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A new, efficient algorithm for the evaluation of the matrix elements of the CI Hamiltonian in the basis of
spin-coupled v-fold excitations (over orthonormal orbitals) is developed for even electron systems. For
this purpose. we construct an orthonormal, spin-adapted CI basis in the framework of second
quantization. As a prerequisite, spin and- space parts of .the fermion operators have to be separated; this
makes it possible to introduce the representation theory of the permutation group. The v-fold excitation
operators are Serber spin-coupled products of particle-hole excitations. This construction is also
designed for CI calculations from multireference (open-shellj states. The 2N-electron Hamiltonian is
expanded in terms of spin-coupled particle-hole operators which map any v-fold excitation on v-, v41-,
and v4-2-fold excitations. For the calculation of the CI matrix this leaves oné with only the evaluation
of overlap matrix elements between spin-coupled excitations. This leads to a set of ten general matrix
element formulas which contain Serber representation matrices of the permutatlon group SXS" as
parameters. Because of the Serber structure of the CI basis these group-theoretical parameters are kept to
a minimum such that they can be stored readily in the central memory of a computer for v<4 and even
for higher excitations. As the computational effort required to obtain the CI matrix elements from the

- general formulas is very small, the algorithm presented appears to constitute for even electron systems a

promising alternative to existing CI methods for multiply excited configurations, e.g., the unitary group
approach. Our method makes possible the adaptation of spatial symmetries and the selection of any
subset of configurations. The algorithm has been implemented in a computer program and tested extensively

for v <4 and singlet ground and excited states.

I. INTRODUCTION

A. Efficiency of Cl methods

The main d1ff1cult1es arising in quantum chem1ca1 con-
" figuration interaction (CI) calculations of electronic

states in atoms and molecules originate from the large
size of the configuration space necessary for sufficiently
accurate descriptions. Enormous efforts have been in-
vested to develop numerically efficient algorithms for
the solution of the CI problem. In the following we pre-
sent an algorithm for the evaluation of the CI Hamil-
tonian which we found very efficient in numer1ca1 appli-
cations.

Most commonly quantum chemical CI. calculations are
performed fora spin-independent Hamiltonian fl. Hence,
we will assume H to commute with the total electronic
spin operators §? and S,. A considerable reduction of
the size of the CI expansion of the electronic wave func-
tion can then be ach1eved by chosing for a basis eigen-
functions of § and S (spin-adapted linear combinations
of Slater determmants)

One can express the elements of the Hamiltonian ma-
trix as weighted sums of spatial one- and two-electron
integrals (see for example Ref. 1)

(¥ ||y = ZC?JFU"' Z sz(vlkl) (1.1)

The weights C$} and C%3,, are obtained by integrating the
various spin-coupled basis functions ¥, and ¥, over the
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N spin coordinates as well as the N-1 and N-2 spatial
coordinates. In case the N electron functions are con-
structed from orthonormal molecular orbitals, the

‘weights C‘;, and C‘}m are determined entirely by the per-

mutational symmetry of the functions ¥, and ¥,. For
the construction of the “most efficient” CI method one
would proceed as follows:

(i) one determines all types of formulas (1.1) needed;

(ii) one provides a numerical program for the evalua-
tion of matrix elements with access to all formulas (1.1)
stored in the central memory of the computer.

The direct calculation of the formulas (1.1) (e.g., by
means of the “Slater-Condon rules”?-4) presents no
serious difficulties as long as only singlet or triplet con-
figurations containing a small number of open shells
(e.g., single or double excitations of a closed shell
Hartree-Fock determinant) are taken into account, 51!
Furthermore, the number of such formulas is so small,
that they can be stored easily in the core of a computer.
Several implementations of the “most efficient” CI
method for these cases, even avoiding to set up the CI
matrix explicitly (see Ref. 12 and references quoted
therein), have been developed.

_ However,' if configurations of higher multiplicity con-
taining a larger number of open shells are to be included
in the CI expansion, as is necessary for example for the

‘calculation of excited states, one is limited by the rapid-

ly increasing number of formulas for the different types
of matrix elements (1.1). In this case, direct calcula-
tion of these formulas is very cumbersome and their
storage in the central memory of a computer becomes
impossible. Group theoretical methods!*!" or Lie-alge-
bra techniques!'!*~%6 are then employed to generate the

© 1980 American Institute of Physics 3547



3548

weights in (1. 1) numerically. The computational effort
required can be reduced if one rather generates the
weights from a smaller number of general matrix ele-
ment formulas. These general formulas contain a set
of parameters (e.g., elements of permutation ma-
trices, 1317 ganibel coefficients, 27 etc. ) which depend
on the occupancy pattern, spin coupling and orbital
arrangement of the configurations ¥, and ¥,, i.e., on
their permutational symmetry. For the generation of
the matrix elements (1, 1) from the general formulas the
proper values of these parameters have to be determined
and then the weights C have to be calculated. Conse-
quently the-efficiency of a CI method is determined by
the amount of computational work which has to be done
at this step.

In this paper we develop a new “very efficient” CI
method for molecular systems containing an even number
of N=2N, electrons. In the particle-hole formalism of
second quantization we construct an orthonormal spin-
coupled CI basis from a closed-shell reference deter-
minant by Serber. spin-coupled v-fold excitation opera-
tors. These operators are represented as v-fold spin-
coupled products of single excitations (Sec, III). This
representation is particularly designed for CI calcula-
tions on multireference (open shell) states constructing
the latter as a superposition of excitations from a closed
shell reference determinant.

It is shown in Sec. IV how the commutators of the
Hamiltonian and the v-fold excitation operators can be
represented as linear combinations of v-, (vx1)-, and
(v +2)-fold excitation operators.  This reduces the cal-
culation of the Hamiltonian matrix elements to the cal-
culation of scalar products of spin-coupled v-fold ex-
citations. "An analysis of these scalar products leads to
a set of ten general matrix element formulas from which
all possible matrix elements (1.1) can be generated
easily. Extended PPP-CI studies on the excited states
of polyenes?® and polyacenes,?’ including up to all qua-
druple excitations, demonstrated the efficiency of our
method.

In the derivation of these formulas we show, quite
analogously to the usual procedure with many particle
functions (see for example Ref. 17), how to separate the
spin- and space-parts of the Fermion operators of sec-
ond quantization. As a consequence we are able to em-
ploy the representation theory of the symmetric group
for the calculation of matrix elements and of products
of spin-coupled excitation operators (Sec. II). It is this
last feature which allows the development of a new “CI”
method which constructs excited states from a multi-
configurational ground state rather than from a closed
shell single configurational ground state.3® This method
is a generalization of the “renormalized CI method”
proposed by Ohmine et al. 3! for the PPP description of
excited polyene states and will be described in a future
publication.

The parameters appearing in our general matrix ele-
ment formulas belong to a subset of the set of all ele-
ments of the Serber representation matrices of the sub-
group S* X S* of the permutation group S* of 2v objects
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(v is the upper limit of the degree of excitation of the
configurations considered). As long as only conﬁgura;
tions containing up to eight open shells are included in
the CI expansion this set is small enough that it can be
stored easily in the core of a computer. Furthermore,
only very little computational work is needed to create
the weights C in (1. 1) from the parameters (e.g., for
matrix elements of v-fold excitations containing 2v open
shells the Serber matrix elements are identical with the
weights). We will also point out possibilities for a re-
duction of the length of the parameter list so that the
latter could be stored in the central memory for even
more than eight open shell configurations. But since
any such reduction leads to an increase of computational
work for the weight generation we did not follow this line
of investigation very far (Sec. V). The significant ad-
vance of our CI method over previous treatments em-
ploying similar matrix element formulas!*1¢ is due to
the reduced size of our parameter list (see below). This
reduction is a result of the particle-hole coupling of the -
v-fold excitation operators and of the structure of the
pertinent Serber representation matrices (Appendix I).

In the remainder of this section we will define the
physical problem, comment briefly on previous solutions
and introduce part of our notation.

B. Definition of the physical problem

We consider a system of N electrons in the Coulomb
potential of fixed nuclei. N is assumed to be even
(N=2N,). Neglecting magnetic and relativistic effects

- the Hamiltonian is

H=Z+V (1. 23.)
2; (1. 2b)

{
=D 9y . (1.2¢c)

i<§

Z; represents the one-particle operator corresponding
to the kinetic energy of the ith electron and its potential
energy in the field of the nuclei and 9, ; represents the
two-particle operator accounting for the Coulomb repul-
sion between electrons i and j. One seeks approximate

. solutions of the time-independent Schrodinger equation

A ¥=E,|¥") 1=0,1,2,... (1.3)

for the energetically lowest eigenstates of the system.
For this purpose we expand these states in a suitable N
electron basis {1%) | k=1,2,...}

"I’f): ;C‘rk|k>

Equation (1. 3) is thereby transformed to a generalized
matrix eigenvalue problem. If the basis is orthonormal
(ON), (1.3) is reduced to the ordinary matrix eigenvalue
problem

(1.4)

zk:cﬂ:Hk'kz EcCrnr (1.5)

We call a basis “suitable ” if it is ON and if its elements
have all the symmetry properties of the exact solutions

.
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C. Symmetries of the Hamiltonian and
properties of its eigenfunctions

H contains no spin terms and consequently commutes
with the total electronic spin operator §

§= z&,
i

[4,8]=0 . 1.7)

Therefore, the eigenfuncfions 1¥%) of & are also eigen-
functions of §2 and §,

ézl‘l’ﬁsm>=5(s+1)l‘1’f.s.u> ,

(1.6)

(1. 8a)

Sl W50 =MW s ) . (1.8b)

Let S¥ denote the permutation group of N objects and
B denote the unitary operator which causes a simul-
taneous permutation 2! of the spatial coordinates
Xy, ...,Xy and of the spin coordinates 05 . ..,0y in the
wave function |¥¥). The operators B form an operator
representation S¥ of the elements p of the permutation
group S¥(cf. Ref. 32, p. 105). Because of the identity
of the electrons one has

[g,ﬁ]=[§2: ﬁ]:[s,,ﬁ]:o .

Thus, the eigenfunctions 197 s,4) Span a representation _
of S¥. According to the Pauli principle, this is the
totally antisymmetric representation

Plelsy=cp)¥¥ s, ,

(1.9)

(1.10)

.- where €(p) is the signature of the permutation p repre-

sented by the operator P.

Itis appropriate to decompose p into a spatial and a
spin part '
ﬁ:ﬁ'ﬁ":ﬁ”ﬁ' .
Pristo permute solely the spatial coordinates and pe
is to permute solely the spin coordinates. According to

(1.mAis totally symmetric with respect to all permu-
tations of the spatial coordinates alone

[#,B7)=0 .

Likewise, §? and S, are invariant under similarity trans-
formations which permute solely the spin coordinates

8%, 8°)=[3,, P]=0 . - (L.13)

Therefore, one can represent the eigenfunctions I\Ifﬁ" s,u)
as linear combinations of products of spatial functions
|®7 s,» and spin functions 165,u,0» k=1,2...,7% which
separately span irreducible representations of the sym -
metric group

(1.11)

(1.12)

b2

1 .
lwﬁ’,s,ﬂ:ﬁ bzi[¢f,§,k>|eg,,,,) . (1.14)
S .

The corresponding representation matrices of the irre-
ducible representation [3N +5, 4N - S] of the permutation
group

URP)=(@¥ s, [P o 5 0

can be assumed to be orthogonal and real. . Their dimen-
sion f¥ is

(1.15)
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v @S+1)NI ‘
fs= N+S+1)EN=3) * , (1. 16)

For any permutation p of $" we have
S 4
Prlefs, 0= U (p)| #ts,0) . (1.17)

The functions |8} 5 ,) of the spatial coordinates are
eigenfunctions of the Hamiltonian which one can assume
to be orthonormal: '

B &g 0=E |50 k=1,...11 (1.18)
(QTN,S,k'q)f,S,l):ak,l . (1.19)

The spin functions le’;'”_ » are ON eigenfunctions of the
spin operators §2 and §,.” Under a permutation B° the
spin functions transform irreducibly into linear combina-
tions of each other according to the “dual” representa-
tion v 5¥ '

ﬁuleg,u,k>=ZI:kaN(P_),ets',u,l) . (1.20)

To guarantee the antisymmetry (1. 10) of the total wave

) functjon one has

1474 (p)=v<(p)0f§' (») . (1.21)

There are many equivalent ways to construct ortho-
normal spin functions and the corresponding representa-
tion matrices, In this paper we will employ the con-
struction of the spin functions due to Serber.® Appendix
I presents the necessary properties of these functions
and of the corresponding Serber representation matrices
and introduces several new concepts and theorems.

D. Basis sets for N electron systems

We assume an independent electron Hamiltonian

Hy=) (3, +1) (1.22)
7

as a zero order approximation to the Hamiltonian 4.

The #; in (1. 22) are Hermitian operators acting on the

spatial coordinate of electron ;. For the construction

of a suitable N electron basis we define the spin orbitals

{lroy|r=1,2... and o=a, B} (1.23)
as the tensor products

|roy= ¢ o) (1.23a)
where the orbitals |¢,) defined by

G+a)]o)=¢|e) (1. 23p)

form an ON basis of the one-electron space. The spin
functions |o) e {la), I8)} are the eigenfunctions of the

one-particle spin operators &2 and 3, :
5 (By=-1%|B) . (1.23c)

o.]ey=3]a) and

1. Slater determinants

The orthonormal and complete basis of Slater deter-
minants is constructed by application of the antisym-
metrizer
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< 1 ~

=— 1.24
A=y 2 <P (t.24)
to all N-fold tensor products of N different spin orbitals

(1.23)

[ 1710« . 750y o og)) =VNT A| 7y . .7y 0y . . O) (1.25a)
[710 0 ¥y 0p o o) = | 710D | 7909 .o |7yoy) . ‘ (1. 25b)

In general the resulting spin orbital configurations
(1.25a) are not eigenfunctions of the total electronic
spin operator §2. A corresponding CI basis is not “suit-
able” although the Hamiltonian matrix can easily be cal -
culated by means of the Slater—Condon rules. ¥4

2. Nonorthogonal basis sets

The oldest approach to the construction of antisym-
metric spin-adapted many electron functions, the “VB
method, ” is based on the work of Heitler and Rumer®
and the related method of Pauling® for singlet states.
Matsen®® and Matsen et al. 37 proved the equivalence be-
tween the Pauling method and the projection of spinfunc-
tions by means of Young operators and generalized this
method to arbitrary spin multiplicities. Further gen-
eralizations and general matrix element formulas have
been derived for these functions by several authors, 345

A second approach originated from Ldwdin’s propos-
alf® to construct spin functions by means of projection
operators which are not derived group-theoretically.
Harris?! provided general matrix element formulas for
spin-projected determinants composed of orthonormal -
spin orbitals.

However, since the spin-projected functions as well
as the VB functions are nonorthogonal neither represent
“suitable” CI basis sets. Furthermore, these functions
do not lead to efficient algorithms for the generation of
matrix elements from general formulas. For instance,
in the case of spin-projected functions a large number
of Sanibel coefficients*™ %" have to be calculated for every
matrix element.

3. Orthogonal basis sets

Until recently the derivation of useful matrix element
formulas seemed to be even more troublesome when the
spin-coupled configurations were chosen to be mutually
orthogonal. This situation has changed with the work of
Ruedenberg et al., !*1% Kaplan, !* and Karwowskil® on
one approach to the construction of orthogonal spin-
adapted many-electron basis sets and that of Paldus, 2
Segal et al.,? Ruttink, ! as well as Shavitt, 224 and
Brooks and Schaefer?® on the unitary group approach. -
The beginning of this work dates back to Dirac’s vector
model® for which Serber?® had proposed an important
modification. Yamanouchi®? and Kotani et al.5® devel-
oped general techniques for orthogonal spin-coupled
functions using the theory of the orthogonal representa-
tions of the symmetric group (see Ref. 54). For a long
time the basic drawback of the Yamanouchi-Kotani-
Serber (YKS) method consisted in the lack of efficient
matrix element formulas. Complicated sums over the
N! elements of the permutation group $¥ had to be per-
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formed so that only very small systems could be con-
sidered. (References to the various applications of the
YKS method to atomic, molecular, and nuclear problems
can be found in Ref. 14, Ref. 20, and in Kaplan’s book.!7)

Ruedenberg, Poshusta, and Salmon'®*5 showed that
these sums can be reduced to a few terms if the wave ‘
functions are represented as linear combinations of spin-
adapted antisymmetrized products (SAAP’s) of orthogonal
spin orbitals., The SAAP’s are given by

[ 1710+ . 7nOF u, )= CYNTA(|ry...7y)|0% 4 »).  (1.26)

where C is a normalization constant. The N-fold tensor
product ivy...7y) (orbital configuration) is formed

from a suitably ordered set |¢,)),..., |¢,,) of spatial
orbitals. The spin functions 16§ ,,,) are coupled ac-
cording to a certain scheme, e.g., that of Serber (see
Appendix I) or that of Yamanouchi and Kotani. The
SAAP linear combinations of Slater determinants form
an ON basis in the configuration space. The SAAP’s
can be written in the form (1. 14) by means of the (f4)?
spatial functions

|reecrys S, L )

N
=C %‘—?pgNU‘fl(p)FIn...rN) , (1.27)

which for every value of % span an irreducible repre-
sentation of S¥. 17 Consequently the SAAP basis sets are
“suitable” for CI calculations.

