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A method is derived to evaluate the fluorescence intensity which is observed in photobleaching experiments involving a
time-independent sin*kx grating. This grating corresponds to a local (position x) rate constant rsin’kx of photobleaching.
Application of the method demonstrates how such experiments can yield information on lateral diffusion in artificial and
biological membranes. A simple analytical approximation for the fluorescence intensity which holds for a time period less than

10/r is provided.

1. Introduction

Much information on the transport of biological
materials has come from the photobleaching method,
often referred to as fluorescence microphotolysis (FM)
or fluorescence recovery after photobleaching (FRAP)
[1-6] . This method has served to monitor lateral dif-
fusion of lipids and proteins in artificial [7—9] and
cellular [1,3,7,10] membranes as well as transport
across membranes [10] .

To apply the photobleaching method the material
of interest (membrane protein or lipid) is labelled by
suitable fluorescent dyes. The dyes have the property
that radiation produces fluorescence as well as a photo-
reaction resulting in a non-fluorescent product. The
photobleaching method employs irradiation beams of
various geometries and intensities. The observable is
the total fluorescence of the irradiated dyes. The spa-
tial inhomogeneity (geometry) of the irradiation beam
induces a dependence on the lateral diffusion. How-
ever, to obtain information on the lateral diffusion
from the time-dependence of this observable one
needs to solve a reaction—diffusion equation that con-
nects lateral diffusion, photobleaching and fluores-
cence. In this Letter we provide the necessary solution
for the case of lateral diffusion of a dye-labelled mate-
rial in a membrane probed by light with the intensity
profile 7 sinZkx. Such an intensity pattern can be pro-
duced by fluorescence excitation in the membrane
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plane with total internal reflexion [11,12].

The apparatus for this method is described in ref.
(12] . It involves a membrane mounted on a fixed
stage. Into the membrane plane are coupled by means
of a pair of prisms the splitted beams of a laser light
source. The beams are guided along the plane by total
internal reflection. In the area of intersection of the
focused beams the sin%kx intensity pattern is gener-
ated holographically with a periodicity of 2—10 um
depending on the in-plane angle between the two
beams.

In the conventional application of the photobleach-
ing method [5] a very high initial intensity of the laser
light is chosen to produce a spatially periodic pertur-
bation of the concentration of the dye. The equilibra-
tion of this concentration profile is then monitored by
means of a second laser beam with the same spatial pe-
riodicity (grating). The intensity of this beam is low to
avoid bleaching. In the following we consider a variant
of this method in which a single time-independent
light intensity is chosen. The advantage of this observa-
tion, termed continuous fluorescence microphotolysis,
has been discussed and demonstrated experimentally
[71.

The reason why continuous fluorescence micropho-
tolysis is most suitable for the method of total inter-
nal reflexion interference photobleaching is due to the
difficulty connected with the holographic generation
of the sin2kx intensity pattern. The stability of this
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pattern over the length scale of the wavelength of the
light is technically very difficult. In this respect it is
advantageous if a perturbation of the holographic pat-
tern due to the switching of the light intensities can be
avoided [13].

2. Reaction—diffusion description of the experiment

The relevant property of the dye-labelled material
in the photobleaching experiment is their time-depen-
dent concentration profile p(x, ¢). This quantity is
governed by the reaction—diffusion equation

3, p(x, 0= (Dai —r sinzkx) plx,t) (1a)
subject to the initial condition
plx,t=0)=1. (1b)

The fluorescence signal which we seek to evaluate as
the observable of the photobleaching experiment is

A
S(H)=N f dx sin’kx p(x, 1), (2a)
0

where A = 7/k and N is the normalization constant de-
fined through the initial value
St=0)=1. (2b)

The solution is periodic with spatial period X, a prop-
erty which follows from the identity sinZkx

= % [1 — cos(2kx)] . The solution should reach its
maximum value at x = 0 since at this position the light
intensity vanishes and, therefore, no bleaching occurs.
Hence, the solution obeys the boundary condition

axp(x,t)= 0, x=0,A. 3)

One can expand this solution in the Fourier series
plx, 1) = EO A1) cos(2nkx). @
n=

The expansion coefficients 4,, are determined through
(1a) and (1b). Inserting (4) into (1a) yields after some
algebra exploiting the orthogonality properties of
cos(2nkx) over the interval [0,A]

3,4y =r'(4, - 24,), (52)

0,4, =-D'A, +r'24, - 24, +4)), (5b)
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9,4 = —nzD'An +rd, _

[ ]

~24, +4

1 n+1)’

n=2,3,.., (5¢)

where r' = }r and D' = 4Dk2. The initial condition
(1b) corresponds to

4,t=0)=5,, (5d)
and the observable (2a), (2b) is
S@ =441 -34,0. (5¢)

Egs. (5a)—(5c¢) may be cast into the vector representa-
tion

3,A=LA, (56)

where A represents the vector with components 4,
and L represents the linear operator on the rhs of (5a)

—(5¢).

