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The effect of additive noise on the Bonhoeffer-van der Pol (BvP) model is studied. For this purpose we developed a numerical algorithm

to solve the pertinent 2-dim. Fokker-Planck equation. The resulis demonstrate that the global behaviour of the system is determined by

certain lines toward which the distribution function is attracted. These lines are also the seeds for the limit cycle in the deterministic

system. The noisy BvP model exhibits a limit cycle (oscillations) even when the deterministic system does not. This behaviour may explain
the firing pattern of neurons.

1. Introduction

The dynamics of the voltage and the current across neural
membrans which exhibits a threshold behavior and which
produces the propagation of voltage pulses is one of the best
known examples of non-linear behavior. In fact, non-linear
rate equations can describe very well the electrical activity
of certain nerve cells, the giant axons of squid, as had been
shown in the celebrated work of Hodgkin and Huxley {1].
These authors established a set of 4-dimensional non-linear
differential equations, the socalled Hodgkin-Huxley equa-
tions, which account rather well for the shape and the
threshold behavior of nerve pulses.

After the inception of the theoretical analysis of neural
activity by Hodgkin and Huxley several attempts had been
made to extent the Hodgkin-Huxley equations. It has been
investigated also in how far simpler dynamical models may
describe the behavior of neural pulses as well. One such
model originates from the work of van der Pol [2] and
Bonhoeffer [3—6]. Actually, Bonhoeffer had attempted to
mathematically model neural pulses independently of the
work of Hodgkin and Huxley. Extending the describtion of
the van der Pol oscillator he-suggested the following two
equations [3—6]

B8,x1 = c(xy + X — 3%3 + 2) = Fi(x) (1a)
8%z = —(x; + bx; — a)fe = F(x) (1b)

where a, b, ¢, z are external parameters. It had been later

shown by Fitzhugh [7] that the 4-dimensional dynamics of -

the Hodgkin-Huxley equations can be projected without

much loss of information onto a 2-dimensional manifold and
that the ensuing dynamics are reproduced by the Bonhoef-
fer-van der Pol equations above. In this description the var-
iable x, represents approximately the voltage across the
neural membrane. The description of nerve cell activity by
the Bonhoeffer-van der Pol model is simpler than that by
the Hodgkin-Huxley equation, mainly because of the smailer
number of independent dynamic variables. In applying
Eq.(1) we will adopt the following parameter values
a=07 b=08 c=30. 2
The parameter z corresponds to the membrane current. This
parameter controls the qualitative behaviour of the solution
of Eq.(1) as will be discussed in section 2.

The firing pattern of neural pulises often show the follow-
ing features: the shapes of individal pulses are nearly iden-
tical and frequency independent; the firing frequency can
vary over a broad range; the time period between pulses
shows a stochastic scatter. This behaviour cannot be under-
stood solely on the basis of a deterministic non-linear dy-
namic process, ¢.g. the Bonhoeffer-van der Pol model, but
rather requires a stochastic process as well. The source of
the latter process should be the fluctuations which are al-
ways detected when neural membran conductivity is ob-
served [8].

In the following paper we will study the effect of noise on
the Bonhoeffer-van der Pol model. We will demonstrate that
the noise level can be employed to tune the firing frequency
of Hodgkin-Huxley type neurons. For this purpose we have
considered the Fokker-Planck equation corresponding to
the stochastic Bonhoeffer-van der Pol model.. This equation
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has been solved by a new Monte Cario algorithm. We dem-
onstrate that the ensuing distribution functions represent the
global characteristics of the underlying force field: lines
which attract nearby trajectories prove to be the regions of
phase space where the distributions concentrate their am-
plitude. Since there are two such lines the distributions are
bimodal representing repeated fluctuations between these
two lines. Even in cases that the deterministic Bonhoeffer-
* van der Pol model does not show limit cycle behaviour we
observed a stochastic limit cycle. This cycle will be identified
with the firing of neural pulses.
The paper presented here is a shortened version of a more
detailed publication [9].