The geﬁeral SAAP matrix element formulas derived

by Ruedenberg et gl. in the Serber coupling scheme and

by Kaplan!? in more general coupling schemes are about
as simple as the Slater—Condon rules. However, since
these expressions contain as parameters for the weight
generation (cf. Sec. IA) the elements of the represen-
tation matrices U$¥(p), they do not lead to efficient CI
algorithms for other than very small electronic systems.
As the number and dimension of these matrices increase -
rapidly with the size of the electronic system,-the group-
theoretical parameters cannot be stored in the central
memory of a computer for systems with more thanabout
seven electrons. For instance, for the computation of
the singlet states of an eight electron system one would
need the 8! representation matrices of $® with dimension
f3= 14 entailing together 4 233 600 numbers in symmet-
rical storage. Thus, the necessary group-theoretical
data would have to be recalculated for every matrix
element.

To circumvent these difficulties of the SAAP formal-
ism Karwowski'® derived formulas for the matrix ele-
ments of the SAAP’s in the Yamanouchi-Kotani (YK)
coupling scheme by means of a graphical method. His
formulas contain only representation matrices of the
permutation group $¥¢ of the N, singly occupied orbitals.

" However, for the same reasons as discussed above even

this reduction does not yield sufficiently efficient algo-
rithms in situations where configurations have to be in-

* cluded in a CI expansion which are more than triply ex-

cited with respect to a closed shell reference deter-
minant.
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Following the “unitary group” approach!®26 some
significant progress towards an efficient CI method for
orthonormal basis sets containing multiply excited spin-
adapted configurations has been made recently. In this
approach the spins are coupled according to the YK
scheme, the functions being labelled by means of “Gel-
fand tableaux”. %19 This approach is based on the ob-
servation that the Hamiltonian operator is represented

-by second-quantized operators which can be identified
with the generators of the Lie algebra of the unitary
group U, (n is the dimension of the spatial orbital basis).
One can therefore express the matrix elements of the
Hamiltonian by the matrix elements of these generators
and their twofold products. Since the original formula-
tion of Paldus, ® which was suitable only for complete

CI calculations, a number of advances have been made.

Segal et al.* developed a modification in which the
weight factors C;‘? of the one-electron integrals in (1:1)
are identified with the matrix elements of the generators
in a canonically ordered CI basis which is labelled by an
occupancy vector and a YK spin function. These weight
factors Cf] serve as a parameter list from which every
weight factor Cﬁk, of the two electron integrals can be
computed—generally by forming a scalar product of two
JXo-tupels of C‘,‘? parameters. For up to eight open
shells, Segal’s parameter lists are of a size comparable

" to that of our approach, such that they can be stored in
the central memory of a computer during matrix ele-
ment evaluation. In comparison to our method more
computational work has to be done for the determination
of the weights of the two electron integrals from the
parameters (cf. Sec. V). Thus, it seems that our ap-
proach might provide an even faster algorithm for C1
matrix elements,

Ruttink! showed how Segal’s cg; parameters can be
determined from the YK representation matrices of a
subset of all permutations peS¥, The considerablere-
duction of the size of the parameter lists achieved thereby
allows the inclusion of configurations containing 10 and
perhaps even 12 open shells, but at the expense of a
further increase of computational work during matrix
element generation (see also Sec. V).

Another modification of Paldus’ version of the unitary
group approach has been developed by Shavitt, 2324 -
Brooks and Schaefer?® presented an implementation of
Shavitt’s “graphical unitary group approach.” This
method involves an efficient algorithm (including up to
n multiplications) for the creation of the weights C%
from a graphical representation of the CI basis and does
not use a parameter list, '

The CI method presented in this paper combines both
the conceptual simplicity and clear separation of spin
dependent and spatially dependent factors of the SAAP
formalism and the simple book-keeping procedures of
second quantization. . Qur second-quantized version of
a SAAP formalism so far has been developed only for
even numbered electron systems. For this case it es-
tablishes a promising alternative to the CI approaches
discussed above which, however, are not limited to even
electron systems. A computer program of our method,

3561

in the framework of a PPP-SCF-CI calculation but’
easily applicable to other electron Hamiltonians, is
available upon request. This program requires as input
the SCF matrix and the two-electron integrals and pro-
vides the CI matrix for any desired basis of single,
double, triple, and quadruple singlet excitations with
respect to a closed shell reference state,

Il. SPIN SYMMETRY AND SECOND QUANTIZATION

In second quantization operators and wave functions
are represented by linear combinations of algebraic
products of creation and annihilation operators. The
(anti-) commutation relations of these operators and
their generalizations, e.g., in Wick’s theorem, ® are
used in all algebraic manipulations. Although the spin
coupling of these operators presents no serious prob-
lems, % to our knowledge no attempt has been made so

~far to develop a systematic theory of spin-coupled

second-quantized operators. 8 It is the purpose of this
section to develop the SAAP formalism in second quan-
tization to provide the framework for the derivation of
the matrix element formulas for a spin-free Hamiltonian.

A. Second quantization

The annihilation operator 2,0 Of an ele’ctronic spin
orbital |7;0;) is defined by its action on a Slater deter-
minant :

Cpior | | 73790 710104, . O)) = [72-« 7300 0y, (2.1a)

Qo , ,”17’2- <+ ¥40102. .. Op)) =0

if
[7i00¢{|7,0,) |]= 1,...k} . (2:1b)
For k=1 we define
| O) =a,,|r0) (2. 2a) -
and call |0) the vacuum staté, which we assume to be
- normalized: ‘
(0]0):1 . (2. 2b)

The creation operators a,, are the Hermitian conjugates
of the annihilation operators. One has

4,0 = |ro) , @.3)

Gror] |71 70y o o)) = [7irye o 700000 0o o)) '
[7i0.04{|7;0,) li=1,..., %} ,

% 04 ' ,71' S VO e e 0k>>= 0 2.4)

otherwise. From these definitions follow the anticom-
mutation relations

[ara’ Qpigr )= [a:u’ a;'a'L =0 ’ (2' 53)

[a,‘,,, a,.,,,], = 5"'\150.01 ’ (2. 5b)

where [b, c],=bc+cb. The relations (2. 5) account for
the Fermion nature of the electrons and secure the anti-
symmetry property (1.10) of the wave functions con-
structed by means of Fermion operators. The Slater
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¢

determinants (1. 25) are obtained by N-fold products of
creation operators

’ Irl. c o VNOge o o Op)) = a;lu‘; .o a;NUNI 0) (2.6)

The one- and two-particle contributions to the Hamil-
tonian are in second quantization

Z= Z (7'101 I 2I7202>a;101ar202 ’
Tir2
0102

(2.7a)

V= 57”;3' (r101720, | D13 | 730574098} 6,87 101 10, rgog -

1 61090304 (2- 7b)

The equélities hold only within the space spanned by the
N-electron Slater determinantal basis.

B. Irreducible tensor operators®?

Definition: Let S and M be integral or half integral,
where S=0, -S=M=S, and S~ M is an integer. The
2S + 1 operators $+¥A are the standard components of a
(cogredient) irreducible tensor operator (ITO) A of
order S if S:¥4 obey the following commutation relations

with the components of 8
[‘§n S'HA]=M S.M 4 s
[gg’ s.”A]:Y’S(S + 1) _M(M:kl)s'”*lA .

Definition: The-operators 5*¥A are the (contra-)
standard components of a contvagredient ITO A if

[5¥A,8,]=M 5%4 , (2.9a)

[5%A,8,]=VSE+1) - MM 1) S¥+1y |

These operators have the following properties:

(2. 8b)

(2.9Db)

(i) If A is an ITO with standard components S*¥4
and if SA* is the adjoint operator, then SA*is contra-
gredient to SA.

(ii) From a contragredient ITO SA with standard

components - 5'¥4 one obtains by means of the trans-
formation

SU:SA-B=5U SA (2.10a)
defined by
sdipg. E Ug,u 544 (2.10b)
M==S
SUgu=(-1Tog _, (2.10¢)

a (cogredient) ITO SB with standard components S'¥B,

(iii) The standard components of an ITO are uniquely
determined up to a sign.

Definition: Let SA be an ITO. The corresponding
cogredient ITO SU A* is called the conjugate of A,

(iv) For integral S this relatioiiship of conjugation is
reciprocal. For half-integral S it is reciprocal to with-
in a factor -1,

Definition: Let the operators 5'A and 5''B be two
ITO’s with standard components S"¥’4 and $''#''B. The

»(2. 8a)

' irrveducidle product (IP) °[* ‘A ®5"'B] of degree S of

$’A and 5''B is given by
S,M [S'A ® s"B]

-2 (SM|S'M'S"'M'")S" M 'p@ S""M"' B (2.11)

M’,M’
Here (SM|S’M'S'"M'") are the Wigner coefficients®? and
S:4[5'A @ S''B] are the components of the IP, The prod- -
uct ® of the components in (2, 11) denotes the usual ten-
sor product of elements $'*#’4 and 5'""¥''B of a linear
space. The product might, however, be any other al-
gebraic product defined in the tensorial set of the com-
ponents. In any case the following statement is true.

(v) The IP (2.11) is an ITO not necessarily different
from zero. If the product does not vanish, we have
S'+8"=8=18"-5""| and S+ S’ +S"’ is an integer.

(vi) If in particular the product ® of the components
is a tensor product: The IP is different from zero and
the transformation (SM1S’M’S’’M'’) which reduces the
tensorial set of products $'*¥'4 @ 3'/*#''B is orthogonal.
This statement does not change if ® is considered as a
symmetrized tensor product, i.e., as an algebraic
product of commuting operators.

Definition: We call ITO’s of order 0 singlet operators,
those of order 1 triplet operators etec. .

C. [Irreducible creation operators create
spin eigenfunctions

Suppose the basis {|i),i=1,...} of a Hilbert space H
is created by the application of operators A} to a nor-
malized reference state |0):

Aj|o=) i=1,2...
©loy=1 .

Let furthermore {0,la=1,..., m} be a set of m opera-
tors on H which annihilate the reference state |0):

0,|0)=0

Then the following statement holds: If one of the opera-
tors O, has commutation relations with the creation

@.12a)
2. 12b)

a=1,...,m (2.13)

roperators A} of the form

(04,All=0, (i)A;+B‘;L;c,,A;6, , (2.14)

where the index set M [1, m] may also be empty and
where the o, (i) and the ¢, are real numbers, then 0, is
diagonal in the |z) basxs

0O, |iy =104 @i . (2.15)
Identification of such O with either of the total spin

‘operators §? and 8, [for which commutation relations of

the form (2. 14) can be derived from (2. 8)] yields:

Theorem: If the creation operators A] are standard
components of ITO’s and if the reference state 10) is a
singlet state, i.e.,

5.|0=8,|0)=0 ,

then the A} create eigenstates of the total spin operators
82 and §,.

(2.16)
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These irreducible creation operators A; may be the
operators which create an N-electron SAAP-basis
(1. 26) from the vacuum state. They may also be identi-
fied with the creation operators a}, of the one electron
space since these are also components of ITO’s.

D. Irreducible Fermion operators

. Theorem: The two operators a}, and a}g defined by
(2. 3) and (2. 4) are the standard components of an ITO
a} of order 1/2.%

Obviously the two component operator a, is the second-
quantized analogue to a spatial orbital |¢,). Further-
more we immediately see that the adjoint operators
(@yq> a,5) are contrastandard to (a7, a}s). According to
(2. 10) we obtain by means of the transformation

U:a,—b,=Ua, (2.17a)
given by
b [0 -1 e
(2. 17b)

b/~ \1 0 a,s

the conjugate b, of a;, which is again an (cogredient)
ITO. The conjugation is unique up to a sign.

From these ITO’s a} and Ua, we can construct now a
variety of IP’s which orthogonally reduce the corre-
sponding tensor products ® of the standard components.
Having chosen an appropriate coupling scheme the
standard components of such g-fold irreducible tensor
products assume the form {cf. Appendix IE)

s’yk[crx ®.--® ’cfa]

D s

Ol. V

To...0,Cri0y®° "+ ® Creog (2.18)
where ¢, €1ay, Ua,}, oe{a, B}, and where the orthogon-
ality relatlon for the reducing transformation T is
given by (A1.7).

Unfortunately, the construction (2,18) of ITO’s is not
directly applicable to operators of second quantization.
As one can see from the anticommutation rules (2.5) the
products of these operators are not simple tensor prod-
ucts “®”, but, with the exception of the product between
¢, and its adjoint ¢}, are skew symmetric tensor prod-
ucts “A* (see for example Ref. 66)

Criog°** Cre0q = Cryoq AcerA crqoq

,‘,‘aﬁc’,,,z i=1,...,q. (2.19)

The skew symmetric tensor product “A” is defined by
the application of an appropriate antisymmetrizer Ato
the factors of the tensor product

Criop A2 A Cppg= Vgl A (Cr,101 @ ® Cr.,aq) . (2.20)
“Appropriate” is to imply, that A antisymmetrizes the
factors in a tensor product of Fermion operators Cpge
This is in contrast to the action of the antisymmetrizer
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A defined by (1.24) which applies to the arguments of a
function. To establish the relationship between a permu-
tation operator P on the Fermion operators and the per-
mutation operator P on the coordinates we consider the
action of P on a g-fold tensor product of creation opera-
tors a;,. In this case P can be identified with a permu-
tation operator on spin orb1tals and one has (cf. Ref. 17
and Appendix IE)

Paz;'“,l
i.e., P corresponds to £-!. Since the permutation
operators P commute with the spin operators §? and §,,
antisymmetrization of the irreducible tensor product
defined by (2. 18) yields again an ITO:

Shle, Aveone, l=VglA Shle, ®...0¢,] . (2! 22)

Definition: We call the ITO’s }[c, A+ Ac, ] defined
by (2. 22) antisymmetrized irreducible products or
AIP’s.

®: .00, |0)=P" 31, ® @, |0y , (2.21)

The AIP’s reduce the tensorial set of the correspond-
ing skew symmetric tensor products (2.20). Their
standavd components are operators of second quantiza-
tion if the condition in (2. 19) holds for this tensorial
set. The reducing transformation is not necessarily
orthogonal since some of the terms in the sum (2. 18)
may vanish upon antisymmetrization. Thus, the stan-
dard components of the AIP’s (2. 22) are not necessarily
normalized.

Definition: Let C= (c,,l, .+.»€,,) be an ordered set of
irreducible Fermion operators c e{a;,Ua,}. C defines

- a set Cof ordered algebraic products of the components c,

_{c,m * * Croog l o=a,B;i=1,..., qt. (2. 23a)

If an operator ¢,, occurs more than once in C then some
of the elements of C may vanish because of the anticom-
mutation relation (2.5a). Let therefore C'CC be the
subset of the nonvanishing operator products (|€’|

= |C|=2%) and let C’’ be a set of standard components
Shle, -« -e,.] of ITO’s ile,, - - ¢, ] obtained from €’ by
an orthogonal reducing transformanon

D:cl_.cll

which obeys

S Iz[cq e cr¢]>

- Z S, Do oq Cryog* * * Croop » (2. 23b)
where
S Dogorrg=0 i Cpyop0 - Croo,=0 (2. 23c)
and
s"zDal"'uq s,'“/Dﬂ. ‘o0
o5,
=08s,5/ Oy s Opypr -+ (2. 23d)

We call the standard components ° e, --c, o] normal-
ized spin-coupled operators of second quantzzaizon
Furthermore we call all linear combinations of these
operators corresponding to a certain pair (S, M) spin-
coupled opemtors of second quantization.
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P

The standard components (2. 22) of those AIP’s which
obey the condition

e, #xUcy; i,j:l,...,q - (2.24a)

become normalized spin-coupled operators of second
quantization when an appropriate normalization constant
K has been determined

. s"ﬂcrl' i rq]=K S
K=K(7’1, oo ,‘Tq).

