defined
more detailed study of the properties of the temperaturén Eq.(1). During the remaining 10 ps, no coupling to a heat
quench echoes. The results are compared to simulations gkth was applied. The average temperature during the period
model systems and to molecular dynamics calculations of thg0 ps<t<15 ps wasT,=297.86 K with fluctuations of
protein BPTI. +5.67 K. We employed the coordinates at 10, 11, 12, 13, 14
In Refs. 3 and 4 it was suggested that the echo depthnd 15 ps to simulate six temperature quench echoes. The
provides an estimate of the density of states. We show her@mperatures shown in Fig. 1 and Fig. 3 below were an av-
erage over these six quench echo simulations. The simula-
9present address: School of Chemistry, Tel Aviv University, Tel Aviv 69978, ions were carried out using the molecular dynamics package
Israel. MD/PMD with the fast multipole approximatiofFMA) to

The simulation for BPTI underlying Fig. 1 is basically a
repetition of the work presented in Ref. 4. BPTI has 58
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give insights into protein motions. An alternative route to
evaluate normal modes is through diagonalization of the
force—force correlation matrif ;= (f;f,), of the velocity-
velocity correlation matrix Vj,=(vjvy), or of the
coordinate-coordinate correlation matriXj, = (Ax;AXy),
where j, k label the three Cartesian coordinates of Mll
particles, and the average here is over trajectories lasting a
sufficient period of timé/ 18

For a protein withN atoms, there are 8—6 internal
normal modes after the six degrees of freedom which de-
scribe overall translation and rotation are removed. We de-
note the frequency of theth mode byw, and the associated
vibrational coordinate byy,, where a=1,2,....N—6. The
vibrational modes are assumed to be in mass-weighted coor-
dinates, such that the effective mass associated with each
- mode is unity'°
t/fs To derive the relationship between the quench echo ef-

fect and the temperature correlation function, we need to

FIG. 1. Double quench, quench echo and comparison with the temperaturéiN@lyze how the kinetic energy, or temperature defined in Eq.
temperature correlation functid®r 1(t) [see Eq(15)]. The solid lines rep- (1), evolves before the first quench, between the first and the

resent results averaged over six simulations for the protein BPTI; the dashegecond guench, and after the second quench.

lines are predictions due to the harmonic model, i.e.,(B4). and Eq.(31).

The bottom diagrams are enlargements of the top diagram. The first quengh. Before the first quench

was applied at=0, and the second one &t 7 (7=250 f9; the echo is

observed at=2r. Before the first quench, i.e., f¢x0, the probability for
the ath normal mode to have amplitudg, is given by the

Rayleigh distributiof°

T/K

evaluate long range electrostatic for¢&s! The cHARMM 19

all-atom potential energy function was usgdnd the dielec- P(A )= wiAa wiAi

tric constant wag=1. (Aa)= kaTo P ™ 2kgTo)’
The molecular dynamics simulation used to obtain Fig. 9 _ o

and Fig. 13 are identical to that described in Ref. 4. It wagvhereTo is the equilibrium temperature of the system.

performed with thecHARMM program(version 222 and the We define byd, the phase of therth normal mode at

all-atom parameter sétA distance-dependent dielectric fac- {=0. The values o, are random and, at thermal equilib-
tor was employeds=r). In the simulations all the interac- "uUm, can be assumed to be evenly distributed in the interval

tions were included, i.e., no distance cutoff for non-bonded©: 27). The position of thexth normal mode at<0 can be
interactions was used, and the time step was equal to 0.5 féxPressed as

()

9 () =A, cogw,t+6,) 4
I1l. TEMPERATURE QUENCH ECHOES IN THE
HARMONIC APPROXIMATION with corresponding velocity
In this section, we relate the temperature echo, in the dqgl)(t)
harmonic approximation, to the temperature correlation func- v(al)(t) T —A,w,SiNw, t+6,). (5)

tion. The derivation closely follows that in Refs. 3—7. By

introducing the temperature—temperature correlation funcThus, one obtains for the total kinetic ener@&‘) the corre-

tion a more systematic approach to the temperature responggion function

of the system is developed. We show how the echo tempera-

ture (i.e., the system temperature at the time of the ¢@ho (EW(DED(0)),= <(

related to the density of states and that in a harmonic system K K 0

the density of states can be extracted from the depth of the

echo. %
The normal mode analysis for proteins, particularly suit-

able at low temperatures, assumes that the potential energy

surface on which the atoms move can be approximated by &here the summation over and\ is from 1 to N—-6 and

quadratic form. The normal modes can be determined...)s denotes the average over the random phaseand

through the calculation and diagonalization of the second)y . Employing the averaging technique proposed by

derivative (Hessiah matrices of the potential energy with Rayleigh?®**one exploits

respect to mass weighted Cartesian or internal coordinates. . ] .