2. Linear Stability Analysis of the Bonhoeffer-van der Pol
Model

The qualitative behaviour of the solution of (1) can be
examined by an analysis of the dynamics in a small neigh-
bourhood of the stationary points (For a reference to linear
stability analysis see for example Ref. [10]). The stationary
points of (1) are determined through the two equations
Fy=F, =0, i.e. through

(3a)
(3b)

X2 =%x¥ —-X1—2
xy = (@ — xy)/b.

For the parameters (2) there exists exactly one stationary
point x, the first component of which satisfies

7= xdh = %l = P—afb. . @

The Jacobian of F which determines the dynamics in linear
approximation near x, is

c(1— x?.) <
DF ‘( —1fc —bje)’ ©)
The eigenvalues of DF

iz =(1/D{elt ~xiy) - ble ©)
+ [/ £ et — x2)? - 41'72)

determine the stability of the system near the stationary
points. For the parameters (2) and in the z-range of phys-
iological significance —0.6 < z < 0.2 the cigenvalues A,
are complex. One determines that for z > —0.3465 the real
parts are negative, i.c. the system has a stable focus at x,.
Atz = —0.3465 the real part of 4, , vanishes and the system
undergoes a Hopt bifurkation [10, 11]. At lower values of
z one expects that a stable limit cycle exists. This can be
shown, in fact, for large ¢ and positive b (Ref.[9]).

In order to demonstrate the dynamics resulting from the
Bonhoeffer-van der Pol equations we present in Fig.1a,b
some sample trajectories. The trajectories in Fig.1a corre-
spond to the choice z = 0, i.e. a case that a stable focus exists
which all trajectories reach asymptoticaily. The trajectories

in Fig. 1b correspond to the choice z = —0.4, i.e. a situation
in which a stable limit cycle is expected. All trajectories are
found to converge to this limit cycle.
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Fig. 1
Sample trajectories of the deterministic Bonhoeffer-van der Pol
model as described by Eqs.(1,2); (a) for z =0, i.c. a case in which
the model does not show limit cycle behavior and all trajectories
end in a stable focus; (b) for z = —~04, i.c. a case in which the model
shows limit cycie behaviour

The following conclusions regarding the behaviour of
neural puises can be drawn from the above analysis: The
variable x, in Fig.1a,b represents the membrane voltage.
For small membrane currents z (—0.3465 < z < 0.2), the
situation shown in Fig. 1a, a perturbation of the voltage to
lower x; values cither results in a direct restoration of the
stationary voltage or, for larger perturbations, results in a
single neural pulse comprising an initial further decrease of
x1. This behaviour reflects the well-known threshold behav-
iour of nerve pulse generation. One would like to identify
mathematically the threshold line which seperates the region
of direct return and of return by single pulse generation.

For larger membrane currents (—0.6 < z < —0.3465),
the situation shown in Fig.1b, all conditions result in a
continuous train of pulses. One may consider that this be-
haviour can explain the pulse trains which code the signal
of single nerve fibers in neural tissue. However, there is one
difficulty. The period of the limit cycle is rather invariable.
Assuming that z is the variable which a nerve cell employs
to tune its firing frequency such cell could only switch be-
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tween a single pulse behaviour, i.e. zero frequency, and a
limit cycle behaviour, i.e. a high frequency.

3. Global Analysis of the Bonhoeffer-van der Pol Model

In view of the similarity of the Bonhoeffer-van der Pol
trajectories for z=0 and z= —04 in Fig.1a,b it seems
rather surprising that the dynamics of the two cases are so
different: an asymptotic stationary state for z=0 and an
asymptotic limit cycle for z = —0.4. The results below will
show that the addition of noise to the Bonhoeffer-van der
Pol dynamics makes the difference between the two cases
disappear. We will find that the stochastic dynamics depend
mainly on the global characteristics of the force field rather
than on the local behaviour around the stationary points.

In order to study the global characteristics of the Bon-
hoeffer-van der Pol modei we pose the question in which
respect the force fields represented by the trajectories in
Fig.1a,b show a close comparision. The main features found
in both cases are two lines on the left and right part of the
X3, X,-phase space to which.the trajectories appear to be
attracted. Another feature is a line in the center of the phase
space of Fig. 1a,b near which the trajectories appear to sep-
arate towards the positive and the negative x,-axis. For the
case z = 0 this line characterizes the threshold behaviour of
the Bonhoeffer-van der Pol model.