The determination of K, or equivalently the determina-
tion of the reducing transformation D (2. 23) from the
reducing transformation T (2. 18), is particularly simple
if all factors in the AIP are different. In this case

(2. 25)

(2. 24pb)
(2. 24c)

‘2[0'1 Aees A crq]

K=1 ifc,iaec,j Lij=1,...,q

i.e., D and T are identical. In all other cases the de-
termination of KX is nontrivial.

As exhibited by the normalization factor in (1.26) a
related problem occurs in first quantization in the con-
struction of an orthonormal SAAP basis. For theSAAP’s
one can determine the orthogonal transformation re-
ducing the Slater determinant basis to the SAAP basis
by means of the representation theory of the permutation '
group (cf. Ref. 15 or Ref. 16). For this purpose one
separates and then separately permutes space and spin
parts of the wave function [see (1.14)~(1.21), (1.26),
and (1.27)]. In the following we will show how one can
separate quite analogously spin and space parts of the
Fermion operators and how the representation theory
of the permutation group enters second quantization.

E. Separation of spin and space parts
in second quantization

Let & and E] be the two linear mappings which map the
irreducible tensor operator a; or its conjugate operator
Ua, on their standard components;

a@)=a;, B@)=

azg (2. 26a)

or
(2. 26b)

&(Ua,)=" ,-5 B(Ua,):am
These mappings can be conceived as the ordinary one
particle spin functions o« and 8. We will therefore iden-

tify & =« and B=3.

To demonstrate the relationship between & and o we
note that the creation operators{a,’,, lr=1,2,.
o=a, B} span a unitary space A*, Its scalar product
is given by : »

(a;,la;,,,): (0 'ara a;’al l 0>= 5r,rl Gu,v'

Likewise, the two component irreducible Fermion crea-
tion operators {a; = (a/,,a55)17=1,2, ... } span a unitary
space A*. Then the linear mappings G:ajc A*
~ 5(a})e A* defined by (2. 26a) span a two dimensional
space E°. Its linear structure is induced by the linear
structure of A*

(o +1'5)@l)=25(@)+ 1" (a})

and its scalar product is induced by the scalar product
of A*

P. Tavan and K. Schulten: An efficient approach to Cl

©]8)= 667 @)=b,0 7=1,2,.

An operator 0, the matrix representation of which
Oyq,rior = (a7}, IOa,,,,) assumes in A* the form O,,,,/
=0p,pr Oy, 15 in E° has the matrix representation O, ..
Since the spin operators are diagonal in A* they are so
in E° and assume the same form as in the usual spin

1/2 space E°.

The proof for the conjugate spin operator Ua, is iden-
tical if one conceives its components (- a,4, a,,) as hole
creation operators rather than as electron annihilation
operators, i.e., if one defines the scalar product in the
“hole space” A[spanned by {a,l7=1,2,...;0=a, 8 by

(ara 'ar'o')=, (0 I arBa araar'o’araarﬂ I 0>

[This definition obviously matches the definition of the
scalar product for the hole creation operators of the
particle-hole formalism of second quantization (see

Sec. III) so that the above separation of spin and space
parts is valid for all creation operators in thisformalism.
Thus, it can be used for the construction of spin-coupled -
excitation operators. ]

The usual g-particle spin functions (A 1. 6) are linear
combinations of g-fold tensor products 0;® ... ®0,. We
can conceive these products as g-linear mappings which
attach to the g-fold tensor product of operators a, and
Ua, the components of the corresponding irreducible
tensor product (2.18), i.e.,

es,”(c,!@-..@c,‘)_‘ hle,,®--.0¢c, J - (2.272)
The ac'uon of ©%, 4, is defined through
a,@---@o €, ®.--0¢,)=0(,)0---00, (c,q) .
(2. 27b)

The g(c,,) are given by (2.26). Assuming that condition
(2. 24a) holds for the factors c,, of the irreducible tensor
product (2. 27a), we can consider the o;/(c, ;) as particle
or hole creation operators. Furthermore, the AIP
obtained by antisymmetrization of (2.27a), i.e.,

S":z[cﬂ,\ e A crq]= Vq!zeg,u,k(cr1 ®---® crq) ’ (2' 28)
is a spin-coupled operator of second quantization which
assumes a representation with spin and space parts
separated. This separation admits the introduction of
the representation theory of the permutation group into
the calculus of second quantization (see below).

The spin mapping (2. 26) offers for yet another sub-
class of spin-coupled operators of second quantization
a possible construction by means of g-particle spin
functions 6%, ,. Infact, the ITO’s ile, -« - ¢, ] defined
by (2. 23), for which the elements of the q-tupeql C are
all different

hi=1,...,q (2. 29a)

are 1rredu01ble products reducing the algebraic products
(2.23a). This follows from the identity of C and ¢’
which in turn implies the identity of the reducing trans-
formations D (2.23) and T (2.18) [cf. (2.25)]. Asa re-
sult one can consider a g-particle spin function 6% S,
as a mapping of the g-tupel C into the set ¢’’:

k[crj * 'q]

cr‘ *c

es,”,k(crl’ seey c,q).. (2. 29b)
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~ where the action of a g-fold tensor product 0,®- .. ®aq,
onCis

01®---®0q/e,,...,c,)=0(c,)--- ole,) . (2.30)

ofc,) is defined by (2. 26) and the product on the rhs of
(2.30) is the algebraic product of Fermion operators.
The spin-coupled operators (2. 29) are obviously nor-
malized. i

F. Transformation properties of AIP's
upon permutations

Theorem: Let P' denote the permutation operator
which causes a permutation p°! of the factors ¢, in the
AIP (2.28)

B SMe, A ne, J=Se,  Aene, ] (2.31)

Ty 1(a)

Then

Pr Shle, A---ne, =D USKp) S¥e, A e e A c, ]
‘ ! (2.32)
i.e., the AIP’s transform upon permutations aécording

‘to the irreducible representation (1.15) of the sym-
metric group S°. h ‘ ‘

For a proof we note _
S pr Su”g[cr1 Aees A c,,(]: \/zﬁz e‘gv,j,',,[ﬁ'(c,i ®-+® c'q)]

=L > ()P oy, [P P, 0 0c,)]

-1 v " 5X2ad _'0-! < 2 . ‘
L I B 0,0 e, 010,
= c(PNIT A o VH(pIO% (e, 0+ -0, ) 3

: N : |

pes?

(s'fB’l s,"ﬁB")= Ss, s’ Oy ur Z PV (p)olry«-- 7.';, SRR T;kq))

To show this we note

(Sokpr|s" Mgy D S8 Topunngy 40 Toponny (B B)
q

alauoq

’ ’
gleseg
1 q
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‘Remark: We have droppéd above. the differentiation be-
" tween an AIP and its components. We will continue to

do so whenever there is no danger of confusion.

G. The scalar product of AIP’s

Let B* and B’* be two g-fold products of Fermion:
creation operators

(2. 33a)

B*= a;!cl' o a;.,"q ’
=7 -a,fq,q . (2. 33b)
The scalar product is defined by
(B*'|B"*)=(0|B B"*|0) . (2. 34a)
Application of Wick’s theorem® yields
- B|B")= 2 €(PIolry- vy Yoty 7 )
pese :
X6(0'17"’Uq,O';(‘)"'O';,(q)) L (2.34b)
where '
6("1'""413’1“'y¢)=6¥1'v1“',qu-!,,, (2.35)
Let
S:‘{,B'f: s"{,[a:;1 AcesA a;q] s (2. 36a)
S'uipre sr,nzf[a;i AverA a.;;] (2. 36b)

be tw‘ov AIP’s of creation operators. Their scalar prod-
uct is- ; : - » g

(2.37)

. 1yl )
=’qu €(P)olryc vy ¥hqyoee r,’,(q))azg. SiH Togeeea, s "L:T,i...,; 8(0° 2+ Ogy Ohgy o * 0&,,)\
€ 1-.- A

!, ’
al'"cq

. ) - ? ?
= 2 €D)lr 7 Vhiay i) 2 S Toyenng, ST,
pes . )

clo.-gq

veeg
iy Tl

The properties (A 1.11) and (A 1.7) of the reducing transformation T show then assertion (2.37) to be correct.
. . I .

Equation (2. 34b) is also valid for g-fold products of particle and hole creation operators if one defines the scalar
product (2. 34a) with respect to a “Fermi-vacuum” (see next section) rather than with respect to the true vacuum.
We have used for the proof of (2.37) only (2. 34b) and the properties of the reducing transformation T. Therefore
(2.37) is also valid for AIP’s (2. 28) of particle-hole creation operators.

l1l. SAAP CREATION OPERATORS

In this section we want to construct an orthonormal
SAAP basis for the 2N, electron space. For this purpose
we introduce the particle-hole (“ph”) formalism of
second quantization which allows to focus on the few
electrons excited from a closed shell (“CS”) reference

~

sate and to s‘uppress any explicit consideration of the
many remaining electrons,

A. Particles and holes

The (ground) reference state ||0)) of the 2N, electron
system is described by a single Slater determinant built
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up from N, doubly occupied orbitals |¢,)

o, 8 |0) @3.1)

[0 =6.iype- a7,
and is called “Fermi vacuum.” In the following the or-
bitals occupied in |]0)) will be denoted by the letters

g’ i’j? k

1=g.i,j,k=N, , (3. 2a)
the unoccupied orbitals by I, m, n, 0
Ny+1=<1l,m,n,0=N,+N, . (3. 2b)

A single excitation involves the creation of a hole in an
occupied orbital followed by the creation of a particle
in an unoccupied orbital. The hole creation operators

are »
hj=a,, hi=a;, (3.3)
and the particle creation operators are
pi=ai, Di=dis. (3.4)

These operators and their adjoint annihilation operators

obey the anticommutation rules (2, 5). In particular, the
particle operators anticommute with the hole operators,
and the hole as well as the particle annihilation operator<
anmhxlate the Fermi vacuum

il |0 =P | |O)=p]|O)=F,||Op=0 .

(3.5)
Operators of the form
v
A=[I5r, v=1,...,28,, (3.6)
(3]
. with o
pxe{pbpt} and h‘e{hhhi}; (3-7)

-applied to the Fermi vacuum create a v-fold excited
spin orbital configuration. The CI basis (1.25) is com-
posed of the set of all v-fold excitation operators (3. 6).
The dimension of the space A"’ of the v-fold excitation
operators (3. 6) is

_ 2N;\ (2N, .
dimA® = {. (3.8)
v v
The dimension of the complete 2N, electron space is
(see also Ref. 17)

2N, _ 2(N,+N,)
® A(V) —
v=0 2N,

dim (3.9)

B. The SAAP creation operators

In order to reduce the dimension of the matrix eigen-
value problem (1.5) we have to construct spin-coupled
excitation operators S'¥ A} from the A} which, when ap-
plied to the Fermi vacuum, yield an orthonormal SAAP
basis. For the construction of these SAAP creation op-
erators an orthogonal reducing transformation is applied
to the tensorial set of excitation operators A;.

The v-fold excitation operators A: are v-fold geminal

‘twice.
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products of operators p; and %;. The latter are standard
components of the irreducible tensor operators

pi=(p},B) and  Un=(-Fj, k) (3.10)
of order 3. Hence, the SAAP creation operators S*“ A}

are obtained as normalized spin-coupled operators ac-
cording to (cf. Sec. IIC and Sec. IID)

Stk AY(L, 1) = 5*4[p;, U], - - - D}, Uh;,] . (3.11)
(L, I) denotes the orbital configuration
(L, I) =(l1, il’ seey lv, iv) (3. 12)

in which none of the orbital indices occurs more than
Since condition (2. 24a) holds for the SAAP crea-
tion operators (3. 11) the latter according to (2. 24b) can
be represented as AIP’s of irreducible particle and hole
creation operators (3.10)

SHBYL, 1) = V(B A6%,,,, (pi, © Uhj, ® - ©pj @ UK} ) .

(3.13)

by means of an appropriate normalization constant. The
excitation operators, orbital configurations, and spin
coupling schemes occurring in this section are illus-
trated in Fig. 1. The reader is advised to repeatedly
consult this figure in the following. We will show now
that in the Serber coupling scheme the relation between
the SAAP creators (3.11) and the AIP’s (3.13) is simply
ik AL, 1)=2'A“"3"S" 2 siMpy(L, 1) (3.14a)
where the numbers AM#%%, the orbital configurations
(L, I) and the Serber functions 9 u,x are defined in the
followmg way: - : ‘ ' :

(i) M » denotes the number of hole closed shells (CS)
created by the SAAP creator (3.11), i.e., 2M, is the
number of orbital indices i, occurring twice in (L, I).
Analogously the number of particle CS created by (3.11)
is denoted by M,. Then '

AMP =M, -M, . (3.14b)

(ii) In the orbital configuration (L, I) the particle in-
dices I, and the hole indices i, are ordered in an alter-
nating sequence (“phph”) according to the following pre-
scription: The first 2, particle indices and the first
2M, hole indices denote the closed shells of the excita-
tion with orbital indices ascending from left to right.
The remaining particle and hole orbital indices of the
singly occupied shells created by (3.11) also increase
from left to right. This is summarized for the holes by
the relations . '

i,=1,., if kodd

=K<
1=k<2M,= i,<i.y if keven
(3.14c)

ZM,I‘I" 1 SA<2V gi).<i;,i
1S Kk=2M,<A=<20 =i, #i, ‘
and for the particles by corresponding relations.

(iii) The Serber function 6%, , of the AIP (3.13) is
obtained by application of a “¢-type” preserving permuta-
tion operator (7gg, ncs) (cf. Appendix 1) defined by (L,I)
to a Serber function 6%, ;:
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Fermi vacuum 6-fold excitation
|

12— +—} (a)
11— — tMpe=2
10— o |Vos
9——Np=7 —_—
8_.—.-.-. —
7] — ¥
] _H_}MP =2
i ...............
5 ¢ —_—
3—)(—')(" rNh_S —_—
2 X% ¥
1 =% K3
e b
WMANILD) ke ____5 [ “
(LI) = (63, 63 74 74, 105, 12,5)
MBI ke ____5 2

RPN S

(LT) = (66, 3,3 77 4k, 1012, 55)

(LI) = (66, 33, 77 44 55 1012)

WMA T | we s 4]
(1) = (66, 7.7 33, 44 55 1012) |
1n“,f08;'(nk|.,nk1)§ N s 3

L D) =(63 63, 7.4, 7.4

12,5, 10,5)

FIG. 1. An illustration for the excitation operators employed/
in Sec. III. (a) Orbital occupancy pattern for a sample sixfold
excitation of a 10 electron system confined to 12 orbitals en-
tailing three hole closed shells (My=3), two particle closed
shells (M,=2), and two particle open shells (Mgg=2) coupled

to a triplet state (§=1). (b) Relationships between orbital con-
figurations (OC) and Serber spin coupling routes (SCR); (1) OC
and SCR of Egs. (3.11), (3.13) corresponding to strict particle—
hole coupling; (2) OC of Eq. (3.21), the respective SCR being
unchanged compared to (1); the excitation operator corresponds
to a pphhpphh coupling, cf. Eq. (3.23); (3) OC with closed
shell and open shell parts separated [Eq. (3.18)), the SCR is
defined by Eq. (3.15); SCR and OC result from (2) by a ¢-type
preserving permutation (ngg, 7cg according to Eqgs. (3.14d),
(3.30); (4) OC with particle closed shells and hole closed shells
separated; the SCR refers solely to the open shell part; the
corresponding excitation operator is defined in Eq. (3.28); (5)
the ¢-type representative of (1), cf. Eqs. (3.36) and (Al.27).

egv.u.k= (72 "cs)ue?,u,i . (3.144)
The latter function is of the form
M,
0% 45=160,0)56% 1 , (3.15)
where
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Mes=M, +M, (3.16)
denotes the total number of closed shells in (L,I) and

Mosg=2(v ~Mcg) (3.17)

denotes the number of open shells (OS) created by the
excitation (3.11). ©5°% .. is one of the f§° (1.16) Ser-
ber functions for Myg spin 3 particles and 6, , is the
geminal singlet function (Al.3a).