This method has been successfully employed for?exqi'w‘”L 0)1)e=0: (exXH£i(02=00)])s=Sar R

proteinst*~16Although there are anharmonic contributions to

the energy function, the harmonic approximation can stilland obtains

1
> > w2A2 sird(w t+6,)

3

; %wai sinzax)> , (6

4
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1 2 <E(l)(t)E(l)(O)>_<E(1)(t)>2
(1) (1) - T 2,2 Bk K k
<Ek (t)Ek (0)>0 2“ 4 waAa) CT,T(t)_ <[Ef<l)(t)]2>_<EE<1)(t)>2
1 S Ao 2w ,t)
+§ @w;tA‘; cog2w,t). (8 _S <2aA;4>w ) (16)

It should be noted that, as written, E4) includes the over-

all translation and rotation while the normal mode kinetic

energy does not. In the use of simulations to evaluate the

correlation functions, it would be appropriate to do simula-

tions for a system with no overall translation or rotation, as is

commonly done for vacuum simulations. For proteins or

peptides in solution, a correction needs to be made; for most

cases, the difference betweeN and 3\ -6 degrees of free-
The harmonic equations derived above can be furtheflom is negligible.

simplified by considering the ensemble averages of the ki- Using distribution Eq(3) one obtains for the denomina-

netic energy and of the temperature. At equilibrium one carior in Ed.(16)

assume equipartition among the modes, which means that the <

It is easy to show

(EQV(1) 5= < Ea‘, % w2A2 sir(w,t+ ea)>

0

1
=2 7 wiAL (9)

average kinetic energy in each mode is > A§4> =8(3N—6)(kgTp)>2. (17

a

1 _ 1) 2 _
(Ela()a o= (3 v (1))a, 6= 7 ke(T), (100 For each simulation trajectonp, is a fixed constant which

, . depends on the initial velocity assignment. However, as
where( ... )¢ is the ensemble average over oscillator am-g,n in Ref. 22, the correlation function is almost identical

plitudes A, [using Eq.(3)] and over the random phases ¢ gifferent trajectories. Thus, we assume taat-(t) cal-
0, . In the following equations we use the subscriptto ’

indicate an ensemble average over bdthand 6, i.e.,
(..2z=(..)a 4. For individual normal modes, we have

(A0l SiP(w4t+0,))z=Kg (T(1)z. (12)
By taking the time average we obtain for each mode
3 wi<Ai>z: ke(T)z1-

Defining the average equilibrium temperatufg=(T) .,
one can write

12

(02A2)7=(AR?)7=2kg T, (13
i.e., the ensemble average of the the faadA?2 is a con-
stant proportional to the equilibrium temperaturg. For
convenience, we rename this facmjz, and rewrite Eq(9)
as

<E<k1>(t>>z=<2 %A’;Z SI(w,t+ 0a)>
¢ z

:<2 %A’;2> =(3N-6) 3 kgTo, (14
@ z

where in the last equality we used E{.3) to get the ex-
pected result.

The normalized temperature—temperature correlatio

function is defined by

(T(HT(0))—(T(1))?
([T —(T(1)*

Cr 7(t) can be expressed by use of E¢b, (8) and(9) as

Crr(t)= (15

culated from a given trajectory represents the temperature-
temperature correlation function evaluated from the average
over many trajectories with an ensemble A&f distributed
according to Eq(3). Consequently, we obtain

(S A% o 2w,1))
8(3N—6)(kgTp)?

Cr ()= =(coq2w,t)),, (18
where(...)o denotes the average over the amplitudes of the
oscillators determined by use of E(), and(..)), is an

average over all the normal modes, i.e.,

1 o0
(f(wa))a=—3N_6 }a) f(wa)=JO do D(w)f(o).
(19

D(w) denotes the normalized density of states. We use rela-
tion Eqgs.(18) and(19) below to derive a method for deter-
mining the density of states from the temperature quench
echo.

The correlation functionCt +(t) could be evaluated
from Egs.(18) and(19) if the density of state® (w) were
known. Here we determin€+ 1(t), according to Eq(15)
from molecular dynamics simulations, which do not neces-
sarily satisfy the harmonic approximatio@s +(t) was cal-
culated from the 10 to 15 ps interval in the 15 ps simulation
described in Section Il. The result is shown in Fig. 2. By
using a least-square fit, the correlation function can be
lr]natched to a single exponential decay

Crr(t)y~e Vo, 7,=2.47 fs. (20)

However, as is evident from Fig. 2, the exponential decay
used in Eq.(20) is very approximate. The correlation func-
tion Ct 1(t) has a long-time oscillatory behavior, which con-
tains essential information concerning the density of states.
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C. After the second quench

At t=r, the velocities for all the modes are set to zero
again. The amplitude for the th normal mode is

AZ =10 (7)|=|A, cos b, cogw,). (25)
The velocity for thea th normal mode at=ris

v (t)=*+A 0, c0S0, COJw,7) Sifw,(t—7)],

0. (26)
- N t/fs o .
=~ < > and the total kinetic energy is

SIOEDS % w2A? cog 6, cof(w,7) sirf[w,(t—1)].