3. Limits of fast and slow diffusion

The evolution equation (5) identifies two relevant
rate constants which govern the dynamics of the pho-
tobleaching experiment under consideration: the rate
constant 7' of photobleaching and the rate constant D’
of diffusional relaxation over the interval [0,A]. In
case D' > r' the dye-labelled material diffuses so fast
that the photobleaching process cannot produce any
gradients in the concentration profile. In this case

S(t) = exp(— 3rt). (6)

In the opposite case D' <’ the mobility of the dye-
labelled material can be neglected and the observable
is
A
S®O=N f dx sinZkx exp(—rt sinzkx). (7a)
0

At very long times t > 1/D’ one expects, however, a
deviation from this time dependence. Expression (7a)
can be related to an integral representation of the
modified Bessel functions /,,(z) and one can derive
(14]

S(2) = exp(— 3rO) I 3r1) — 1,(3D)]. (7b)
The asymptotic behaviour of this function is [14]

S@O=@ry 2(Em 320352, (10

231



Fluorescence Intensity S(t) Fluorescence Intensity S(t)

Fluorescence Intensity S(t)

1.0

0.8

0.6

0.4

0.2

0.0

0.

Dl

It

05r

Time * r

Time * r

Time % r

Fig. 1. Comparison of the fluorescence intensity S(¢) calculated according to eqgs. (8) and (9) (—) with the intensity for fast
(=~ -) and slow (. . .) diffusion; (a) for D' = 5r, (b) for D' = 0.5r, (c) for D' = 0.05r.
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which demonstrates that the observable decays asymp-
totically more slowly in the case of slow diffusion than
in the case of fast diffusion. This behaviour originates
from the slow bleaching of dyes in the vicinity of x
= 0 where bleaching is slow.

At short times the functional behaviour of (7b) is
[14]

SH=1 —4rt+O(( srt) ) (7d)

This demonstrates that the initial decay of the observ-
able S(2) is faster in the slow-diffusion limit (slope

r) than in the limit of fast-diffusion (slope — r)
The limiting behaviour of the observable S(¢) is pre-
sented (together with observables for intermediate D’
values) in fig. 1 demonstrating what has been discussed
above.

The important conclusion reached from egs. (6)
and (7) is that in the limit of fast and slow diffusion
the observable S(¢) becomes independent of the diffu-
sion coefficient. In section 4 we will show that these
limits of a D-insensitive observable is assumed for D'
> 5r and for D' < 0.05r.

4. Numerical solution

We did not succeed to obtain an analytical solution
of eq. (5). In lieu of such solution we present in this
section a numerical algorithm which rapidly produces
a reliable numerical solution. The algorithm suggested
here discretizes the time variable, i.e. chooses the in-
stances ¢ =jr,j =0, 1, ... and also neglects high Fourier
components by assuming 4,, = 0 for n > N (in our cal-
culations we assumed NV = 50). The algorithm is then
cast into the vector equation

AG+D71] —AGT) = 37L{A[( + 1)7] +A(T)} , (8a)

where AT = (A4,,4,,4,, .. Ay) and where L is de-
fined as in (5f). To ensure the numerical stability of
the algorithm one needs to represent the coefficients
A () on the 1hs of (5a)—(5¢) by their time average

3 {A [(/ + D7] +A4,,(jr)}. This procedure is com-
monly referred to as the implicit method [15]. Be-
cause of the tridiagonal form of the operator L eq.
(8a) corresponds to a linear three-term recursion equa-
tion
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—o, A, [(G+1D)71] +B,4, [(j + 1)7]
wdpa G+ D] =6, (8b)

in which the coefficients on the lhs are time-indepen-
dent:

@, =§rr, n=0,1,2,.., (8¢)
By=1l+grm, B, =By +3n®D'r, n=1,2,., (8d)
Y9=0, v, =gqrr, v, =%rr, n=2,3, . (8e)
and

=A,() + 574, = 24,(7], (8£)

8, =A,(T)+ 517 [24,(j7) — 24,(j1) + A,(jD)]
-3D'T 4,0, (8g)
8,=A,(jr) +5r1[4,_(it)—24,(j1)+4,, (1)

~in’D'r 4 (j7), n=2.3,.... (8h)

Egs. (8) can then be employed to evaluate recur-
sively the vectors A(j7), /=1, 2, ... starting from
AT(0)=(1,0,0,..). For this purpose one needs to
solve the inhomogeneous linear equation (8b). The
following scheme suggested in ref. [15] is most reli-
able. One first determines recursively