The permutation operator {7, 7c5)° is defined by a
special permutation (7 g, 7cg) €S” X S” connecting. the two
orbital configurations (E1) and (L)

(ITi) = [(Wcsy 77'cs)(f-l—i)] . - (8. 18)

The orbital configurations (L) and (ET) are both permu-
tations of the configuration (I, I) and are obtained from
(L, I) in the following way: Let

Mma:x’—:max(Mpy Mh) (3- 19)
and let the permutation p € $%
Mmax :
p=I1 (4p -2,4p -1) (3.20)
u=i

be a M, -fold product of intergeminal transpositions
(4p -2, 4u ~1) in the configuration (L,I). (LI) is then
obtained as the permutation p of the orbital configura-
tion (L, I) :

TDH=[5@x,1n] .

In (L) the ordering of the particle indices is unchanged
compared to (I, I). This statement holds for the hole

(3.21)

‘indices alike. But the phph alternancy of (L,I) is de-

stroyed: In (L) the first 4My,, ovbital indices are or-
dered in a pphhpphh sequence.

Likewise the permutation (w¢g, 7cg) creating (L.1) from
(L) does neither destroy the ordering of the particle
indices nor that of the hole indices. However, in (LT)
only the first 4M,,;, orbital indices

Mmin=min(Mpy Mh) (3.22)

" are arranged in a pphhk order. The following 4! AM 2% |

orbital indices in (L.I) are separated according to
whether they are CS or OS indices such that in (LT) the
first 2M.¢ orbital indices are all CS indices, while the
remaining indices are all OS indices. If, for instance,
AM®%>0 then the first 4M, CS indices in (LT) are ar-
ranged in a pphh sequence; they are followed by the re-
maining 2AM 2% closed shell particle indices which are
again followed by 2AM 2% OS hole indices. The remain-
ing orbital indices all correspond to open shells and are
ordered in a phph sequence. They have not been per-
muted at all and occupy the same positions as in (LT)
and (L, I).

Thus (7cs, Tcs) can be characterized as the permutation |
which separates in (LT) CS and OS orbital indices shift-
ing CS index pairs to the left and OS index pairs to the
right and preserving thereby the internal order of par-
ticles and holes (3. 14c), respectively.

C. Geminal creation operators

For the proof of proposition (3.14) we exploit the Ser-
ber geminate coupling structure of the AIP’s (3.13).
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Let (I/,\I) be an arbitrarily ordered orbital configura-
tion of v particles and v holes

(I/..\I) =74y e 0ny 7ay) - (3.23a)
for which the corresponding AIP
SUBYLY)=4cs, A e Acs,] (3.23b)

of irreducible creation operators ¢} € {p;, Uh;} does not
vanish, For the sake of simplicity we introduce the no-
tation :

S BTT) =S Mrye e 13,] (3.23¢)

The AIP can be represented as a v-fold irreducible prod-
- uct of geminal singlet and triplet creation operators

S[+*»’*]. The corresponding reducing transformations -

are given by (Al.12). There exist three different types

of geminal creation operators, thé single excitation op-

erators °[1'i*], the geminal particle creation operators
S[1*m*] and the geminal hole creation operators $[i%*].
The standard components of these operators are spin-
coupled operators of second quantization and can be cal-
culated from the geminal spin functions by virtue of
(2.26) and (2.28). The singlet smgle excitation opera-
tor, for instance, is ‘

0:0[1**) = VZ A 8,,(p; ® Uh})
=A[a(p;) ® B(UN;) - B(p;) ® a(Uhy)]

_\/Z.(p,Ah*+p,Ah)

=712-(p*h{+§*ﬁ’) . (3.24)

The gemmal AIP’s $*¥[4*y'*] are normalized spin-coupled
operators if »#7’, For =17 the triplet operators
vanish ‘

i) =0

whereas the singlet operators *'[»*»

(3.25)
*] have the norm 2.

We will denote the normalized spin-coupled single ex-
citation operators by S'¥S** and the corresponding gem-
inal particlé and hole creation operators by $'¥p*'™ and
S:Mprti | respectively. The following relations hold:

SHgeH = SiM[1i] (3.26)
SMpHIm = (128, (1 -VT 85, )1 S¥[r'm*],  (3.27a)
S =120, (1 VT 05,1 SH[%57] . (3.2Th)

Because of (3.25) triplet creation operators (3.27) for
l=m and i=j do not exist.

D. An alternative definition of SAAP creation
operators

Let A be a singlet operator and B an operator of
spin multiplicity S. Then according to (2. 8) the opera-
tor products SB°A and "ASB are again irreducible tensor
operators of order S. If %4 and £'“B are normalized
spin-coupled operators of second quantization (2.23)-
referring to disjoint orbital sets then their binary prod-
ucts are also normalized.

Because of the anticommutation property of the crea--
tion operators (3. 7) each orbital index may occur at
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most twice in the orbital configuration (3.23a) of a spin-
coupled v-fold excitation. Separating OS and CS factors
we can therefore construct a complete set of SAAP
creators in the following way: For the Mg [see (3.17)]
open shell creation operators ¢} € {p}, Uh}} normalized
spin-coupled operators can be constructed'according to
(2.24) and (2.25). . To the set of the f¥°5 Serber func-
tions es, . COrrespond the operators

kl AMOB(OS) = ’kl [7’1 eee /VMOS] . (3. 28a)
The orbital configuration
(Os)=(1’1,...,'}’Mos) (3.28b) .

contains v - 2M, particle indices I, and v - 2M, hole in-
dices i,. These indices may be arranged in a sequence
i, <iggand [,<l.4. Furthermore, one may arrange par-
ticles and holes in such a way, that the last My
—21AM#%| orbital indices in (OS) occur in a phph se-
quence. '

The normalized geminal singlet operators for doubly
occupied orbitals are given by (3.27). The total ortho-.
normal SAAP creation operators for the orb1tal configu-
ration (LT).

(LI) = (ll’ ll’ coey 1,,’, lM’, 1:1, il! cony i”h’ i”h’ Vs osey ’Vuos)

(3.28¢c)
are then given by the products
s.MA+(ﬁ) I(M,, M,) I'I 0,0p+1, 1,
M .
xH °'°H*‘m S¥Au (os) (3.28d)
A=
The sign
S My, M) =21 (3.28e)

is defined below. Relations (3.28) represent a defini- '
tion of the SAAP creators alternative to (3.11).

We will employ the construction (3.28) to prove
(3.14a) and define, thereby, the signI(M,, M,). From
the commutativity of all geminal creation operators and
from (3.27) follows that the excitation operator (3.28)
up to a scalar factor is equal to the AIP 5~ ~B"(L 1) de-
fined by the orbital configuration (L.1) (see Sec 3.3) and
the Serber function 6%, - [see (3.15)], i

S',:!A;(LI) =I(M,, M,)2™¥cs/? s'gB;(LI) . (3.29)

According to (3. 3.18) (L1) is obtained from the orbital
configuration (L) by a permutation (ngk, 7ek) in which
pairs of CS indices are shifted with respect to pairs of
OS indices. Therefore, the corresponding permutation
operator (mgg, mes)® is a {-type preserving permutation
operator which in the Serber function (3. 15) shifts the
closed shell spin functions with respect to the OS spin
geminals collected in 6505 5.5« Applying {7, 7c5)° to
©¥ ,.; one obtains according to Appendix IG a new Ser-
ber function 6%, , of the same ¢-type [cf. (3.14d)].
virtue of (Al,28), (2.31), (2.32), and (3.18) one obtains

SEBL(LT) =S4BJ(LT) .

Since 6%, , is a Serber function, S*¥B!(LI) is an ir-

(3.30)
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‘reducible product of geminal creation operétors. Among
. these geminal creation operators the last v —2M,,,, op-
erators are by construction single excitation operators
$[1'i*]. The first 2M,,, geminal creation operators, due
to the pphh sequence of the corresponding orbital indices
in (L1), are pairs of products of geminal particle opera-
tors S[I'm*] and geminal hole operators $[i%*]. For M,
=M, these products are of the form °[2'7*] ¥[i**] and for
M, =M, of the form 5[I'm*]"[i*i*]. By means of the anti-
commutation relations (2.5) or using (2.31), (2.32), and
(3:25) one can derive the following operator identities:

Terr]sfitt]= -2 ('] S[15°] (3.31a)

s[l+m-r] O[i*i*] —_2 s[l¢i+] 0[m¢io] . (3. 31b)
These identities represent the connection between the
pphh sequence of the first 4M,,,, orbital indices in (LT)
_and the phph sequence in (L;I): The application of an in-
tergeminal transposition operator {4y -2, 4u —1)", where
1=y =M,,, tothe AIP $**B*(LT) yields an AIP defined
by the permuted orbital configuration but by the same

spin function multiplied by a factor -2. From (3.20)
and (3.21) we obtain then

SHMBHLT) = (- 2)#max SHBI(L,T) . (3.32)
If we define now
1M, M) = (= 1)max (3.33)

then Egs. (3.14b), (3.16), (3.19), and (3.29)-(3. 33) are
summarlzed by

bR
s Ayl =2 8 spy(r, ) (3.34)

Thig verifies that (3. 14a) gives indeed the proper nor-
malization constant for the irreducible product
$:MpB*(1,,1) of single excitations S[1*i*].

E. Dimension of the spin-adapted v-fold excitation
space-
Let SA “YC A™ denote the subspace of the v-fold ex-

citations of spin S. - SA®’ is contained (ZS +1) t1mes in
A% and it foliows from (3.28)

v —-M,

s Ny N, v -M,
dimSA ) = u,;ﬁ?of -M,/\V -M,) M, > M,
(3.35a)
with
v/2 if v even
(v-1)/2 if v odd (3-$5b)
and
0=M,+M,=v-S". (3. 35¢)

f‘slos is given by (1.16) and (3.17), N, and N, are the

total numbers of occupied and unoccupied orbitals re-
ferring to the Fermi vacuum and M, and M, are the
numbers of particle and hole CS’s, respectively, created
by the excitation.

Consider for example a system of 8 electrons in a
~ minimum orbital basis, i.e., N,=N,=4. The dimen-

-nor in a phph sequence.
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sion of the space of all quadruple excitations A’ accord-

ing to (3. 8) is equal to 4900, the dimension of the singlet

subspace A is 626. This illustrates the advantage '

arising from the use of the spin-adapted wave functions.

F. Representatives for the Serber coupled v-fold
excitations

We will show now how the SAAP creators expressed
by v-fold irreducible products of spin-coupled single ex-
citations can be reduced to a subset of class represen-

- tatives.

In Appendix IF-IG the set of Serber functions 6%, .
had been divided into f (Al.23) equivalence cldsses
C¥ u(k) of the same ¢- type k and every function had been
expressed through its class representatlve This divi-
sion of the Serber functions into classes induces a divi-
sion of the corresponding AIP’s S'¥B;(L,I) (3.13) into
corresponding equivalence classes. An AIP S3'B;(L,T)
is called a representative of such a class if the corre-
sponding Serber function 6%, Hyrg 1S the representative of
the class C¥, (k). Furthermore, we say that $4By(L, D
is of t-type & if the corresponding Serber function is of
this ¢-type.

Let now S'#Bj(L, I) be of t-type % and let (m, m,) 17,,)‘T be
the #-type preserving permutation “operator which creates
the corresponding Serber function from its representa-

tive. By virtue of (Al.13), (Al 14), (A1.28), (2. 31),
and (2. 33)
s'gB;(L9 I) = s’k}:B;(ﬂkLs "kI) » (3- 363.)
- where : _
(ﬂkL9 77);1) = (Zrk )y ivk(l ey lfk(l‘)9 i.rk (u)) ’ (3- 36b)

i.e., the excitation operator $*4B; for the orbital con- .
figuration (L, I) is equal to the ¢-type representative
SyeBs for the permuted configuration (mL, m1).

G. Summary and discussion of the SAAP basns
construction

To represent the SAAP creation operators +¢ A*(ﬁ)
given in (3.28) by the ¢-type representatlves S» B (L,
m,]) one proceeds as follows:

(i) In the first step the CS spec1al cases are consid-
ered. If (LI) contains no CS then (LI) =(L,I) and 2’
=k=F. Otherwise % follows from %’ according to (3.15)

" and % from % according to (3.14d) by means of the per-

mutation (ngk, 7gk). This permutation is different from
the identity (e, e), i.e., k+#k, if

M,-M,#0,1. (3.37)

In this case (ncs, 1Tcs) is defined as the permutation of
(1) [or equivalently of (LI) cf. (3.29)] which mixes
CS index pairs among OS index pairs such that a pphh
sequence is created for orbital indices neither in a pphh
To each pau' (M,, M}) there is
exactly one such permutation (7gk, 7ck) €5”xS”. Let for
instance

(ﬁ) = (lla li’ la: 13’ ii’ iz: i3’ i4, ls’ is)
be the orbital configuration of a five-fold excitation con-
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taining two particle CS. Then 71 s is the neighbor trans-

position (23) € S® which yields
(LI
The genealogy symbol & is obtained from %’ and n&‘s

most simply through a consideration of the correspond-
ing coupling routes in the Serber branching dlagram Fig.

= (li’ lb il! i21 13:‘ l3, i 3 idy 15’ z5) .

3. If, in our example, k' corresponds to/\_, then % cor-

responds to __/\_ and k corresponds to _/0\_ as (3. 14d)
reads

0N\ =(23)__/\_ .

In this way each pair (M,, M,) umquely defmes a mapping
M,, M, of the set of Serber functions C 2 (A1.18) into
the set C¥,, such that M, M,(£') =*. In the above exam-
ple M,, M, =2,0 and 2,0(/\.)=_/0\.. Having determined
for a given degree of excitation v and spin multiplicity S
all nontrivial mappings [these are characterized by all
pairs (M,, M,) satisfying the conditions (3.37), (3.35c),
My +M,>0, M,=pu, and M,=p, p being defined by
(3.35b)], each SAAP creator can be represented by vir-
tue of (3.14a) as an AIP of particle—hole (p#) creation
operators. This AIP is then defined by an orbital con-
figuration (L, I) and one of the f 23" spin functions which
span the dual representation [v +S,v -S].

(ii) In the second step one needs to determine the
permutation 73, €S" which maps each v-fold excitation
operator S* "B‘(L I) according to (3.36) on the ¢-type
representative SyB;(n,L, mI). ;' is defined by (A1.27).
If, as in our example, '

(L, I) = (lb 1:!, li’ iz, la, ia, 13, 1:4, 15, iS) and k ;_ /.0\_ ’

then k, corresponds to .__/\; consequently 7, is the 4- A
cycle (2453) and the permuted configuration is given by

(7TkL, 7TkI) = (lli 1:!, 13, is, 15, 1:5, li’ iz, l3, i4) .

For the characterization of all possible SAAP creators
in terms of AIP’s of ph creation operators correspond-
ing to the orbital configuration (L, I) all f% spin functions
are needed. However, employing the permuted orbital
configurations (ka n,,I) for the definition of the SAAP
creators only the f%, class representatives o% .. ko 2T€
needed for a complete characterization of all SAAP
creators. This leads to a reduction of the dimension of
the representation matrices of 5% as one can expand the
CI-Hamiltonian in terms of AIP’s (3. 13) expressed by
few class representatives. Thus, we will show in the
next section that the evaluation of all possible CI-matrix
elements requires only f%,-dimensional submatrices of
the f%-dimensional representation matrices of S¥.
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IV. MATRIX ELEMENTS OF THE 2N/, ELECTRON
HAMILTONIAN

- To determine the matrix elements of the 2N, electron
Hamiltonian & [Eq. (2.7)] in the SAAP basis we intro-
duce an appropriate representation of H in terms of
geminal, normalized, spin-coupled operators of second
quantization.

A. Representation of H by spin-adapted partlcle-hole
operators

H can be expressed in terms of the following ITO’s,
the particle shift operator

P, =*[pjup,], (4.1a)
the hole shift operator

SH;' =S[uhh,], (4.1b)
the deexcitation operator '

*8:="[hUp,], (4.2)
and the excitation operator [Eq. (3.26)] 8*", Expres-

sion (4.2)is the conjugate of the latter operator and canbe
constructed as the AIP of the corresponding annihilation
operators, i.e., °[il]=5[h; AUp,]. The standard com-
ponents of the operators (4.1) are normalized spin-
coupled operators of second quantization determined by
means of the spin mapping (2. 29).