FIG. 2. The temperature correlation function. The solid line is calculated

from a 5 pssimulation atT,=297.86 K according to Eq15). Shown by a (27)
dashed line is a least-square fit to a single exponential decl/o . Lo Lo
(ro=2.47 19. Averaging over the initial(t<0) phaseé, and the initial
(t<0) amplitudeA yields
*2 _ -

B. After the first quench and before the second one (B (t)>_ <A >Z[ ! <COS(2w )a~

We now develop a description of the temperature echo in X(C0§2w,(t—27)]),+(C0 2w, 7)),
the framework of the harmonic approximation. #&t0, the
velocities for all m(_)des are set to zero. The amplitude for the —(co$ 2w (t—D)])u ! (28)
ath normal mode is

AP =|qM(0)|=|A, cosb,|. (21) According to Egs. (13, (18, and (EX(1))

. . = (83N—6)/2 kg TC®)(1),the temperature response then obeys
The position and velocity for the th normal mode at times

0<t<r (i.e., after the first qguengltan be expressed To
m( queng P TO()= 22 [1- Cra(t= 1)+ Cr ()] ¢ [Cra(t)

q'?(t)=*A, cos b, cogw,t),
(22 +Crr([t—27)]. (29)

o _ Fort>r, and 7> 7y, wherer, is the relaxation time of the
The initial phases of all modes arenOdue to the applled correlation function as g|Ven in Eq20) Eq. (29) can be

quench, resulting in the choice of signs. Accordingly, the  simplified notingCr 1(7)~0 andCr (t)~0; we obtain, ac-
total kinetic energy after the first quench and before the seccordingly,

ond quench is

v 2(t)=FA 0, cos b, sin(w,t).

To
1 TO(t)~ —[1-Crq(t—7)]— CT w([t—=27]). (30)
<E<k2)(t))=<2 > A*2 cod 0, sinz(wat)> 4
“ z For 7<t<2r and C1 +(|t—27|)~0, Eq.(30) reduces to
1 T
=<§ §A22[1—60$2wat)]> T(3)(t)~zo [1-Cr1(t—7)] (32)
VA
3N—6 ) which expresses the temperature response in terms of the
=—g§ (AL 1-Cr1(D)]. (23 correlation function, Eq(15). Figure 1 shows that Eq31),

with C+ 1(t) determined from the molecular dynamics simu-
From Eg. (13 and (E@(t))=(3N—6)/2ksT?)(t), the Iation presented in Fig. 2, fits the simulation rather well.

temperature after the quench is given by At the time of the echo, whent=~2r and
T Cr1(t—7)~0, Eq.(30) can be approximated
0
TA(t)= 5 [1=Cra(D]. (24) To
T(g)(t)Nj—gcTT(“ 21]). (32

This expression contains the correlation function, Hdp).

One can see from Fig. 1 that the prediction given by EqEquation(32) expresses the echo temperature in terms of the
(24), using a correlation functio€ r(t) determined from  correlation function, Eq(15). It predicts that in the limit of
the simulation shown in Fig. 2, is in good agreement with thdong times the depth of the echo should be constant and
temperature response resulting from the molecular dynamiosqual toTy/8, i.e., at timet>2.47 fs[see Eq(20)], the echo
simulation. This is true in spite of the fact that E§4) has  depth is predicted to be independentroéind, therefore, not
been derived within the harmonic model and that the mo+elated to the normal mode frequencies. However, the value
lecular dynamics simulations include the effect of anhar-Ty/8 is only an approximation since, as seen in Fig. 2, the
monic forces. fluctuations in the temperature—temperature correlation func-

J. Chem. Phys., Vol. 103, No. 8, 22 August 1995



3116 Xu et al.: Temperature quench echoes in proteins

4 80} \/\/\/\/\/)\/\/\ )
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FIG. 3. Comparison of the echo depth for differentThe solid lines represent simulations with the quench echo of temperature averaged over 6 runs for the
protein BPTI; the dashed lines represent the prediction by the harmonic model, i.€32Eq.

tion persist long after the initial exponential decayith re-  quench echo versus7Z r, one obtains the so-called echo-
laxation time of 2.47 fsis over. These fluctuations carry depth spectrurfi.in Ref. 6 it was demonstrated that the echo
important information concerning the density of states. In thelepth spectrum for a Lennard-Jones glass has the same form
next section we discuss the relationship between the echoes its density of states. Similarly, in Ref. 4 it was found that
and the underlying vibrational density of states and demonthe echo-depth spectrum of BPTI is in agreement with the
strate how the density of states can be extracted from thexperimental density of states observed by inelastic neutron
temperature echo depth in the harmonic limit. scattering®® and it was suggested that the double quench
In actual simulations of temperature echoes in proteingchoes can be used for estimating the density of states in
the echo-depth does not approach a constant value but rathgeneral. The argument, which follows that of Nagell.®
decays to zero due to anharmonic effects, such awas: When a system is quenched at tirad, all oscillations
dephasing:*®’ The dephasing contribution is analyzed in of the system are forced to select a phase @& ofhis is the
detail in Section V. For example, in Fig. 3 we see that whilesame for the second quenchtatr. Thus, the second quench
at =50 fs the echo almost has the predicted depti @8 has no effect on motions of frequeney/r or multiples
(37.2 K), but when7 becomes larger, the depth of the echothereof, since these motions are at their turning point when
decreases. Faor=2 ps, the echo almost disappears. Figure 3he second quench is applied. Then, at timre &ll the modes
also shows that the width of the echo is well described by thevith frequencies of multiples ofr/ 7 have vanishing kinetic
correlation functionCr +(|t—27|).