The lines we seek to describe will be called local attractors
and local separatrices [9]. One main result of this paper is
a demonstration of the importance of these lines, in partic-
ular for stochastic systems, a demonstration which is to be
contrasted to the fact that these lines have not been given
any attention since a long time. The lines are not identical
to attractors or separatrices.

The local attractors and local separatrices are defined

~through the isoclines of the force field F(x). The isocline
coding for the slope  is determined through

m = Fa(xy, x2)/F1(x1, x) . )
Solving this equation for x, yields
x; = I(m, xy) ®)

which identifies all points in phase space where trajectories
assume the slope m. The local attractors and local separa-
trices are determined through the condition that an isocline
is locally tangential to a trajectory. This implies necessarily
that the slope of the isocline is

61 I(m, x,) =m. (9)

This condition implies that nearby trajectories either con-
verge to this trajectory or diverge from it. In order to solve
Eq.(9) for m we employ the implicit function theorem which
provides

’n2 62F1 + m (61F1 - 62F2) - 61F2 =0. (10)
There exist either two real solutions
m = M,,(x,, X3) (1)

or there does not exist any real solution. In the first case
local attractors and local separatrices may exist and are de-
termined as the pairs of coordinates which solve (11), (7).
Since in the case of the Bonhoeffer-van der Pol model M,
depends solely on x, the solution of (11), (7) are the pairs
(xl,xZ) with

Xy = I[M,,(xy), x] . (12)
In order that this curve does indeed correspond to local

attractors or local separatrices, i.e. is also a trajectory of
(1), (12) has to satisfy the consistency condition [12]

m = diI[Mi(xy), x,] . (13)
With (9) follows that the consistency condition requires

We will find that this condition can hold only approxi-
mately. This qualification does not render our analysis
worthless as is demonstrated rather dramatically in
Fig.2a,b (see also Ref. [9]).

aul- 3, M
o

Fig. 2
(a) Test of the consistency condition 8,7 8, M =0 to determine
which solution of (10) qualifies as an invariant line; the figure shows
that one of the solutions in each solution interval approximately
satisfies the consistency condition (z= —0.4). (b) Demonstration
that the proper solutions of (14) behave as invariant lines, i.e. locally
either attract or repel neighbouring trajectories (z = —0.4)
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The force field of the Bonhoeffer-van der Pol model yields
three intervals on the x,-axis in which (10) has real solutions.
Fig.2a presents 0,,1 0; M to test the consistency condition
(14). One observes that one of the solutions approximately
satisfies the condition except near the end of the solution
intervals. Fig. 2b presents the lines which approximately sat-
isfy (14). The trajectories included in this figure show clearly
that these lines do indeed identify those characteristic re-
gions of the phase space where trajectories are either sy-
phoned together or diverge apart.

The local attractors shed also some light on the way the
Bonhoeffer-van der Pol model yields a limit cycle. The tra-
jectories in Fig.1b indicate that the limit cycle does not
attract nearby trajectories along its whole length. Compar-
ision with Fig. 2b reveals that only those sections of the limit
cycle which coincide with local attractors syphon-in trajec-
tories. In fact, the trajectories near the remaining sections
of the limit cycle may actually diverge from the limit cycle.
A limit cycle can still result if the local attractor sections
overall achieve a stronger attraction of trajectories than the
remaining sections repel neighbouring trajectories. One may
hence consider the local attractors to provide the seed for
the limit cycle.

In Ref. [12] it has been shown that the local attractors
and local separatrices as defined through (11), (7) are iden-
tical to those set of points where the trajectories have zero
curvature. This characterization indicates that the lines de-
scribed above can only be local attractors or local separa-
trices, i.e. trajectories of (1), if they are nearly linear. Hence
the consistency condition (13) needs to be employed. We are
currently further developing the calculus presented here to
cover also situations where local attractors and separatrices
are not nearly linear [12].