For the following it is useful to assume the customary
notations for the matrix elements of the one-particle and
two-particle operators in the orbital basis (1.23)

Zer =&y |2]| Bre) (4.32)
(s rrd =L b, | Br2] Gryr,) - .~ (4.3b)
Furthermore, we define
)
Eo—Z{Zzn +Z[2(nln) (zjlzj)} (4. 4a)
N
Frpo=2,p +§, [2Cii [7r") = (ri |7'D)] . (4. 4b)

By virtue of the anticommutation relations (2. 5) one
can show that A can be decomposed into a sum of opera-
tors H

4=34,.

nE=2

(4.52)

I},,, when applied to a v-fold excitation, changes the de-
gree v of this excitation by n mapping it onto a linear
combination of (v +7)-fold excitations. The H are given
by the following expansions of spm-coupled operators
(4.1), (4.2), and (3.26)

fz,z-_-l Z“(zilmj) B0t 0o ems (4.5b)
‘1_\/72 [F 00548 4 3 Z(lzlmn) 00g+1 0,0 pem +‘/2—,Z;,(hl]k) O’OS’" °’°H"’] ‘ (4. 50)

Hy=E, +JT(§F,M°;°P;’ +_§F” °'°H,“) + lzm:" [z',:(lmlno) 0.0pm _ ﬁ(lnllmn)] 0.0p+
(4. 5d)

+ [Z(ijlgk) °'°H;‘+712=(igljg)] %0y + 2 > [(lmlz])o’oP” OOH + (15| mj) %051 O0s, ] .
R

Lamadsd

i,4,2
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The operators H » are the conjugates of the operators
H Equations (4 5b)-(4. 5d) may be summarized by the
operator expansion

H,= chl:Hnt H

where the H,,, belong to the following classes of singlet
operators (I is the identity operator)

(4.5e)

{I, O.OSOH’ 0, 050 1 O,OSOMJ} (4. sf)
{O.OP;I’ 0, OH;I, O.OSﬂl O.OH;J’ 0.03*!{ 0, OP:",

O.OH;: O'OH;", O’OP:' O.OP;I’ O.OP;‘I O.OH;I} (4_ 5g)
{074 00s ) (4.5n)

The operators of the class (4. 5f) contain no annihilation
operators at all, the operators of the class (4, 5g) con-
tain such operators only as parts of the particle and hole
shift operators (4. 1) and the last class contains particle
and hole annihilation operators as parts of singlet de-
excitation operators (4. 2).

B. The action of the Hamiltonian on the SAAP creation
operator '

- Every SAAP creation operator $*% A} [Eq. (3.11)] can
be represented as an AIP [see Eq. (3.13)] of ph creation
operators by means of a normalization constant K given
by Eq. (3.14a). The calculation of matrix elements of
SAAP creation operators can then be reduced to the cal-
culation of the matrix elements of the corresponding

AIP’s S$:¥p*
8 M + ’ + SosMg s
( ! k:A ,H, 2 k2A92> K1K2< k;BvllH, 2 k:Bv2> .
(4. 6a)
We have used the notation
[SHAD =S¥ A% |10)) (4. 6b)

The action of the operators an on excitation operators
$14B; is readily determined. Since the f,, are singlet
operators. the operator products H,,r '”B are standard
components of ITO’s of order S. They create (v +7)-
fold excited, spin adapted, antisymmetrized functions
from the Fermi vacuum [|0)). For the Hamiltonian ma-
trix elements one finds by means of the Wigner—Eckart
"theorem and by means of the orthogonality of the excita-
tion spaces A“1’ and A“2’ for v, #v,

uai

- 0154, #4850, m)}) oy

8,548y 100 =2 205 45, 10D
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Sqe My o SosMg o
Crous |8 [% ,.§B.,,>

. Sqo M Sir¥,
— 1 IB* H 1 180
- bvi.vzmasl,szbui.llz z‘:cnz< ky v1, )

ky vy
(4.7

The functions |H,, S*¥B) in (4 7) are linear combina-

tions of (v +7)-fold excited functions |5° AB,.y created by

AIP’s (3. 13) of ph creation operators :
Boe 4B} |00 = 2D 281, 09 (4.8)

R

For the nontrivial cases the proof of (4.8) and the deriva-

tion of the coefficients D is given in Appendix II. For

the operators H,,r of class (4. 5f) the statement (4. 8) is

obv1ous smce in this case the operator products

H,, S*“B; are already (v +7)-fold excited AIP’s of ph

creators. We denote these operators by
S» ”B',,(m])—-o Og+mi S.itps | (4.9a)
5yBa(limj) = s s"gqu(mj) . (4.9b)

If S*4B; is defined by the orbital configuration (3.12) and
the Serber function ©%,, , then the operator S+ By.1(mj)

corresponds to the orbital configuration (m, li, ey by ds
i1, ..., 1,) and to the Serber function
eg(.vzz.lz—ao.oes.u. (4.9¢)

The operators A, of the remammg classes (4. 5g) and
(4 5h) annihilate the Fermi vacuum. From the identity

Hy 4B = [, S'4B;) + S4B, A, (4.10)

- follows that the action of the products H,, S*¥B; on the

Fermi vacuum is determined by the commutators of the
I“J,,z with the  AIP’s of ph creation operators. In Appendix
II it is shown that, up to operators annihilating the
Fermi vacuum, these commutators are presented by
linear combmatlons of (u +1)-fold excitation operators
(3.13).

From these results and from the decomposition (4. 5)
of the Hamiltonian one obtains

(4.11a)
and more explicitly

Ho *4B;| ()= 3 (ilmj) S4BLo(tims) | [0 (4.110)

Iymyiyf

Fy S":B’q(lz) + Z{Z li,ml ) S MB‘ willd, (m, 1 »
i\ N

(4.11c)

H, S4B o) = (Eos":B:'*'Z: [ZFm,u.s";B;(m, 1,) —ZFR“ $*%B(4, 4, )] +“Z<; {,Z:,(llul nh) *%B(1, 1), (n, 1))

+Z(u Igzx)”B*«z,z ), (g,m)} +EZ{2(hIz WY, >

*S0BQ L), Gy i) - (1, |6) S4B, 1,), G, za))}) [ |o)

2
SR |
r
Klf:kv(”k' Ky Tpe A)('"k' By T d)
k0'1 tyCT(ko)

(4.114)
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In (4.11) the following definitions [Egs. (4.12)-(4.15)
below] have been used in addition to Eq. (4.9):

(i) A pair (m,1,) of orbital indices as an argument of
an AIP indicates that in the corresponding orbital con-
figuration (3. 12) the orbital index I,, pe{1,...,}, has
been replaced by the orbital index m.- For instance,

ShBy(m, 1,)="S"K[1i]+  m*i} - i3] . (4.12)

(i) The permutation operator (7, i, 7, A)" in (4. 11d)
is a product of two permutation operators of §* x5

(Mot T A)" = (T, T Y (1, R)7 (4.13)

The permutation operator (i, A)" is defined by the two
cyclic permutations

p=(12:--p) and Ar=(12--:2)

of §* [cf. Appendix II]. The permutation operator -
(7, T,) is the t- type preserving permutation operator
which maps the AIP S'¥B? on its #- type representative
S,,‘;B; [ef. (2.31) and (3 36)] From the set of all such
permutation operators T(k,) x T(k,) one can create the
whole class of AIP’s of ¢-type k, (cf. Appendix IG).
Thus the double sum in (4. 11d), where the first sum
runs over all %, classes and the second sum runs for
each class over the class creating permutations, repre-
sents the sum over all f% coupling routes %’ of the ir-
reducible Serber representation [v +8, v -S] of S,

(ii) The coefficients K§X(m, p, 7,,A) in (4.11d) are
given by the Serber matrlx us representing. the permu-
tation (m,, p, m,,2) €5V % S” and by the projector (k') de-
fined by the Serber matrix element US%(12) of intra-
geminal transposition (12) of the first geminal pair

K3 (e 1, 1 ) = US¥(my 1, mu M) (") (4.152)

(4.19)

T(k')=%[1+Uf,2,,'i(12}] . (4.15b)

From (1.21) and (Al.29) one finds 7(k’)=1 if the first
geminal pair of 6% s.u,» 18 2 singlet spin pair, and 7(z’)
=0 otherwise. The coefficients (4. 15a) contribute to the
sum over all ' in (4. 11d) only in the first case, i.e.
k') =1,

According to (4.11) all the AIP’s ;.B,,,,, are t-type
representatwes if the AIP $° ”B' from which they are
created by H is also a t-type representative. Since one
can express each SAAP creator by a t-type representa-
tive we conclude from a comparison of (4. 6a), (4.7),
and (4. 11) that the SAAP matrix element calculation has
been reduced to the calculation of scalar products be-
tween {-type representatives of v-fold excitation opera-
tors.

C. Scalar products of AIP’s of ph creation operators

Let the two v-fold excitation operators (3.13)
S¥By(L,I) and °;, ”B‘(M J) correspond to the orbital con-
figurations
(L, I):(li, il’ eeey l,’,, iv) )
and (4.16)
(M’ J) = (miyjly coey mv:jv) ’
respectively. According to (2.37) their scalar product

P. Tavan and K. Schulten: An efficient approach to CI

is given by
($'%By(L, )| S B}(M, 3))

= 2 USZ(p)o(ii, - -+

pesV

Liy My dydsdy®** Mpwyipwy) -

(4.17)

All those permutations which destroy the phph alter-
nancy in (M, J) do not contribute to this sum. Thus the
sum reduces to those permutations which separately
permute particles and holes among each other, i.e., to
the permutations (p,, p,) of the subgroup S* xS v [cf
Appendix IE].

The orbital confi_gurations (4. 16) define the index sets
L={ly, 1y ..., L}, 1={is, 55, ...,4,} (4.18a)
and ‘ ‘
comyt s I={G1 900 oy du} - (4.18b)

The scalar product (4.17) may be different from zero
only if these index sets are identical

L=M and I=J.

M ={m1, Moy .«

(4.19)

'Ixi the sets M and J each orbital index may occur at most

twice.  If there are M, and M, such CS indices in M and
J, respectlvely, then there are 2"» permutations p, < S¥
and 2“" permutations p; €S’ for which [if (4.19) holds]-

(4.20a)
(4.20b)

5(l1 e lv! m’m(“ b m,m(,))= 1 y

G(il °ee iv’jl’j(l) o .jkj(v))= 1.
This can be seen from the following considera_tion:

Let p,,, and p; be permutations of S* such that (4. 20)
is valid. If the M,-fold direct product (% S%)» is the sub-
group of $* permuting identical particle indices among
each other and if (xS%)¥» is the corresponding permuta-
tion group for the hole indices, then the elements of ¥
for which (4.20) is valid are the elements of the right
cosets

Sy = (% SHHp P, (4.21a)

s;’0=(xsz)“hp,O . (4.21b)
These cosets have 2”» and 2¥* elements.

Summarizing we can state that in (4.17) 2¥*¥» re\pre-
sentation matrix elements of permutations (Do p,) of the
subgroup S x S” have to be summed up. Thus, the non-
zero scalar products [for which condition (4. 19) must
hold] are given by

S%B3(L, 1| S1¥B.(M, J))

= 2 U(mp) . (4.22)

u””"’)es:’oxs;o

To calculate all possible scalar products (4. 22) of
v-fold excitations (3. 13) defined by arbitrary orbital
configurations (4.16), all (v!1)? Serber representation
matrices US%(p p;) are needed. Since these matrices
according to (1.21) and (Al. 30) exhibit the “even-odd”
symmetry

USE (B ) = (D) (EVUSZ (D, b) (4.23)
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only v!(v! +1)/2 representétion matrix elements and i'(ﬁg)___{{b {2’ iy {w 1
¥, “parities” a (k) have to be stored as parameters for- "

the scalar product calculation (cf. Appendix I1). which differ from L and ( by at most two elements. Ten

special cases have to be distinguished depending on the
form of the (v +7)-fold excitations | S4B;,). Denoting

'D. Matrix element formulas
' these excitations symbolically by I7¢)

- With Egs. (4.6a), (4.7), (4.11), and (4.22) the prob-

lem of the calculation of SAAP matrix elements of the lon)=[S¥B;) (4.26a)
Hamiltonian has befan solved in pr1nc1ple. However, as 102> _ ,S';;B,’I(m, lu» (4.26b)
shown by a comparison of equations (4. 6a), (4.7), and :
(4.11) for the calculation of a single matrix elément of |03)= [$B}(j, 1,)) (4.26c)
a (v +u)-fold and a v-fold e).(clted SAAP one ne'eds to ,04>= ls’k';B:(( A lu)" (3, 4))) (4. ZQd)
carry out extended summations over all occupied and
unoccupied orbitals. Taking proper account of condi- [05) = Is'k';B:((l, 1), (n, 1)) (4.26e)
tion (4. 19) 'the.se sums can be. reduced‘ a priovi to the : |0y = Is,kA;B:«i’ i), (g, i) (4. 26f)
few nonvanishing terms. This reduction will be carried
out now. SNt VR Rt () (4.27a)
. We first conclude from (4.11), that the operators 2= 5B, On, 1) , (4.27)
H, acting on a v-fold excitation |S1¥B}) with index sets ! [13)=|S:¥B: (5, G, i) (4.27c)
. : - R Pve s \Js by .
L={l,1,...,L} and 1={i,4...,i,} (4.24) [21) = [S By (lim)) _ (4.28)
create excitations 15;B;, ) with index sets A - ' -
L (nt) {i i i"’ ) we obtain the following relationships between L(nt) and
M) =y by - - o5 Loy 1(n¢) (4.25), L and 1 [defined by (4.24)] and the summa-
and (4,25) tion variables g, i, 7, I, m, n of (4.11)
|
L(o1)=L . and i(01) =1 ' (4.29a)
£(02)=(L - {1,hU{m} and 1(02)=1 : © . (4.29p)
L(03)=L and  1(03)=(1 -, hu{j} : - ‘ (4.29c)
L= -{L,hu{d . and W09)=(-f HUf} ' o - (4.29d)
L(05)=(L-{1,, DU, 1} and  i(05)=1 : ' (4.29e)
L(06)=L . and  1(06)=(1 - f&,, iU {g, } | | (4.291)
LAy =Lu{s} ) and (1) =1Uf} : (4.30a)
L(12)=(L -{L,hu{,m} and §(12)=1 u{i , (4.30b)
C(13)=LuU{} and  1(13)=0-{i, ) U {5} : (4.30c)
L(21) =L U{, m} cand  H(21)=1U{,j} (4.31)

According to~condition (4.19) only those terms in the matrix element expansion do not vanish for which the index
~sets L(nt) and i(n¢) are equal to the index sets corresponding to the (v +7n)-fold excitation (° ',;‘;B;.,,l in Eq. (4.6a)

M={m1r mZ’-'-,mwn} and J={jl9j2’ "'ijon} ’ (4' 32)
i.e., we have o
M=L{nt) and J=i(ne). , : ' " (4.33)

The conséquences of condition (4. 33) are twofold [cf. (4.29)—(4.31)]:

Fof a matrix element between a (v +7)-fold and a v-fold excitation to be nonvanishing one of the following ten
conditions between the index sets {M, J} and {L, 1} must apply:

For 1=0 one of the following must hold

L=M and I=J, (4.34a)
L-(LN M)={zu1} : and jl=J , : (4.34b)
L=M ‘ and 1-(1NJ) ={i,,1}, (4.34¢)
L-(Lnm)=1{,.} and  F-(INN={ }, , (4.344)
L-(Lnm={1,,1,} and I=J, (4, 34e)
L=M and  1-(N9)={i ,5,} . (4. 34f)
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For n=1 one of the following must hold

LCM and ICJ, ’ ‘ : ' (4_.353)
L-(LNM) ={1,,} and ICJ, , (4.35b)

LCM and  1-(1NJ) =1, }, _ . (4. 35¢)
and for 77=2 must hold ‘ o
LCM and ICJ, ‘ _ . (4.36)

In (4.34) and (4. 35) we have denoted by 1, and 1,, those orbital indices 1, which are elements of the particle index
set L but not of the set M. The corresponding hole indices 4, are denoted by 4, and ixz. Similarly we will denote by
My, and m,, those orbital indices which are in M but not in L and the corresponding hole indices of J by Joy and j,.