D. Echoes after a sequence of three quenches

By quenching the system three times, namelyt-a0, T/K
71, T2, ONe can obtain additional echoes, as shown in Ref. 6.
Using the technique described above, one can show that the 150
temperature response after the third quench can be expressed
as
90|
To i To , i
T(t)zg[l_CT,T(t )]_l_G[CT,T(|t — 1) 60
T 30 1, >e—1, p t/fs
+Cr1(|t' =)= 2 [Cr(lt' = 71— 7)) 100 200 309" 400 500
’ 32 ' T/K

+Cr (|t =[m=7lD], (33 0
wheret’ =t—7;,— 7,. From Eq.(33), one expects that there
should be two echoes with depth ©§/16 att’=r,,7,, and 30T A A
two echoes with depth dfy/32 att’ = 7, + 75,| 71— 75|. This a0l ! ! . !
behavior is demonstrated with the BPTI molecular dynamics | ! ! !
simulations in Fig. 4. Y : '. : ,

' T T, ' t/fs
| [ !

IV. THE RELATIONSHIP BETWEEN QUENCH ECHOES 0 get, 100 200 THT, 300

AND THE DENSITY OF STATES

We return to the case of echoes resulting from the tWa-i. 4. The temperature versus time for BPTI quenched three times with
guenches at=0,r. If one plots the depth of the temperature ;=100 fs, andr,=150 fs.t' =t—7;— 5.
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energy and, accordingly, contribute to the echo. It was thus
concluded that if there are more modes with frequency
w=ml7, a deeper echo is expected.

Such a description gives a heuristic picture of the tem-
perature echo phenomenon. However, since there are a large
number of normal modes for a Lennard-Jones glass or a pro-
tein, the modes with frequencies equal to multiplesméf
make only a small contribution to the total kinetic energy.
Also the absence of additional echoest&at3r,47,..., be- 0
sides the echo d@t= 27 in simulations of glasses as well as in 0 T
ideal harmonic systems had not been understood. As shown
in Section Il for the harmonic model, the echo is a conse-
guence of a coherent superposition of all vibrational modes
and its depth does not directly mirror the density of states at . , — ™

3000, @ ,

2000 - -

2, (@) / kg (K)

1000f "

27 n
o (arbitary unit)

the specific frequencw=7/7. In the following, we inves- < 800F (b) ]
tigate how the double quench affects energies of different fm :
modes and derive the relationship between the echo-depth § 6001 ‘ : ]
spectrum and the density of states. — ) ¥ . o
3 400r LA e . LT
w200
[aV]
A. The temperature quench as a filter of the energy 0

spectrum
P 0 T 2n 3w

To study how temperature quenches affect the energy in  (arbitary unit)

different modes, we introduce an artificial ensemble of har-
monic osgllators Wlth frequenmesa, mlt_lal phasesﬁa and FIG. 5. Energy spectrum of a harmonic system after double quenes.
mass weighted amplitudes, . The notations used here fol- the total energy of each mode after two quenclibs.the kinetic energy

low the ones in Section Ill. According to ER5), the total distribution att=27. The dots in(a) and(b) represent energies according to

energy(klnetlc energy and potentlal enem the ath mode Egs. (39 and (41) by using random amplltudeﬁa satisfying distribution
after two quenches is (38) and random phases, evenly distributed in the range ¢0,27]. The
q solid lines represent the averaged energies as given by(&jsand (42).

Eo 0a) =3 02 [AP]?=1 w3A% cog 0, cod(w,7);

34
39 which is transformed from the distribution given by E8g).

and from Eq.(27), the kinetic energy of thexth mode at We introduce 4000 random numbers for the, distributed

t=27is in accord with Eq.(38). Finally we generate random phases
0, evenly distributed in the range 09,27
_ 272 . a
Ex(@)lt=2,= 3 03A;, €OS 6, COS(w,7) Si(w,T). After a sequence of two quenches the total energy

35 E(w,) (kinetic plus potential energyin mode « obeys

We consider a system with 4000 normal modes with a 2Eof( o)/ kg=Yy? cog 0, co(w,7), (39)
density of state® (w)x=w with a cutoff of 10, i.e., &w _ _ ,
<10. The frequencies are randomized to avoid possible res@" €xPression which can be obtained from Egf) after
nance effects in the system. For this purpose, we generafPstituting fory, as defined above. Note, that by dividing
random numbers;,, evenly distributed in the intervD,1]. the energy bkg we are evaluating it on a temperature scale.