4. Stochastic Bonhoeffer-van der Pol Dynamics/Theory

In order to model stochastic effects accompanying the
dynamics of neural pulse generation we envoke a noise term
in the Bonhoeffer-van der Pol equations. For a first explo-
ration of the ensuing stochastic dynamics it should suffice
to choose the simplest realization of noise, namely additive
noise which is isotropic in the x;- and x,-directions. The
Bonhoeffer-van der Pol Eq.(1) are thereby replaced by the
stochastic differential equation

0rxy = Fi(xy, x2) + adWy(t)/de (15a)

B,xz = Fz(x“ X2) + 0'dW2(t)/dt (15b)
where F;(x) are defined as in Eq.(1). This equation differs
from the Bonhoeffer-van der Pol equation through the ad-
ditive noise terms o dW(t). dW,(t) represents normalized
white noise [dW; () dW;(t) = J,dt] and ¢ the amplitude of
the noise. In order to integrate the stochastic differential
equation one has to adopt a specific set of rules (interpre-
tation) to carry out integrals involving the noise term, e.g.
the Ito calculus, the Stratonovitch calculus or an interme-
diate calculus. Since we consider in the following solely ad-
ditive noise, in which case the amplitude o is x-independent,
the calculus adopted for our purpose is immaterial.

The dynamics resulting from the stochastic differential
Eq.(15) can best be formulated in terms of a distribution
function p(x,t) which describes the probability that an en-
semble of systems obeying (15) is observed with the phase
space variables x at time ¢. This distribution function obeys
the following Fokker-Planck equation associated with (2)

8,p(x,t) = D[ + 83 — BL.0,Fi(x)]p(x.1) (16)
where

D = d*2 (172)
B = 1/D (17b)

are parameters which are commonly introduced to describe
stochastic systems. In statistical mechanical applications D
corresponds to the diffusion coefficient and f to the inverse
temperature. This correspondence implies

largep «— weaknoise
smallf « strongnoise.

(18)

The solution of the 2-dimensional Fokker-Planck Eq. (16)
is a non-trivial task. To obtain the time-dependent distri-
bution and the stationary distribution we adopted a Monte
Carlo algorithm. This algorithm is a generalization of the
Brownian dynamics algorithm developed in [13, 14] and
has been presented and tested in Ref. [9].

It has been found [9] (see also below) that the stochastic
Bonhoeffer-van der Pol model for any initial condition
reaches quickly a stationary state. The corresponding sta-
tionary distribution can be determined by means of an en-
semble average, i.e. simulating a large number of trajectories
for a long time and monitoring the ensuing endpoint dis-
tribution. However, the stationary distribution is obtained
faster by envoking a time average. This can be done by a
simulation of a single trajectory over a long time recording
the frequency with which the endpoints x;, j =0,1,2,... fall
into a volume element A of the phase space, e.g. around the
point x. This frequency identifies then the stationary distri-
bution p(x, t— 0)A.

Our investigations in Ref. [9] have yielded the following
approximate description of the stationary distribution func-
tion with stochastic limit cycle behaviour. The distribution
near the limit cycle is affected by two stochastic processes,
namely normal and tangential to the limit cycle, which are
often approximately independent. For strong noise the tan-
gential diffusion leads to a constant distribution and, hence,
does not influence the total distribution. The normal diffu-
sion induces a distribution amplitude on the limit cycle [9]

pappr(l) = ma(D]1/2 (19)
where a(J) is the derivative of the force normal to the limit
cycle at the position [ on the limit cycle (0 </ < L, L length
of the limit cycle). The approximation (19) holds only for
a()>0. )
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In case of weak noise the diffusion normal to the limit
cycle does not follow adiabatically the limit cycle, i.e. the
variation of «(/). One may, in fact, neglect the normal dif-
fusion. The contribution of the tangential diffusion in the
limit of weak noise gives the distribution

pappr(l) = C'/ F (I) (20)

where F is the magnitude of the force on the limit cycle.