(i) From (4.33) can also be derived conditions satisfied by the summation variables g, i, j, I, m, n of (4.11)
which give a contribution to a nonvanishing matrix element. The corresponding set of summation variables depends
on the conditions (4.34)-(4.36). Each condition yields a diffevent matrix element formula. We will state now the
resulting ten final matrix element formulas which can be derived by simple set theoretical arguments and an analy-
sis of the summations over the occupied and unoccupied orbitals in (4.11), Special care has to be taken to account
for the possibility that the orbital indices of {M,J} and {L, 1} may assume the same value twice in these sets. As an
illustration for the logical arguments involved we provide in Appendix III the proof for. the matrix element formula
corresponding to condition (4.34e). The proofs of the remaining formulas?® are similar, but rather lengthy, and,
therefore, have been omitted here. ' -

In the following matrix element formulas the function £(7y, 7,) and the summation index sets [1¢] and [A;] are in-
troduced to distinguish single from double occupancies in the orbital index sets {L,1} and {M,J}. They are defined by

if Yi=7y
(4.37)

- ol

tr, my) = if 7 #7,
and |
[ud={ne{l, oW =1, and 1,1, eL) | B (4.38a)
=Gefl, ..., sHli=i andiyiy e} . | ‘ 0 (4.380)
Formulas for the matrix elements between v-fold excitations (n=0): '

I L=M and1=J: (S4B | F[S4B;)
, Y v v
- {Eo_"'Zi[quxu =P, )= 20 (L[ + D 60 WL [B0) + 86, )67, aa)]}(s',:;B: |545;)
"= B AT L' .

+ Z;{s(z,,, WL | LB BN, ), (hy LD + 66 5, [1,0) 0B, [SEBG,, 2), Gy £,00}
n
v . I?T
+ Zl 2(1,i, ]luz',‘)z Z )Kfo";:'z(ﬂk,u, M) (S ',Z‘IB;[(W,,.;J., T ) s’,‘o'B;) . (4.39a)
nyd= -

kosi T € TRy

If condition (4. 34b) holds then M — (MN L) ={m, } and

v .
CuBlH| s'.’;B,Z):“eZ(‘;ﬂ [F"w‘u. +§ £(n, 1, e, my )om,, 1, ]z@] B [S¥Bm,,, 1,))
' Afp . ’

20 Dbl L), mo (T, lon, BB IS 4BY (G, 1,), O, 5
uelug) :tl 1 1 1
#1

b
14 fST

+ E Z {z(mptil,lutix)z Z Kfoz’k‘;(”k'“) Ty A)

selug] A=t ko1 1 €T (Rg)
sl + s . + + ‘
X (S-;;B, [T 1, T ) s.:;B,,(m,l, L)- (m‘,llul ’hh)(s'k‘:B,, IS.k‘;B,(m,I, lu))} . (4. 39p)
If condition (4. 34c) holds thenJ -(UNL)= {j,i} and

v

S.M*AS.M’_ - ‘. . . e . < . S Mp+1S, M+ 3 N

( k_thlHI szv —)&%2][ F.fg‘ b,i+;’;E(lu’lli)g(zu’]q)(]olzhllzuzu)]( k1Bvl szv(]oi’ lh»
u#
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+ 2 2 s )8 )i Lot XEB [SBG,, 5), (Gop 1))
BA P

AEM] un
,2v .
14 . ST
+ E Z{z(quulililu)z E Kf:kv(”k'uyﬂk'x)
AEY wel kel 1 €Ty 02 ,
=\ y~1 PYR O . s e : \
X(S.:;B; [T i, T N) S',:;Bv(],i, i) '(701’*1 ,luluxs'k‘:Bv ,5»;;3‘,(]01, zl))} . . (4.39¢c)
If condition (4. 34d) holds _ ' /
£
ST .
<s'k‘;B:,H's’k‘;BI:):z(mntjal [2.4r) E(ZJ m;] kzl ;ﬂ )Kfoz,,‘;(w,,.p, T N) (S4B | (e b, !
nelig 11 ko=l wpe 0
X s‘h’:’B:((mpt’ lu), (jat) ih))) - (mpil“'l,jali)'l) e[z] ).e%] S.;;B; s’k‘;B;((mgla lu)’ (jai’ i).))) . (4' 39d)
: BELp 1 )
If condition (4. 34e) holds then M —(MN L) ={m,, m,} and

Sy M
( k‘B;

Hls'k’;B:l): g(mpi’ mpz)g(lul’ luz) {(m’ll“i Impzlu,z) ue%,‘:ij ).e%;:z] s’k‘;B: s’k‘;B;((mpls lu)’ (mpzi ll)))
PN .

+my By Iy ,) ; N ; (CHBL[SUBm, 0 1,), (m,, w»} . (4.3%)
P . RE By (=3 By
) . ¥

It condition (4.34) bolds then d — (JN1)={j,,j,,} and

uER 1 AEMy)
Ay

BB SUB) = £ oy Gop)tlinys ) {(f.,ii).lljoziaz) 2 2 CUBL 58BN (Gays 8); Uy )

+Gogiigloging) 20 20 (BB Gy ), (g m»}. . (4.390)
R w1 AEDr,) e I o

Atp”

Formulas for the matrix elements between (v + 1)-. and v-fold excitations (n=1):
If condition (4.35a) holds then' M — L ={m,} andJ ~1={j, } and

. : v . .
SuB. 8| S',:;BD=J'Z({Fm,,1,,,l +»§[s<m‘,,, B0y, Gay | 1u2u) = §(jogs a)(m,,,jo,liuz‘u)]}
. v
X<$'I:;B;#1 ls'g';B;q(mpiJ'ul» + Zi{‘s(mpl’ lu)(lujoil mqluxs’ig ;oll s'l;B:d(lujop (mnii lu)»
e .

- 5(]'01: iu)(iujq l mpiiu)(s 'k‘:B;d l s'gle;d(mﬂliu’ (jvl’ zu)»}) .

: _ (4.40a)
If condition (4. 35b) holds then M — L ={m,,m,,} and

(s'kMB;d lH’S’k‘lB;>=‘/2_g(mp 7mp ) (mp'jq ,mp lu ) E <S'k”B;¢1 S')z”B;d(mp jo 1 (mp » lu)))
1 2 177" pp R A - &y 1791 2

+ (yy oy g1, ) gj]@-,:; S|SB y(my oy (my, 1, )»} : . (4.400)
. . pelug :
If condition (4.35¢) holds thenJ —1={j,, j,,} and

*

SB[ |SUB) = = VZ £(jy 0 doy) {(mpijq,ljgzixl)l:%,:] S4Bt | S By oy (Gap 2)
& ,

. . . S M+ S M+ . . . . g v
+ (rrz‘,lfc,zly,,lle))t EZ[:M ]< 0 Bout | Bty Gopy (o, zx)))} . (4. 40c)
Formula for the matrix elements between (v +2)- and v-fold excitations (n=2):

If condition (4. 36) holds then M - L ={m,1, m,z} andJ -1={j,, jo,} and we have

(A Bl | B 1B =280y, 1, )8 Gy o) Mgy o | 10, 5o KB | 4B, oy o)) |
+ gy Fay |0y 5o} Bl | “ 4y By, oy, o} (4.41)
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V. DISCUSSION OF THE MATRIX ELEMENT
FORMULAS

The general matrix element formulas (4. 39)-(4. 41)
for v-fold irreducible products 5*4B; of single excita-
tions completely describe all nonvanishing matrix ele-
ments (4. 6a) of the Hamiltonian in the SAAP basis. - One
can assume that the AIP $*¥B} is one of the % [cf.
(Al.23)] t-type representatives (3. 36a) since every
SAAP creation operator (3.11) may be expressed through
the latter if the proper normalization constant (3. 14a)
and the proper #-type preserving permutation (3. 36b) of
the orbital configuration have been chosen.

The matrix elements are represented as weighted
sums of one- and two-electron integrals. The set of
such integrals which enters a particular matrix element
is determined by the two orbital sets {M,J} and {L, 1} of
the (v +7)- and v-fold excitations defining the matrix
element. The larger the difference sets M —L andJ -1
are, the smaller is this set of spatial integrals.

The expressions in the general formulas from which
the weights C in (1.1) can be determined, in addition to
the orbital sets {M,J} and {L, 1}, depend on the order of
the particles and holes in the orbital configurations
(M, J) and (L, I) and on the Serber genealogies &y and k,
(Al.2c¢) of the spin coupling. Beside the trivial factors
£(ry, 7,) [cf. Eq. (4.37)] accounting for double occupan-
cies the weights entail two contributions.

A first contribution is due to the coefficients

K$% (7 i, 1) [cf. Eq. (4. 15a)] which appear in the
formulas for matrix elements of v-fold excitations
(4.39a)~(4.39d). These coefficients depend only on the
genealogy k, and can be conceived as v-dimensional ma-
trices (p,A=1,...,v). Because of (4.15b) there are
only fi»-Vr, nonvamshmg matrices of this kind which
are deterrmned by the v? Serber matrices representing
the permutations (m pt, 7, A) of S*xS”. A calculation of
the coefficient matrices, a prerequisite for a computer
program based on the formulas given above, has shown
that they are very sparse. For instance, for v= 4 and
S=0 only 151 of the 480 coefficients do not vanish and
assume only 21 different values. These values can
easily be taken over as constants into the source code
of a CI program. As a result in (4.39a)- (4 39d) the
double sum over k, and 7, reduces from =14 to one
or two terms for nearly all pairs (p, A). N

A second most important contribution to the weights
stems from the various scalar products of the (v+n)-
fold excitation (* ’”B,’,,,,I with the (v +7)-fold excitations

TABLE I. Values of N,.

) 0 1 2 3
14
2 9 9
3 126 315 126
4 6300 19800 13500 3000
5 566280 2548860 2178000 762300

An efficient approach to Cl

TABLE II.

PR O R O

_ list is given by

Values. of N,.
s 0 1 2 3
8 12
90 270 920
2016 7392 4320 672
60480 280800 216000 588000

Ing) [cf. Eq. (4.26)] created by the Hamiltonian from

| S ”B’) Since the orbital configurations of these (v +17)-
fold excitations have to be identical [cf. Eq. (4.33)],
their scalar product is given by (4.22) as a sum of Ser-
ber matrix elements. These Serber matrices serve as
the parameter list for the weight generation. If up to v-
fold excitationis are included in a CI expansion the length
N, of this parameter list is given by

Ne=5f 2 f ¥+ 1wl +1) . (5.1)
(5.1) follows from the even-odd symmetry (4.23) of the

"Serber matrices of S¥ X S¥ and from the fact that only the

submatrices corresponding to {-type representatives
have to be considered. Table I gives N, for various v
and S to demonstrate that for configurations not higher
than quadruply excited the parameters are few enough to
be stored in the central memory of a computer. [The

- parameter list for the v-fold excitations contains, of

course, that for the (v -1)-fold excitations since the

"Serber representation is adapted to the chain of sub-

groups S¥D 521, .. (cf. Appendix I)].-

One can reduce the length of the parameter list for
the scalar product calculation taking recourse to the
representation matrices of S rather than those of "% §”.
This reduction is based on the relation between the rep-
resentation matrices of the permutations (p,,, p;) of
SVx S” and those of the permutations (p,, ) and (03, e

of S¥
2v
’s

Uszvv(.bm, pj) = o(kl) zl: o O(Z) Uglzv(prm e) Ug'zlu(p;i: 6) . (5- 2)
I=

The appearance of the parities a (k) indicates that the

even—odd symmetry (Al. 30) has been used for the de-

rivation of (5.2). The length N,, of the new parameter

N=v!f¥ f%. (5.3)

The pertinent values of N,, are given in Table II.

Since the Serber matrices of S* % S” and of S* are rela-
tively sparse one might reduce even further the size of
the parameter lists by storing only the nonvanishing ele-
ments. However, any such reduction is accompanied by
an increase of computational work {ef. (5. 2)} and, con-
sequently, makes the algorithm for the matrix element
generation less efficient.

For our CI studies on the excited states of polyenes®®
and polyacenes®® the inclusion of at most quadruple ex-
citations into the CI expansion appeared to be sufficient.
The corresponding computer program used the more ef-
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ficient algorithm with the Serber matrices of S¥xS" as
parameters. .

The Serber matrix élements necessary for the calcu-
lation of the scalar products can be selected very effi-
ciently. The permutations (B ;) corresponding to the
configurations [L(n¢), I(n¢)] can be obtained in an effi-
cient way by coding the orbital configuration (M, J) of
the excitation (S{¥B;, | into an array of length N, +N,.
Addition of the 2#*¥» parameters selected [see Eq.

(4. 22)] completes the scalar product calculation. For
v=4 and S=1, for instance, in the worst case eight and
in the best case no additions have to be performed.

Consequently the determination of the weights C in the
formulas (1.1) in our method amounts to only a few addi-
tions followed by a few multiplications by the factors
discussed above. In the CI method of Segal et al., 2 for
comparison, scalar products of two f Zs" dimensional pa-
rameter vectors have to be formed for the calculation of
a weight'C‘,",’M of a general two-particle integral. In the
case v=4 and S=1, for instance, 28 multiplications and
additions have to be carried out for the generation of a
weight factor. In view of this, our method for the gen-
eration of CI matrices appears to be a promising alter-
native to the unitary group approach.
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APPENDIX I: SPIN FUNCTIONS AND ORTHOGONAL
REPRESENTATIONS OF THE SYMMETRIC GROUP SV

Let 6% .u,» designate state vectors of total spin (S, M)
formed from N identical spins 1. These vectors span
an irreducible representation of S¥. The representa-
tion can be labeled by a Young diagram [$N+S, iN -S]
corresponding to a partition of the integer N. (A Young
diagram [I;, Ly ..., 1,] corresponds to the partition

112122°.°21m’

L+ly+eee +1,=N,

and entails Iy boxes in the first row, I, boxes in the sec-
ond row ete. )

A. Yamanouchi-Kotani (YK) spin functions

A widespread construction of orthonormal spin func -
tions is the “genealogical” construction of Yamanouchi®
and Kotani et al. ®® which couples to a first electron spin
ae{a, B} a second electron spin, and continues this way
always coupling the spin of the gth electron to the total
spin of the g - 1 preceding electrons. The spin func-
tions obtained are eigenfunctions of the N -2 interme-
diate spin operators

3567

(Al.1a)

-~ A z
sf,q=(2;au> 4=2,...,N-1
e
which commute with the total spin operator §2 and the
spin operator &2 of the first electron. Such a system of
N -2 intermediate spin operators is called a “coupling
scheme.” Every YK function is uniquely characterized
by the “genealogy” of the spin quantum numbers Sy, Of
these operators, which can be combined to the genealogy
symbol % '

EZ'(SLZ’ 31.3, 81.4, .o (Al. lb)

There are f§ (1.16) different symbols % for a given pair
(N,S). Therefore, every symbol % can be identified by
anumber k=1,...,7% which then uniquely character-
izes a YK function 6% , .