We attribute to each mode, a=1,2,...,4000, the frequency By averaging over the phases_apd amplitudes, the average
wa=1077§’3. One can show total energy of thexth mode satisfies

2E o w,)/Kkg) =Ty coS(w,7). (40
()< DL n(w) () (@Rolodlle)=To coston.
dn(w) Similarly, att=27, from Eq.(35) one obtains
n\w
=D(7) —5— dwxVodo, 0<w<10. (36 2E(0,)]i—2./Ke=Yy? COZ 0, COX(w,7) SiIt(w,7),
(41)
To further simplify the calculation in Eq$34) and(35), we  and the effective temperatuféw,)|,_», of the ath mode at
assume t=2r7, through the relationshipEx(w,))=73 kgT(w,), is
Vo= Vol AZ/Kg. (37 T(wa)lt=2,=(2Ek(®4)|t=2-/Kg)
One then obtains the distribution function fipg : =To COS(w,7) SiMF(w,7). (42
2 The results obtained from Eq&39)—(42) at 300 K are
P(y,)= Ya exp( _Ya ) (39) shown in Fig. 5. Figure &) shows that the double quench
“ To 2To has no effect on energies with frequencies of multiples/of
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FIG. 6. A harmonic model with a block-shaped density of st&tés) between 100 and 300 ci: (a) the echo temperatufB®)(27) as a function ofr; (b)
the cosine transform df) showing that the density of state w) is recovered from the temperature echo experiment.

while it filters out completely the modes with frequenciesfunctions of the echo temperature, such as the echo-depth
nw/7+ /2, wheren=0,1,2,... However, the range of fre- [which equals the constant asymptotic valyg4 minus the
guencies in the neighborhood of multiples #fr that still  average echo temperature given in Et)].

contribute to the kinetic energy is rather broad. tAt2, Figure 6 demonstrates, for a harmonic model system,
there is a kinetic energy filter ifw,7) acting on the total that the density of states can be obtained from the echo tem-
energy spectrum shown in Fig(t§. The modes with fre- peratures. Five hundred equally spaced modes, between 100
quencies of multiples ofr/ 7 and a width ofm/47 contribute  and 300 cm?, were generated to form a block-shaped den-
little kinetic energy so that an echo occurs. This means thadity of states. To calculate the ensemble average of the echo-
the double quench does not fully isolate certain modes inemperaturél®)(27) as a function ofr, we use this density
accord with the heuristic picture given above. However, aof states with the following equation derived from Eg7):

we show in the following section, the density of states can be

1
extracted from the echo depth spectrum. TG(27) =
(3N—-6)
B. Detailed time dependence of the echo temperature X 2 A;f cog(waT) sinz[war] , (45)
Equation(32) predicts that in the limit> 7,5, the echo * z

depth is independent af and of the distribution of normal | hare (A/2),=(A*2/(2Kg)) 7= (2A%)5(c028,), Kg.
mode frequencies. We show below that for shothe echo  gjnce the ensemble average of the fadidf is a constant,
depth is related to the density of sta®¢w) in a simple independent of the mode, it was set equal for all mo@es
way. For harmonic systems the relationship derived can bg, | e of unity was used for simplicity Figure Gb) shows
used to extract the density of states. the cosine transform of®)(27) for this system. It is clear

According to Eq.(29), the average system temperature . the density of states is recovered from the echo tempera-
after the second quench &t 27 is tures.

3 To In another, more realistic example, we randomly gener-

T (27)= 5 [1=Crr(27)]. (43)  ated 10000 modes corresponding to a density of states

. . D(w)xJw with a cutoff, i.e., 62w<10, with the method as
Based on Egs(18) and (19), Eq. (43) can be rewritten in  gescribed in Section IV A. We then used this density of

terms of the normalized density of sta@¢w) states to calculate the response of the model system to tem-
To (= perature quenches. Figure 7, which shows the temperature as
T®(27)= B JO dw D(w)[1-cod4w,T)], (44)  a function of time for four differentr values, demonstrates

the relationship between the echo depth and the time interval
where we have replaced the discrete summation over the. For larger (=1 and r=100), the depth of the echo is a
(3N—6) modes by an integral ov&(w). For proteins this constanfT/2 as shown in Eq32). For smallr (7=0.2), the
is a very good approximation over the frequency range okecho at time~27, is not discernible since it is completely
primary interes{0<w<500 cm 1).1® masked by the large temperature fluctuations which charac-
Thus, the ensemble average of the echo temperature isrize the relaxation process that follows every quekioh
related to the density of stat& w) by a cosine transform. this case, the second quench described by(&f]. More-
The same cosine transform relation holds for simple lineaover, the asymptotic value of temperature @27 is
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C. Temperature quenches and the velocity
autocorrelation function

751

50r Another way to obtain the density of states from the
temperature quench experiment was suggested earlier by
Grestet al’ In this method the response of the system to a
single temperature perturbation was studied. Using &%,

(18) and(19) the temperature response to a single quench in

25

T/K

terms of the normalized density of state$w) can be writ-
75} ten
)l @10 [~
| A o 100 e To(1)= 2 fo do D(w)[1-cog2w,t)], (46)
. T . .
e M R ety 7 *" which means that the temperature response to a single

—_— quench is related to the density of staf@éw) by a cosine
transform with the argumentazt.
FIG. 7. A harmonic model with a density of states randomly generated to Following Grestet al” we define the function
mimic D(w) \/Z with a cutoff, i.e., Bw<10. The figures give the tem-
perature trajectories after the second quench for three differgatues. < T(z)(t) >
Kt)=(1- (47)
z