20r

Fig. 3
Time-dependent distribution of the stochastic Bonhoeffer-van der
Pol model with z = —0.4 (limit cycle case) resulting from a Monte

Carlo simulation sampling 100000 trajectories for f = 100; the in-
itial position of the trajectories was at x = (0,0)%, (a) Dt = 0.0005,
(b) Dt = —0.005, (c) Dt =0.05, (d) Dt =0.1, (¢) Dt =0.3

5. Stochastic Dynamics of Neural Pulses/Results

Employing the Monte Carlo method of Refs. [9, 13, 14]
we have determined the time-dependent distribution for the
stochastic Bonhoeffer-van der Pol model (16) at a strong
noise level (8 = 100) for the initial condition that the system
starts at x =(0,0)7 at ¢t =0. Figs.3a~e present the 2-di-
mensional distribution functions at the times Dt = 0.0005,
0.005, 0.05, 0.1, and 0.3. Figs.4a—e present contour maps
at times Dt = 0.01, 0.02, 0.05, 0.1, and 0.3 which have been
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superimposed on the deterministic trajectory. The period
DT of the limit cycle is about 0.2. Figs.3a—c and 4a—c
show the system during its approach to the limit cycle.
Fig.3a exhibits the needle like distribution peak near the
origin at ¢t = 0.0005 after the first time step . In Fig.3b the
distribution started to move rapidly towards the negative
xq-axis and broadened considerably, at least as viewed along
the x,-axis. In Fig.4a,b the contour lines of the distribution
at times Dt = 0.01, 0.02 show that the distribution further
broadens with the peak following closely the deterministic
trajectory. Figs. 3c and 4c show the system at Dt = 0.05, i.e.
after the first quarter of the period. The distribution assumes
its peak near the force minimum on the limit cycle and
exhibits a long backward tail along the limit cycle. Already
after half the limit cycle period, the situation shown in
Figs. 3d and 4d, the distribution bifurcated into two maxima
near the two minima of the limit cycle force F(I). Obviously
the noise advanced half of the distribution over the slow
segment of the limit cycle from the right to the left side of
the limit cycle. After the 1.5-fold limit cycle period, the mo-
ment exhibited by Figs.3e and 4e, the distribution ap-
proaches its stationary form. Longer integration does not
yield further changes of the distribution.

Since the stochastic Bonhoeffer-van der Pol model
reaches its stationary state so rapidly this system should be
sufficiently characterized by the stationary distribution

- which we will henceforth consider only. In this section we
will study the influence of the noise level on the stationary

distribution. We present for this purpose in Figs. 5a—d this
distribution for noise levels corresponding to f§ values 200
(weak noise), 100, 10, and 1 (strong noise). The distributions
are all mainly concentrated around the limit cycle. However,
the distributions broaden considerably when the noise is
increased as can be judged by the maximum amplitudes of
the distribution which decrease from a value of 3 to a value
of 0.15. For all the noise levels the distribution is bimodal
with maxima along the local attractors. Between the local
attractors the distribution is very broad. This underlines our
remarks above on the importance of the local attractors for
the limit cycle behaviour. They show their attraction of the
stochastic trajectories in the most pronounced way for
strong noise levels as shown for § =1 in Fig.5d. Here the
distribution is not any more concentrated around the limit
cycle but rather around the local attractors (compare with
Fig. 2b). The topology of the stationary distribution is more
clearly shown in Figs.6a,b which shows for =100 and
B =1 the contour plots of the distributions superimposed
on the deterministic limit cycle.

In order to test the calculated distributions we compare
in Figs. 7a,b the amplitudes along the limit cycle for weak
(a) and strong (b) noise levels with the analytical approxi-
mations (19) and (20), respectively. The comparision is sat-
isfactory. The deviations in Fig.7a are due to the fact that
=200 is not yet large enough to represent the limit of
weak noise where (20) holds. The deviation in Fig. 7b are in
the sections of the limit cycle between the invariant lines
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Fig. 5
Stationary distribution of the stochastic Bonhoeffer-van der Pol model with z = —0.4 for different noise levels; the distributions resulted
from single Monte Carlo trajectories sampling about 29000000 points; (a) 8 = 200, (b) =100, (c) $=10,(d) =1

where a(l) <0 and where the approxiamtion (19) does not
hold. In these sections the distribution function does not
diverge apart infinitely fast but rather exhibits a slowly de-
caying tail which connects the two local attractors.