-3 S1,n-1) -

B. Young's orthogonal representation

For the YK representation matrices of S¥ follows

- from the coupling scheme (Al.1a) that the representa- -

tions of the subgroups S¥*!, 572, ... 5? are fully reduced,
i.e., the YK representation is adapted to the sequence
of subgroups S¥*1>8¥25:-- 352 % pauncz® has shown,
that the YK representation is identical with Young’s
orthogonal representation. # The matrices of the latter
can easily be determined from the “standard tableaux”
which are constructed from the Young diagram [N +8,
3N -S] (see for example Ref. 54). We call the YK~
Young representation “standard representation” of ¥ 17

C. Serber spin functions

For a system containing an even number of electrons
the corresponding orbital configurations always contain
an even number 2v of singly occupied orbitals, There-
fore orthonormal spin functions for 2v spins 3 have to
be constructed. For this purpose it is advantageous (as
will become clear below) to use the Serber3? coupling
scheme instead of the YK coupling scheme described
above. The 2v —2 spin operators of the Serber coupling
scheme are the v geminal spin operators

§£’1:c=(arl+aa)2 4=2,4,.. -2V (Alvza)
and the v -2 intermediate operators
) q
« 2. .
s';’,,,:(Z&,,) q4=4,6,...,2v-2 . (AL. 2b)
=i

Any Serber function is uniquely characterized by the
genealogy symbol % of the corresponding spin quantum
numbers

(Al.2¢)

k=(S1,2 53,40 S1,4 S5,60 S1,6 - « +» Sou-1,20)
2v

which again can be identified by numbers &= 1,...,5%.
The geminal spin functions are given by (¢=2,4, ..., 2v)

%0ala~1,0)= grlal - D8le) - Bla - Valg)] (AL 3a)
01,1(g =1, g)=a(g - a(q) (Al. 3b)
Orla~1,0)= 7ol - D8@) + Blg-Dalg)]  (AL.30)
oi,;l(q -1, 9)=pglqg - 1)8(q) (AL.3d)

The 2v-electron Serber functions are constructed then
by means of
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eg»ﬂ.kz ;(SMIS'M' _qua-l,cMa)
q

Xe'sr'z,u'-uq,w 05 gt ariq * ' (Al1.4)
The coefficients in (Al. 4) are the Wigner®: coefficients
which guarantee the functions 6§ , , to be orthonormal.
The g-particle genealogy symbol % is obtained recur-
sively from the (q — 2)-particle symbol %’ accordmg to
r=(r',S',8

In every coupling step there are four possibilities to

obtain the spin S of g electrons from the spin S’ of g — 2
electrons. These possibilities are illustrated in Fig. 2.
In a Serber “branching diagram” presented in Fig. 3
every Serber function is characterized by a certain cou-
pling route from the point (0, 0) to (2v, S). '

c—l.c)

D. Serber representation

The Serber representation $* is adapted to the se-
quence of subgroups $2®1' D™ >...D5? and to the
geminal two-electron subgroups.

For the calculation of the representation matrices
several possibilities exist. On the basis of group theo-
retical arguments Salmon®’ showed how one can deter-
mine Serber functions and matrices nonrecursively.,
Salmon et al. % presented an algorithm for the numeri-
cal computation of the Serber functions while Paldus and
Wormer® derived formulas for the Serber representa-
tion matrices of the transpositions. One can obtain the
Serber functions also by means of an orthogonal trans-
formation from the YK functions es .k

Of, ur= ; S VA0S, ui (A1.5)
and the Serber matrices by the corresponding similarity
transformation from the Young matrices. This method
allows to take advantage of the simple construction of
the YK “standard” representation. Kaplan!’ derived the
transformation matrices A;, from Young diagrams.
Horie® provided a recursive method for the construc-
tion of As, (see also Klein et al. > for a further group-
theoretical derivation). Recently Wilson &1 developed a
simple graphical method for the determination of the
transformation matrices. In our calculations we have
employed the Horie algorithm for the construction of the
Serber matrices.

w Lo

q-2
§'=5-1

FIG. 2. Representation of the four coupling routes in the Ser-
ber scheme which lead from a spin S’ for ¢~2 electrons to a
spin § for ¢ electrons.
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) / X X
| /XXX
X ><><><><

FIG. 3. Serber branching diagram: Every Serber function
©% 4, of the irreducible representation [v+S, v —5] is charac-
terized by a particular route & connecting the point (0, 0) in
this diagram with the point (2v, S).: At each intersection (2v, S)
is given the number f zs" of different routes from (0, 0) to (2v, S).

We will now consider the properties of the Serber
functions in more detail and define several distinguished
subgroups of the symmetrlc group S%.

E. Algeliraié structure of Serber functions and
distinguished subgroups of $%

According to (Al.3) and (Al, 4) the Serber functions
are given by

¥ un= Z th.. 05, 01°°
oy o0y

The 2v-fold tensor products oy «  * 0y, of one-particle
spin functions o in (Al. 6) form an orthonormal basis in
the Zv-particle spin space. The matrix of coupling co-
efficients S kT°1"'°z defines an orthogonal transforma-
tion in the 2p-particle spin space. The orthogonality
conditions for T read '

$ 0y . (Al. 6)

E As'}:TUI'Ongv Sty M Tqio-'02y=6s’s'6”’”' Ok'k' . (AI. 7) )

of°ee0yy

T is called “reducing transformation” as it “reduces”

. the tensorial set of products oy <+ 0,, to a tensorial set

of eigenfunctions of 8 (see Ref. 62 and Sec. ).

Let P° denote the unitary operator which affects the
permutation p™! € S of the spin functions in the tensor
product oy« * - 0y,

(A1.8)

The operators P° span an operator representation 5% of
the permutation group $*. As is well known!’ the op-
erators P permuting the one particle functions act in-
versely to the permutation operators P° defined in Sec.
I acting on the coordinates

Y o oo - ! oo
Pooy 03, =0p11)° " Oplay) -
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Pooyer-a,(1,...,2v) 7
=P Loy e 0p(1,...,20) .

Therefore, according to (1.20), the Serber representa-
tion for the operators P° is given by
¥

F“ezs”.u.k’—“; ViZ (e ..,

(Al1.9)

(A1.10)

The fact that the Serber functions span a representation

of $% is due to the permutational symmetry of the reduc-

ing transformation T for which one obtains from (Al. 10)
b4

SoMt - S2w(r-1y SoM
"T"»(i)"“’p(zv)_gy"' ™ ’T"x"'“z-:

Up to now the special geminal structure of the Serber
coupling scheme has not yet been considered so that the
above statements are valid for all types of orthonormal
spin functions. In order to account for the geminal
structure we express the Serber functions [equivalently
to (Al.6)] as linear combinations of v-fold tensor prod-
ucts of geminal spin functions (Al.3)

e.zsv.u.»= Z

”"vo-;”v

(Al1.11)

S";G,,t...,,pesi,,,i **t 0,4, - (AL.12)
The unitary operators P°, which cause a permutation p-!
€S of the spin geminals in the Serber function (Al.12),

-form an operator representation 5” of the subgroup S”
CS% where the elements p€S” are embedded into the
group S¥ as follows: Let S¥(S%) be the subgroup of $?
which permutes only the objects with odd (even) indices
among the 2v objects ay, ay, ..., a,,. Then the neighbor

* transpositions of S, from whlch all permutations can

" be created, are embedded into $% according to (=1,
2,...,v=-1)

(p,p+1)es’—(2p-1,2p+1)€S2CS?  (Al.13a)

(A1.13b)

Equation (A1 13) defines an. isomorphism between the
direct product S*x S” and the subgroup S’ xS of S*

(Al.14a)

We will therefore identify the eleinents of these two
groups from now on, i.e.,

(b, D) =P, -

The “diagonal” elements (p, p) form a subgroup [S¥ x %],
of 8 x S” which is isomorphic to S such that we can
identify also the elements of these two groups, i.e.,

(,p)=p . (Al1.152)

Apparently (Al,152a) by virtue of (Al.14) and (Al.13) de-
fines the embedding of S” into S* which we wanted to
construct. This yields the identity for the corresponding
permutation operators

PP={P, Py. (Al.15b)

Beside the subgroups §*CS” x S”C $% defined above the
Serber coupling scheme distinguishes the geminal sub-
groups Si, p=1,. , v, entailing the intrageminal trans-
positions (2p —1,2p) € S%.

(h,p+1)€8”—~(2u,2p +2)eSLCSY ,

(b, p) €S* % "~ p, p, € Sy X S,CTS™ .

(Al. 14b)
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Based on a further analysis of the Serber functions we

© will show now that the Serber matrices assume a par-

ticularly simple structure and exhibit useful symmetry
properties for the subgroups mentioned above. " )

F. The ”t-type" of the Serber functions

In order to investigate the properties of the repre-
sentation matrices of the subgroup S” of spin geminal
permutations we consider first the special way in which
the singlet geminals (Al.3a) enter a Serber function.

According to (A1, 4) the singlet geminals appear in a
Serber function simply as scalar factors. The number
of such singlet spin geminals in a Serber function 6%,
for given v and S depends only on k. We denote this
number by n(k) which obeys

nk)=v-§.

If $>0, n(k) can assume all values between 0 and v -S.

(Al.16)

For S=0 holds the additional condition n{k) #v —1. - The
number of possible values for x(k) is given by
| {n(®)| v,S}| =min(v +1 -5, v) . (A1.17)
In the set of Serber functions
clu=10%usle=1,...,7%}, (A1.18)
n(k) defines an equivalence relation '
e?.u.k % O o = nlB)=n(k') . (A1,19)

Wesay 0%, is in the class €% ,(n), if n(k)=n.

Now consider a glven class C ,,(n) of Serber func-

.- tions. Omitting the » smglet gemmals in the functions

of €% ,(n) one can construct a set of 2(v —n) particle
functmns The new spin functions eﬁ"’,;",{ are in the class
€i%%0), i.e., they contain only triplet spin geminals.

The class €1%;"(0) contains P’ (v -=n,S) elements,
where

P'(v-n,8)=P(v-nS)-Plv-n,5+3). (Al1.20a) .
Here P(N, S) is defined by
min(N-5,8-1) [N-1 K
P(N,S)= e\ \ek—v-s) (A1.20b)
with
, (%(N -5) for N-S even
1N, 5)= }é(NH _S) for N-S odd (AL.20c)

The distribution P’(v -, S) can be determined from the
branching diagram in Fig. 4 as the number of different
coupling routes from (0, 0) to (v —»,S). Every element
in €4%™(0) is characterized by a genealogy symbol
labeling the routes in Fig. 4. As the geminal spin func-
tiens are of triplet type, & is solely determined by the

v —n -2 spin quantum numbers of the intermediate spin
operators (Al.2b)

__k_= (81.4} St,69 0405 81.20'-7')'2) .

We call k the “triplet sbin coupling type” or simply “t-
type” of the Serber function from which it is derived.

(Al1.21)
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N /><
N P'{v-n,S) /><><

JXXX

2 26—

/><><><>< |
A8

T T 1 ] T T T

0 1 2 3 4 5 6

FIG. 4. Branching diagram representing the {viplet spin
coupling voutes k of the Serber functions ezs"',;";, At each inter-
section (v —#,S) is given the number P’ (v —n, $) [ef. Eq.
(Al.20)] of different triplet coupling routes (0, 0) to (v —n, S).
The singlet coupling steps in Figs. 2 and 3 are neither repre-
sented nor counted. :

v-n

The t-types define the equlvalence relation in the class
c?,u(")

n(B)=n(k') = (0%, E0¥,,, = k=k]. (Al.22)

According to (Al.21) the relationships (Al.22) and
(A1.19) can be summarized by the statement that the

triplet spm coupling types % induce a disjoint decomp051- _

tion of the set of Serber functions (A1 18) into equlva-
lence classes. These classes will be denoted by c (k)
Obv1ously each of these classes contains ¢) elements
and every class €% ,(n) contains P (v ~ n, S) classes

€% 4(k). For given v and S there aref classes C¥ (k)

=}jp'(a -n,5) .  (Al.23)
ns0

The dimension f¥ of the representation [V +S, v —S] is

[cf. (1.16)]

v-S [V

=2

n=0

P'(v-mnS). (A1.24)

The number f%,. of different triplet spin coupling types
k is much smaller than the dimension of the representa-
tion if 2v>4 and S<v. This is illustrated by a compari-
son of Figs. 3 and 5 the latter showmg a branching di-
agram for f%,.

Definition: The Serber function 6%, , of C¥, (k)

e.zsv.u.ko =(80,0" ©3%i2 (Al.25)

is called the representative of the class C¥,, (k).

One can express every Serber function of {-type & by
the representative of the corresponding class. This
possibility is explo1ted in Sec. IV for an effective reduc-
tion of the dimension f of the representation [v +35,

v —S] to the number f%, of different {-types.

- position of the geminal permuting group 5.
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G. ‘‘t-type” preserving permutations and their
representation matrices

To each class c";”. ”(E) corresponds a unique decom-
Let 5" be
the subgroup permuting the singlet geminals 9}, *++ 8} in
the representative (Al.25) of the class and 5" the sub-
group permuting the triplet geminals 67*1 -+ 6%, Let
furthermore T(k,) CS” be a set of (*) nonequivalent gen-
erators of the left cosets of the subgroup §" xS$*"C S
such that

5 = T(ky) x 3" x5 . (Al.26)

Then the elements of T(k,) are the () permutation opera-
tors 119 € S” which intercalate the singlet and triplet
geminals of the representative (Al, 25) without changing
their respective relative order. As the singlet geminals
enter Serber functions simply as scalar factors, Tr,’; ‘
yields another function 6%, , of the class. The corre-
spondence between the elements of the class and the
permutation operators of T(ko) is umque According to
(A1.15) we have therefore ' '

ezstu,h = (TT};, m)° esv,u,lzo . (A1.27)

- Consequently the representation matrix of the corre-

sponding permutation (73}, 71,,‘) of T(ko) x T(ko) Cs? isg
simply

Viemt, ;) =0, , z=1,‘.4.., g”. (A1.28)

H. The representation matnces of the geminal

“subgroups S?

'As mentioned abox}e the Serber representation is fully

. reduced with respect to the geminal subgroups Si of the

intrageminal transpositions (2u -1,2u), p=1,...,v
There are only two irreducible representations of S%,
both one dimensional. These are the totally symmetric
representation originating from the geminal triplet spin
functions corresponding to S, 4,5, =1 and the totally
antisymmetric representation originating from the sin-

(3]
]
—
(o]

o

Xl

4 A | fSZTV » 1§5

s’
T
~
w

9—24—64

X

0 2 4 6. 8 10 12 2v

FIG..5. Branching diagrarn representing the % & lef. Eq
(Al. 23)] different classes C M (&) of Serber functions es Mk
of ¢~type k. ’
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glet spin function corresponding to Sy,.,5, =0. Thus,
the representation matrices of all intrageminal permuta-
tions are diagonal:

Ve (20 = 1,2p) =€(k, 1)5,, (Al.292)
with
+1 if Sy,.4,,=1
e(k, p)= . Al,29b
g (-1 i Syuq,0.=0. ( )

In the following we will show that this simple struc-
ture of the representation of the intrageminal permuta-
tions is the basis of an important symmetry property of
the representation matrices of the subgroup S” x S”.

I. The “even-odd” stmetry of the subduced.
representation of S X S¥

Theorem Al.1l: The Serber representation matrices
of the subgroup S*xS” (Al. 14) of S have the property

Vi, p)=alk, YWV G, p) (Al.30a)
with

ok, B)==x1. (A1. 30b)
The signs a(k, k') are given by

a(k, k') =a(k)a(r') , (A1.30c)

where a (k) and a (k') are the parities of the Serber
functions ezs" u,» and es PR respectlvely, with respect
to a reference Serber function 6% u,xg the parity a (k)
of which is set

ao(ko) =1, (A1, 3‘0d)> .

The proof of this theorem will be given further below.
According to Theorem Al.1 one can obtain the parities
(k) of the f% Serber functions ©%,, , with respect to
the reference function 62, i,k 10 the following way: Let
(p, p) be a permutation of S"xS"CSz" for which the ma-
trix element V32(p, p) does not vanish. Then Ve, p)
is also different from zero and the parity o (%) is

a (k) =ViZ(p, B)/ Vi (B, p) . (AL.31)

The parity of a Serber function is “¢-type invariant, ”
, the parities of the functions in a given class
Cg" M(k) are identical. To show this let 6%, , with
parity a,(1,) be the representative of the class c¥ (1),
let ©%, , with parity a(I) be another element of th1s
class and let V“"(p, p) be a nonvanishing matrix element.
Then from (Al. 28)

Vi, B)=2 Vi (b, IV, 731

' koto(P"t s b7t (A1.32)

Obviously this relation also holds for the matrix element
of the permutation (p, p) such that the quotients a(I) and
(1) of these matrix elements are identical.

. The “even-odd” symmetry property of the Serber ,
representation of the subgroup S* xS” stated by Theorem
Al.1 implies that the representation matrix of (p, 5),
with p(p) a permutation of the odd (even) indices, up to
signs is equal to the representatlon matrix of (p, p).