T

which has limits similar to those of a normalized correlation
function. HereT., is the asymptotic value oT(?)(1), i.e.,
T..=Ty/2. By substituting Eq(46) into Eq.(47), and noting

To/4 1+ C+ 1(7)], which can be significantly different from
To/4 (the value in the limit of long timesdue to large con-
3;?32%?1.0(]‘23; Y(Tjﬁ)Te)slghig.g(ezgsvg}ﬁa;ifnsﬂrgill'éh;?ijrS(’),n:hae that the integral over the normalized density of states is one,
collection of such calculations one can generate the “echo'© obtain
temperature spectrum” and then perform a cosine transform
of the result. Figure 8 compares the normalized result of this K(t)=
cosine transform to the actual normalized density of states _ _ _ _
used in the model simulation generated by the above proc&=0mparison with Eq(18) shows that in harmonic systems
dure. The cosine transform was performed using Filon’s forK(t) andCy ¢(t) are identical; i.e.,

. . 24
mula with window smoothing* One clearly sees that the K(t)=(cog 2w 1)), = Cr 1(t). (49)

density of state® (w) calculated by transforming the echo- . ) )
temperatures is in very good agreement with the actual he detailed relationship between the quench echo effect and

D(w), including its deviations from the overallfo) behav-  the temperature correlation function was not studied in ear-
ior. lier work and no physical interpretation &f(t) was given.

In the harmonic approximation, it also can be shown,
using the same techniques as in E¢3—(19), that the
velocity-velocity autocorrelation function can be expressed

‘ - - c ,v(t):M:<Coswat)>a:CT,T(tlz)-

1 v <v i> a
(50

From Egs.(49) and (50) we see that for harmonic systems
the temperature response functikiit) and the temperature
correlation functionC+ 1(t) are equal to the velocity auto-
correlation function of the system if one replaces the argu-
mentt of K(t) by t/2 wheret is the argument of the velocity
autocorrelation functior€, ,(t).
Since Eq(50) assumes the harmonic approximation, it is
‘ valid only at low temperatures, as has been demonstrated by
e . . . ' ° Grestet al. for a Lennard-Jones glassAt higher tempera-
' z 4 6 8 10 12 tures anharmonicities become significant and cause both
© (arb. units) K(t) andC+ +(t) to deviate from the velocity autocorrelation
function [not necessarily in the same way, since for anhar-
FIG. 8. The same harmonic model as in Fig. 7. Shown are the actual densitshonic systems, Eq_49) does not hold and these two func-
of states use¢thin line) and the function obtained by taking a cosine trans- tions are no longer identichl

form of the echo-temperaturds®(27) (heavy lingd. Both functions were .
normalized to unity. One sees that the density of stBtés) is recovered Elgure 9 ShO_WS th(_a tem_peratgre respons.e_ fundi6r)
from the temperature quench echo experiment. The dashed line represent®Btained from simulations in which an equilibrated BPTI

Vo function. molecule was subjected to a single quench and then allowed

OCda) D(w) cod2w,7). (48)
0

Normalized Cesine Transform
L
2
()] [P0V PAZIEULION
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FIG. 10. Comparison of quench echoes with250 fs resulting from simu-
0 10 20 30 40 50 lations carried out with different numerical accuracies. The dotted line rep-
resents a simulation performed using the fast multipole approximation to
time (fs)} calculate Coulomb interactions and a timestep of 0.5 fs. The solid line rep-

resents a simulation performed with a time step of 0.25 fs and without any

. approximation for calculating Coulomb interactions.
FIG. 9. The temperature response functkd(t) of an equilibrated BPTI i 9

molecule subjected to a single quench and then allowed to relax without
further perturbation. Shown is the response at two different asymptotic tem- . . . ) .
peratures, 66 Ksolid line and 140 K(dotted ling, each averaged over could make trajectories deviate from the harmonic behavior.

three initial conditions. We compared quench echoes witi250 fs obtained from
simulations carried out with different numerical precision.

to relax without further perturbation. Shown is the responsepne simulation was performed using the fast multipole ap-

at two different asymptotic temperatures, 66 K and 140 KprOX|mat|0n o calc_ulate Coulomb |_nteract|o_ns with a
L - .timestep of 0.5 fs. This method has an inherent inaccuracy in
each averaged over three initial conditions. Although the dif- ; . :
. evaluating the Coulomb forces as described in Ref. 11. An-
ference between the two curves, corresponding to two rela- : : . .
) . other simulation was performed with a time step of 0.25 fs
tively low temperatures, is not very large, one clearly sees

that K(t) is temperature dependent. A comparison with Fig.lﬁgcggggu;igytssgrxﬁ? gur?in ;er ?qﬁrcnu;ﬁgg? ;iﬂggb I1r']r_1e
2, which depictsCy 1(t) at 297 K, further highlights the ' 9 Y-