We want to consider now the stochastic Bonhoeffer-van
der Pol model in the case of zero membrane current, i.ec.
z =0. For this z value the deterministic model does not show
a limit cycle behaviour but rather approaches a stable focus.
Figs. 8a, b show the stationary distribution of the stochastic
system for the two noise levels f =10 and = 100. A com-
parision of the distributions of Figs.5¢ and 8a which both
correspond to f=10 but to different z values, namely
z= —0.4 and z =0, respectively, shows that the stochastic
" system for z =0 behaves almost identical to the z = —0.4
limit cycle system. The difference in the behaviour between
the stochastic system and the deterministic system is dem-
onstrated in Fig. 9 which presents the contour lines to Fig.8a
superimposed on a deterministic trajectory. This trajectory
approaches most directly the stable focus. In contrast the

stochastic system exhibits a bimodal distribution which rep-
resents repeated jumps of stochastic trajectories between the
local attractors. Even in the case of weak noise the distri-
bution is bimodal as seen in Fig.8b. The interpretation of
this finding is that the noise induces the Bonhoeffer-van der
Pol model to move along a limit cycle in a parameter range
where the deterministic system does not show limit cycle
behaviour.

We finally demonstrate that neurons may vary their firing
rate by means of a noise induced limit cycle behavior.
Figs.10a,b show time traces of the x; variable of the sto-
chastic Bonhoeffer-van der Pol model for z = —0.4 (a) and
z = 0(b), i.e. the cases in which the deterministic system does
and does not show a limit cycle. The traces of x; are re-
markably similar to physiological recordings of single nerve
cells in that the shapes of single pulses are rather invariant
and a scatter in the time between pulses is observed. The
recording of the system in Fig. 10b corresponds to the dis-
tribution in Fig. 8b. Every pulse corresponds to a circulation
along a noise-induced limit cycle.
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Fig. 6 .
Contour plot representation of the stationary distributions of the
stochastic Bonhoeffer-van der Pol model with z = —0.4 resulting
from single trajectories sampling about 10° jump points superim-
posed on a deterministic trajectory which illustrates the limit cycle;
(@) B=100, (b) =1
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Fig. 8
0 1 1 Stationary distribution of the stochastic Bonhoeffer-van der Pol
0 50 100 150 200 model for z =0, i.e. the case that no deterministic limit cycle exists;
LIMIT CYCLE the distribution results from a Monte Carlo trajectory sampling

a about 29000000 jump points; (a) § = 10, (b) § =100
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Fig. 9
Contour plot representation of the distribution in Fig. 8a super-
imposed on a deterministic trajectory

X

a time
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Fig. 10

Trace of the x, variable of a Monte Carlo trajectory for the sto-

chastic Bonhoeffer-van der Pol model with § =100 representing

the electrical membrane potential of a neuron; (a) z = —0.4 (limit
cycle situation), (b) z =0 (no limit cycle)

The question how the frequency of pulses varies when the
system parameters are changed is addressed in the two dia-
grams of Figs. 11a,b. Fig. 11a shows for the case z =0 how
the mean period between pulses depends on the noise level
as measured by f. Variation of § from g = 0 to f = 600 alters
the mean .period between pulses by about 20 percent, i.e.
not considerably. A larger variation can be induced by
means of the membrane current z. Altering z from about
—0.8 to about 0.2 induces a 6-fold increase of the mean time
between pulses. Further variation of z increases the time
even further such that the pulse frequency can virtually be
varied continuously from zero to a high value. On the basis
of this result we like to suggest that neurons in order to
code the frequency of their axonic pulses may employ in-
trinsic electrical membrane noise or may use for that pur-
pose the electrical signals of synapses converging on them
(which most likely appear like noise).

o
~
1

MEAN PERIOD
e
1 1

A

MEAN PERIOD

Fig. t1 -
Mean period between neural pulses for the stochastic Bonhoeffer-
van der Pol model as described by Monte Carlo simulation; (a)
dependcnce on the noise level for z=0, (b) dependence on the
current z for a constant noise level f = 100
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