The signs are determined by the f parities of the ¢-
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type representatives. Thus the.\(v!)2 representation ma-
trices of the subgroup S*x S” can be generated readily
from a much smaller subset of 3v!(v! + 1) representa-
tion matrices and from f%, parities. As a result
Theorem Al.1 provides a prescrlptlon for the “even-

. odd symmetrical” storage of the representation of the
subgroup S* X S* CS%,

The proof of Theorem Al.1 is based on two auxiliary
theorems:

Theovem Al.2: If the representation matrix element
VS(2p, 21 + 1) of the intergeminal transposition (2,
2p1.+1) between the pth and the (u + 1)th geminal pair
does not vanish for a given pair of Serber functions
0% ., and 6%, .., then the product

a(k, k', p)=elk, u)e(k', plelk, p +1)e(r’, u +1)

(AlL. 33)

of the elements of the representation matrices (Al.29)
of the corresponding intrageminal transpositions is in-
dependent of u:

[Vsz"(ZI.L, 2u+1)#0 =

a(ky k'y ‘-"):a(k’ k,)] ’ F,":lv-”yy . (A1-34)
Proof: Suppose for a certain gye{l,...,v}and a
given pair of Serber functions we have ,
V2 (21, 20 +1) 20 . (A1, 35)

From the orthogonality of the spin geminals (Al. 3) for
the genealogies % and k' follows then

for p.>p.0+1 and <y
(A1, 36a)

szu-t.zu "‘s2u-!.2u

or by virtue of (A1.29)
elb,w)=e(r’,p) for p&{ugpe+1}. (A1.36)

Suppose now that there is a ppe {o Such that We also have

Vi (2uy, 2y +1)#0 . (A1.37)
Then we obtain similarly
Spu-1,20=S2u-t,0u . fOr p>p+1 and p<py
‘ (A1, 38a)
e(k, p)=e(k’,p) for p&{p,p,+1}. (A1, 38Db)

There are now two possibilities:

(i) For By # Mo+l we get immediately from (Al. 36)
and (Al. 38)

ek, p)=e(®’, p) (Al.39)
According to (Al.29b) and (Al.33) we obtain for every p

alk, &, p) =1 | (AL. 40)
such that (Al.34) is valid.

(if) For py=p,+1 we may consider without loss of
generality puy=p,+1. Then by virtue of (Al.36) and
(Al1.38) ' ’

p=1,...,v.

_ elbyp)=e(R’,p) for p#upy+1 (Al,41)
and we conclude from (Al.29b) and (Al.33)
a(ky k’r ”0)=a(k: k,: p’l) . (Al- 42)
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Theorem Al.3: Let the genealogy symbols &, &/, k'’
denote three Serber functions for which the product

Ved(2p,2p +1)VER, (21, 20 +1) - . (Al.43)
of the elements of the representation matrices of two

intergeininai transpositions does not vanish. Then the
product a(k, k') a(k’, '’) is independent of %’ and

a(k, k'Y =alk, k)a(k', k') . (A1, 44)

The proof of this property is based on similar and
equally simple considerations like the proof of the fore-
going theorem and can be found in Ref. 30.

We can now easily prove Theorem Al.1.
be one of the % Serber functions. Then

(k) =alky, k) (A1, 45)

defines a functional, which attaches to every Serber
function 9";" u,x @ number a(k)=x1. We call ak) the
parity of 6% s u,. With respect to the reference function

Let 0%, , ,

©%, 4, Because of Theorem Al.3 we have
alk, B ) =a(R)aykr’) . (Al. 46)
-Theorem Al.2 is equivalent to the identity
le(®, pe (', pe(k, p +)e(®’, b +1) - alk, k)]
XVEZ(2p, 20 +1)=0 . (Al.47a)

This expression according to (Al.29a) is equivalent to

ViR(2u -1,2p+1)= alk, B)Ved(2u,2 +2)  (Al.47)

from which we obtain through (Al 13) and (Al 14)

kaz' [(IJ-, 73 + 1)3 ]

=a(k, B )ViZle, (b, n+1)]. (Al.47c)
By virtue of (Al.46) and (Al.47) one can show that
(A1.30a) holds for any pair of neighbor transpositions
[, 1 +1), (0, A +1)] of S*xS”. But since one can repre-
sent every permutation of $* X S” as a product of such
transpositions one concludes further using again (Al. 46)
[or equivalently (Al.44)] that (A1.30a) is true for all
permutations of the subgroup S* xS".

APPENDIX 11:
HAMILTONIAN

In this Appendix we will prove Eq. (4.8) for the opera-
tors A, belonging to the classes (4.5g) and (4. 5h). For
this purpose some commutator identities will be needed.

COMMUTATORS OF THE

Arbitrary operators H, S satisfy \

 [HyHy, S)= [y, (#y, ST+ 8y, ST, + [Hy, Sy . (42.1)

In case [H;,S]=0 one has
[Hy Hy, S]=H,[H,,S] .

If a set of operators H; (i=1,2, ...

ally commuting operators S, (v=1, 2,

tion relations of the form
[Hhsv]zcwsiv (A'Z'3a)

where the coefficients c,, are scalar factors and the
operators S;, commute with S,, then

(A2.2)

) and a set of mutu-
. ..) have commuta-
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v v
[H,,515;++ 5,]= 2 e, S, ] s, (A2, 3b)
© ou=i (5t
L3N
)4 14
[H;, [H;,8,S;+++8,]]= Zh: CiuCpSiuSp H Sy
“x’:ul x:;i,l
(A2.3c)

v v
+Z C‘u[Hh Stu]nsn .
o B

Commutators of the operators (4.5g) with IP's of
single excitations

The commutators of the particle and hole shift opera-
tors collected in (4. 5g) with single excitation operators
are

1 _—
(P2, 5™ )= o 48" (A2. 4a)
N 1 )
["0H, 545 ] = — 6, SHHS™H (A2. 4b)
- These commutators are of the form {A2.3a). Since,

furthermore, all single excitation operators S'¥g*¥
commute with each other, one can calculate the com-
mutators of the operators “°H,’ and "’p;! with v-fold
products of spin-coupled single excitation operators ac-
cording to (A2.3b) and (A2.3c). The AIP’s S'¥B? (3.13).
in the Serber coupling scheme are linear combmatlons
of such v-fold products .

-, I, toun T o

Myosel,

S, Mpv
'ka

(A2. 5)

Furthermore, the commutators (A2. 4) do not affect the

- spins (S,, M,) but only the orbital configurations (I, 4,)

of the single excitations changing one of the orbital in-
dices. By virtue of (A2.3b) one obtains

[%opym s» MB]_ﬁZa", SMBi(m,1,),  (A2.6a)

the AIP $*4B*(m, 1,) given by (4.12). Similarly one finds
for the commutator of the hole shift operator

1 d
75';5::,:“

Since single excitation operators commute with each
other one can calculate using Eq. (A2.2) the commuta-
tors of the AIP’s (A2.5) with the operator products
00g*H 0.0psm and 010544 00ps of (4, 5g). Multiplying
(A2.6) by a. *05*" one obtains [cf. (4.9)]

S Bon(li, (m, 1,)) ="'s*" S:4pi(m, 1,)

S4Bl (,3,) ="' $4B3(j,4,) . (A2. )

According to (A2.1) the commutator of the AIP’s
(A2.5) with the binary products of the operators *°p:}
and °'°H;’ acting on the Fermi vacuum is given by the
double commutator (A2. 3c) since the latter operators
annihilate the Fermi vacuum. One obtains

[Pt [™0m;, S 4B:]]
1 14

==3 2 Bur,nn S4B, (o))

("5, 54B)]= - S%B)(j,4,) . (A2.6b)

(A2.7a)

 (a2.8)
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[O.OP;‘ﬂ [0 OPJ-I SoM u]]

{gl 67'!' 1u60- Iy S'A:B;((ls lu)’ (ny lx))

v
+ Zi Sm,1, 00,15 4B (n, lu)} : (A2.9a)
"

(e, (>m, $4B}]]

1{y i s A
= 5{ 2 04,0, 801, S4B, 3,), (2, 30)
u.’;;i
73

+2151.¢“ 5,1°"4B)( g, i“)} . (A2.9b)
=

This proves (4, 8) for all operators of the class (4. 5g).

Commutators of the operators (4.5h) with IP’s of
single excitations

Let Z*CS” be the set of u cycles
={12:-- wyes’|p=1,2,...,v}. (A2.10)

We can identify each of these p cycles with the integer
. - The signature e(p) of these u cycles is

e(p)=(-1)»1,

The permutation (7, 4,7, ¢, *"
(1’17’2 eee ry) is glven by

(A2.11)

* 7, ) Of a configuration

Yy ) k=1
Te)= 7t 1j<"_57_}1 . (a2.12)
7. R<K=V

=1

E( 1)"-1[P0:Pu {Z( l)l-i[h(bhx] Pfhi

+(- 1)“'1[ho, KL pihi - -

+ Z (- - 11k, h»].Pfhx cee Pu-thu-iﬂu ahy oo th).-xl’mhm

Asp+f

Application of (A2.11), (A2.12), (2.5), and of the identity

U E AN L S R )

completes the proof.

B NRUNRY N RLEE W MY ML M MRRALE M

Separation of the first pk pair in the v-fold product
(3. 6) of particle and hole creators (3.7) from the re- .
maining ph pairs according to '

A =pihi A 0 (A2.13)
leads to the relation
(o Bos A5T1 | 0D

=2 e, N, VAL (g oy BiRIT [0

itsd

| (A2.142)
where
T, YA [0 o, By 11}
v .
= g?l(x)’-‘;(x)[’;oio» bhairay] - (A2.14b)

To show this we note that one obtains from (A2.1) and
Wick’s theorem (omitting the “~” for the sake of sim-

plicity)
[hOPO’A ]I lo»

—Z[Pos D)o, pihi -+ - poiliehy Pl -+ B)| O
A permutation of the first u ~1 ph creators yields
v
2 (=150, P11,
uai B}

X[k, B 53+ g st B+ BE1] 10D

- Applying Wick’s theorem again and permutmg the first

A= 1 hp creators yields

+*

) MRUMRY MR MPELER 4

:}l 0y .

Decomposing the permutatlon operator P 5% into a product of P~ and P", actmg separately on the space and spin
part of an AIP (3.13), respectively, one obtains from (Al.10)

-1suB Zsz"(p)P" suB

(A2. 15)

Representation of the Serber-coupled AIP’s (3.13) in terms of IP’s of single excitations accordmg to (A2.5) ylelds

by virtue of (A2.14a) and (A2.15)

[0S, S ¥B;]| I0>>=2,3§<<u, NVER (G, W0 2o

Mieoo M,

The commutator in the last term is found to beb
[°'°S,,,,, s'”s"’}I |0»=5s.05m,15:,1 I IO)) .

. 4 ’ . . N
s'k"lDMr"Mu !;1[ Sx'”xSf'.n‘x[“-"s,,,,, spMis ]| (o))

(A2.16)

(A2.17)

Therefore, only those terms contribute in (A2, 16) to the sum over %' for which the genealogy symbol &’ (Al.2) con-

tains a first geminal pair of singlet character."
and zero otherwise. If 7(k’)=1 one has

The functional 7(k’) defined by (4.15b) is equal to one in this case,

J. Chem. Phys., Vol. 72, No. 6, 15 March 1980



3574 E P. Tavan and K. Schulten: An efficient approach to Cl

S'MBJ‘ 0.08*3“1 S-”[l cos 1;1;] .

(A2.18)

From (1.21), (A2.12), (A2.14b), and (A2. 16)7-(A2. 18) one concludes

[o,osjm’ s";B;]l ‘0»: uz; HE Ui, A)T(k')bm,,uﬁ,,,x .s';.‘[z; @b

+ ¥
lu, (u)"l(u)] .

Multiplication with *%*" and application of relations (A2.18), (A2.12), (2.31), and (4.12) yields

0y Osﬂi [0, OSJ s
. m

S4Bl | o =2 481,801, E USR (u, V(R N SEBII, 1), G, i) [0 .

In order to represent the v-fold excitation operators S/¥B; by their ¢-type representatives S, "+;By one makes use of

the relations (cf. Appendix IG)
e R
.s’,,’fB _(w,,,,ﬂ,,,) s
and

kok (T’k' [y TpA)= Vfr%:’(u, A)

where the ¢-type preserving permutations are the elements of the set T{(k;)CS" (Al. 26).

005t {00, S+ 4B;]| | o)
ey
= Zam, E3 7Y Z Z

ko1 7, €T (kg)

(A2.19) proves (4.8) for the operators of the class (4.5h).

APPENDIX 111: PROOF OF THE MATRIX ELEMENT '
FORMULA (4.39%) '

We assume that condltlon (4.34e) holds 1 e.

—-wLom={g,, 1} (A3 1)
and
1=J ’ \ (A3.2)
such that '
-MNL) ={m,, m,z} . - (A3.3)

We will consider one by one the various terms Int) [ef.
(4.26)] in the expansion (4.11d). These terms give a
nonvanishing contribution only if condition (4.33) is
valid for the corresponding orbital index sets, i.e., if
{M,J} and {L(n¢), ing)} are identical.

For the term ]01)
{m,J}={L(01),i(01)}.

Proof: The assumption L(Ol) M leads to a contra-
diction because of

{1, L} =L -(LAM)=L(01) —(C(O)NM)=F ,
where (A3.1) and (4. 29a) have been used.

(A3.4)

Similarly one may show that all the other terms 102)
—104) and 1086) cannot give a contribution to the matrix
element.

For |05)
(4. 33)“"[{1»1 luz} {lu’lx}

and (A3.5)

{m,i, m,2}={n, 3. ’

kok (ﬂk:[J., TTk:A)T(k )(ﬂk' Ky ﬂk')’)'-i S’I;B;((l, lu)) (i; ih)) ] | 0)) .

This yields the final result

(A2.19)

\

Proof: Because of (A3.2) and (4. 29e)
(4.33)=L(05)=M ,

, the asserted equlvalence has to be proved for the

’ latter condition.

“~”: From the assumption {I, " L,4=1{l., b} we obtain
accordmg to (4.29¢)

E(05) = (L~ DU B=(L — (L~ (LMY U, 3
= (L n M) U {'I’l, l}= (M - {mpiy mpz}) Y {n’ l}

such that {m,, m,,}=1{n, I} = L(05)=M.
“~”. From the assumption M = L(05) one obtains
flup b=t -CnM=L-LN(L-{1,, LU, 1)
=L -((L={1,, LHU WL Nfn, 1)
={,, bt - 1, n}nfn, H fr,, 1}
={l,, Lt=1{, 4}

Similarly one may prove the second part of the proposi-
tion, .

For the matrix element expansmn we obtain now from
(4 11le)

<S.MB IH,S’”B*) '

=22, lnlx)(s'”B’ SB((1,1,), (n, L))

uld 1,n

(A3.6)
where only those terms do not vanish for which condi--
tion (A3.5) holds.

We consider first the reduction of the summation in-
duced by the condition {l, n}={m,,, m,,}. If m, =m, then
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Z(zz | ) 4By | S ¥ B, 1,), (n, BN = (m,, L, | m, XS 2B, s'"B*«m,l,z ), (myy, 1))

If m,, #m,, then one obtams up to a factor 3

4B | A1 4B = £m, , m,) 2 Aom L [y BB | S4B myys 1,), (g, T

oy Ly LB, S4B, 1,), (myy BV

%{(m,,ll.,lm,zlxxs',{{B’ SuBm,, 1), (m,,z, W +(m,,1 lm,,ilx)(s 2B, ls',fé’B‘((m,Z,l ), (my, LIN}

the same result.

(A3.7)

Using the function ¢ [cf. (4.37)] one finds

(A3.8)

Next we consider the reduction of the summation induced by the.condition {I,, h}={1,,, luz} It 1,,=1,, the sum-

mation index sets [u,] and [u,] (4. 38a) are identical: [u,]=[u,]

(mplluil mt’zl#z) = (mﬂz \uz Imptlul)
and

s.':B;((m‘,l, l,,i), (mpz, l"'z)) - s'}sz;((sz’ luz), (m,l, l“l))
émd assuming without loss of generality p,< uz we find

SyMp+
(S4B

+(m,,1 u1|m,,11 ) 22 (supys

u€lugl lE[uz]

If l,,#1,, the summation index sets [ui] and [p,] are disjoint.

”ﬁ's';;B:)=£(m’x’m”z){(mﬂ1lu1lm luz) Z Z (s,::B‘

velunql he[uz

{;11, o). Using the symmetry properties
(A3.9)
(A3.10)
s'k:B;((mpi, lu), (mpz, lx)))
wBo(m ), 1,), (m, l).)))} . (a3.11)

Thus the condltlon {1, b}= {z“, . holds for all

[.L1 and A€ [uz] and the matrix element expression reduces, up to a factor %, to the expressmn above. This is

obv1ous if p<xfor all pe[p,] and X& [u,].
(A3.9) and (A3.10). Introduction of a factor’ g(z,,l,
(4. 39).
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