. latter simulation(i.e., the more accurate simulatipshows a
temperature dependence of these two functions. ; . .
) - . . » . deeper and more symmetrical echo, and in this respect,
Figure 9 is also qualitatively similar to “standard” ve- . : : .
. . . . yields an echo closer to what is predicted by the harmonic
locity autocorrelation functions calculated directly from mo-

lecular dynamics simulationgcf., for example Ref. 25 model(see Fig. 10 This suggests that the temperature echo

However, there is a significant difference between these tW(r)esults are sensitive to the accuracy of the force evaluation

. . ._and numerical integration in molecular dynamics simula-
functions. While the temperature quench response funCtloﬂons

K(t), andCr (1), are already averaged over all atoms and To describe analytically how anharmonic interactions af-

modes of the system the standard velocity autocorrelatio? : L .
o o ect the echo depth, we consider a heuristic model which
function is usually calculated for individual atom and subse-.

quently averaged over the system. Thus, the temperatu'mmduces the dephasing of the normal mode motions as a

I . . . .

, . Uilinction of time. The velocity or coordinate of theh nor-

echo approach obtains the results for the entire system in a . ; L ) X
' mal mode, in the harmonic approximation, is described by

more direct manner.

i . : A, sin(w,t). This harmonic motion interacts with other nor-
In the Appendix, we show in more detail for a model : . .
system why the temperature correlation function is more ap[n.al modes due to the anhf'irmomc terms in the potential.
propriate for studying quench echoes. S_lnce the r!umber _of interactions are very Iarge_, we can con-

sider such interactions as stochastic. The amplitugef the
ath oscillator obeys the distribution function of E@) and
has been averaged in the derivation in Section lll, such that
The reason why the depth of the echo is not as deep abe fluctuation ofA, does not affect the depth of the echo

predicted by the harmonic model has been pointed out isignificantly. However, the anharmonic interaction can cause
Refs. 4 and 6 namely, that the system is not purelythe trajectory to become dephased, i.e., the trajectory can be
harmonic?® There exist important anharmonic contributions assumed to have a random phasen addition to the origi-
that arise from torsional, electrostatic and van der Waals innal phase term. Hence, the motion can be described by
teractions that contribute to the potential in proteins. HenceA , sin(w,t+ 6,). We demonstrate that such dephasing can
the derivation in Section lll, based upon the harmonic asexplain the decrease of the echo depth.
sumption, is not perfectly valid. It is true also that the errors  We assume that at=0, the phasé, of the ath mode is
accumulated in the numerical integrations of simulations). With increasing time, anharmonic interactions add random

V. EFFECTS DUE TO ANHARMONIC INTERACTIONS
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1

~ 1F AT(27)2<<<< > 5 w2A2 cof 0, coH w,7
5 1
2 0-57 +5a,1(7)][§—sir?[wa7
E
g +5a,2(r>]}> > > >
-g 01lAT S, 116,
=-0.5[
=¥ To
g =5 {(((c0§ = 26,41 +28, A1) )5, )5, Yo

_1 -l

0 +<<Coi2wa7-+25a,2( T)])ﬁa 2>a
t (arbitary unit) +(((CO$ Ay 7+ 25, 4(7)
FIG. 11. Ademonstration of dephasing. The solid line represents a harmonic + 25a,2( 7')]>5m1> 50'2> a}' (57)

motion with the form sinf,t). The dots represent a dephased trajectory
described by sing,t+8,) when &, is simulated by a so-called Wiener For larger the last two terms of the r.h.s. are very small and

process which obeys E¢53). At t=0, the random phasg, is 0. the depth of the echo at=27 is essentially

.
AT<T>=(g")<<<cos{—zam(ﬂ+zaa,2<r>]>§a,l>5u,2>a,

values tod, (see the demonstration in Fig.)1The cumu- (58)
lative effect of such a process may be described by the Ein-
stein diffusion equation where(..)),, has been defined in E(L9).

The distribution ford, ,(7) is
IP(84,)=D4d5 P(34,t); P(84,0=08(8,), (51)
a P[S,(7),7]= r( i) ) (59
whereP(4§,,t) is the probability of having a random phase a7 /—
S, at timet. D, in Eq. (5]) is a diffusion constant and can 2myakeTor 27akeTor/’
be related to a temperature-independent constgnt, the  and forg, x(7) is
mobility constant, through (r
2

Da: yakBT' (52) P[ 6&,2( T) ’ T] m [{ 'yakBTOT) (60)

The solution of Eq(51) is the standard one-dimensional The difference between Eq&9) and (60) is due to the dif-
diffusion probability distribution ferent reference temperaturdgy/2 for &, () and To/4 for

1 52 5{1‘2(7'). Let
P(5,,t)= ———— - 53
e oy kot ex% 4yakBTt) N e G C) (61)
Accordingly, Eq(27) can be written Sin'ceéayl(r) anq 50[12(7-). are independgnt Gayssian rapdom
variables, the distribution fog, at 7 is again Gaussian,
1 namely,
<E<k3)(t))=<<<< > > w2A2? cog 0, cof[w, T y
47 1 ga
. P a,r=—exp<——). 62
+8,4(7)] il (t—7) oD By kaTer O " BykeTor)
8, ot )] > > > > ’ (54) Hence, one obtains
o/l Als a2 To - 1
AT(7)=|—5 d 2¢,) ———
where 6, ,(t) is the random phase attached after the first (7) 8) Lo@ €a COS(284) V37y KgToT
quench and before the second ordg;,(t) is the random ,
phase attached after the second quench,{ang . is de- o
. i Xexp — g———
fined as 3y KeToT
_ _ [ P(S. . _ T
(1500, = | 40,PGL 01,0, 69 =(§°) (o~ B yokaTor).. 3

The depth of the echo can be expressed as In casey, is the same constant, for all modes, we have

AT(27)=T®(t—x)-TE(27), (56) T,
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assumptions used in deriving Eq&8)—(64), particularly
due to the neglect of the dependence on the density of states.

VI. DISCUSSION AND CONCLUSIONS
AT(T)=(T,/8) Exp( -T/T,) _
We have used the temperature—temperature correlation
T,=8337fts function to analyze temperature echoes in a harmonic system
and demonstrated analytically and numerically that the
double quench echoes can be used to obtain the density of
statesD (w). However, in cases where anharmonicities are
. . . " L significant(this is likely to be true for most biopolymer sys-
500 1000 1500 2000 2500 tems except at very low temperaturesnodal dephasing
dominates the decay of the echoes. If one quenches the sys-
FIG. 12. Comparison of the echo depth resulting from simulations and€M Many times with the same time intervajsall the modes
predicted by Eq(64). The simulation results were averaged over six runs for are gradually drained of energy except those with frequen-
BPTI. The . value was chosen through a least-square fit. cies at multiples ofr/ 7 and the depth of the echo is related
to the density of stat® (#/7) even if anharmonic effects are
present. This method to measutd{w) was suggested in
Refs. 3 and 6. From the present analysis it appears that the
method would have relatively large errors. This is due to the
fact that the anharmonic effects will accumulate over the
multiple quenches and that modes with frequencies at mul-

20F
o

10

T/is

In Fig. 12, we compare the echo depth resulting from
simulations and predicted by E(G4). One can see that Eq.
(64) with 7.=1/(3y,kgTy)=883.7 fs fits the simulations
very well; the value ofr, was obtained from a least-square

fit to the. results. . tiples of 7/ 7 will contribute to the echo. A detailed discus-
In Fig. 13, we consider the-dependence of the echo : :
sion of these phenomena will be given elsewtére.

depth. We have carried out temperature quenches as de- As already observed in Ref. 4, it is of interest that a

scribed above for many different values in the range protein exhibits echoes at 300 K for 1 ps or longer. A tem-

0<r=L5 ps with interval of 25 fs. For each value, we erature of 300 K is considerably above the “glass transi-
carried out quenches with three different initial conforma-" . . y abo\ 9
n” temperature for a protein, which is in the neighborhood

tions and then determined the average echo depth. Figure ﬂ?ZZO K; the transition is present in vacuum simulations of

reveals that although the result can be fit to an exponentia% e type used in this worfe Thus, dephasing of the normal

function (as in Fig. 12, only in this case we obtain a slightly . . )
) . o .~ modes is a relatively slow process despite the presence of
different 7.=846.7 f9 the exponential fit is only an approxi- . oo .
anharmonic contributions to the potential.

mate description. The actual echo-depth temperature fluctu- . ) -
L In this paper we discussed only the original type of tem-
ates around the exponential fit of E@4). Clearly, part of .
. . : o . _perature quench echoes. Other types of perturbation
the observed fluctuations arise from insufficient averaging
but the deviation from Eq(64) is also due to the simplifyin schemes, such as the cool-heat-cool temperature pulse
' PIYING  sequenct?® and the velocity reassignment eéhare dis-

cussed elsewhere. In all cases one is studying the response of
the system to velocity perturbations which involve a coher-

‘0 ' ) ' ) ent excitation of all protein modes.

25 L From the present analysis it appears that the temperature
echoes may be useful for examining the anharmonic proper-
30+ o ties in protein systems. The results indicate that the decay of

echo depth versus time can provide a measure of the time

) ] I scale of the vibrational decoherence.

204 L There remain many interesting questions regarding tem-
g perature echoes. For example, the simulations revealed that
< 15+ N the friction describing the decoherence of the normal modes

is temperature-dependefit. This temperature dependence

7 il may shed some light on dynamic properties of proteins, e.g.,

5 a their relationship to glasses. Temperature echoes can also be
applied locally. For example, it may be possible to probe
0 . T _ certain functional groups inside biomolecules, e.g., a particu-

lar residue, by perturbing only the atomic velocities involv-
ing these groups and measuring the echo of the local tem-
FIG. 13. The echo deoth function of t ing 1 —— perature response. The procedure for temperature echoes can
. . € echo depth as a tunction of time, resulting frrom simulations, . . . _
for BPTI averaged over 3 different initial conditiorteeavy ling. The 7 also be generalized to dynamic variables other than tempera

values corresponding to the data points are separated by 25 fs. The thin lif&ll'€; an example_ WQUId_ be to follow the protein dipole mo-
is an exponential fit similar to that in Fig. {Bere7.=846.7 f3. ment after electric field jumps.

Time (ps)
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