Eyg=ay/By, Fo=8/8y, (%)
En = Cxn/(ﬁn - 7nEn——1)’ (9b)
Fo=@,ty,F,_DIB, =7,E,_) (9<)
forn=1,2, ...Nand evaluates then sequentially
AylG+ D] =F,, (0d

A G+ DT =E A G+ D1) +F,,

n=N-1,N-2,..,0. (%)

Fig. 1 presents the resulting observable for three dif-
ferent D' values, D' = 57, 0.5r and 0.057. The dia-
grams show that for a given  value, i.e. for a given
light intensity, there exists only a certain window of
D' values, namely [0.057, Sr], in which the observa-
tion is D "sensitive. In this range of D' values S()
shifts from the slow-diffusion lLimit (7) to the high-dif-
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fusion limit (6). For larger and smaller D' values the
observable S(r) becomes independent of D', Actually
for smaller D' values the convergence to (7) at long
times is slower than indicated here. However, since
S(#) is small at long times the observation may not be
able to resolve accurately the long-time decay of S(¢).
Hence, this slow convergence should not be of practi-
cal importance.

We may note that an alternative numerical solution
could have been developed by discretizing the time as
well as the space variable of the reaction—diffusion
equation (1). The structure of the resulting equation,
an inhomogeneous three-term linear recursion, corre-
sponds to that of eq. (8) and, hence, the algorithm of
eqs. (8) and (9) can be applied to its solution. About
100 spatial points should be chosen for an accurate
solution which makes this solution more time consum-
ing than the one adopted here which involves a
Fourier transformation. However, in case the light in-
tensity profile bears higher Fourier components, as for
a square wave, eq. (1) should be solved directly, i.c.
without Fourier transformation, by the algorithm pre-
sented.

The numerical solution developed here can also be
applied to describe very accurately the conventional
photobleaching experiment involving two light intensi-
ties. The first strong intensity phase lasting from'¢ =0
to ¢ =1, is to be described exactly as done above. This
yields the vector A(#,) which is then to be used as the
initial condition replacing (5d) in the description of
the second weak intensity phase. The time.integration
of A(¢) follows again egs. (8) and (9) and yields S(z).
This calculation avoids an approximation of the con-
centration profile after the strong intensity phase and
does not neglect the bleaching during the weak-inten-
sity phase.

5. Solution by a generalized moment expansion

In this section we show how an approximate solu-
tion of eq. (5) can be obtained by means of a general-
ized moment expansion. This method which is pre-
sented in detail in ref. [8] describes the observable in
terms of a multi-exponential decay. For a demonstra-
tion we restrict the approximation in the following to
a bi-exponential description

() = a; exp(—\;?) +a, exp(—A,1). 10)
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The coefficients a; 5 and A, , are determined such
that s(¢) reproduces the following generalized mo-
ments of the exact observable

Ho = S(t=0),
My =-0,5(t=0), (11b)
1y = 028(1 = 0), (11¢)
u_y = [ drs@. (11d)
0

These moments assume the values
Mg=1, uy =3¢, u,=r'(10r'+ D",

u_y =1/2r. (12a)

The first three identities can be derived from the for-
mal solution of eq. (5)

S#)=(1,-05,0,0,..)exp(L?D) € (13)
and the last identity from inserting into (11d) the iden-
tity

S@)=~(2/nas,A,, (14)
which follows from (5a) and (5¢). The vector egin
(13) defined through eg =(1,0,0,..) represents the
initial condition (5d). Knowledge of the moments
(11a)—(11d) allows one to determine the coefficients

and decay constants of (10) according to the algo-
rithm suggested by the following equations:

XEUE —piB Y EHM —

z=u:1" — Myl (152)
A =+ O% -4l p2x,

A, = [y - (¥% = dx2)V2] j2x, (15b)
ay = (\uy — )N (A, =1),

ay = (Aquy — )M —1y). (15¢)

Fig. 2 compares the resuiting approximation with the
exact observable for D' = 0.057. In case of larger D'
values the accuracy of the approximation improves.
This implies that the approximate s(¢) can be em-
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Fig. 2. Comparison of the fluorescence intensity S(r) for D’ = 0.05r evaluated by means of egs. (8) and (9) (—) and approxi-

mated by means of eqgs. (10), (12) and (15) (- - -).

ployed safely in the relevant D’ interval [0.057, 5r]

and in the relevant time interval [0,10/r]. If one ap-
plies the approximation for smaller D' values the ap-
proximation becomes less accurate. This is no disadvan-
tage since in this range the observation is not yielding
information on D' anyway.

To extend the approximation (10), (12), (15) to
longer times one may consider a moment expansion in-
volving the moments u_; to u4 following the method
suggested in ref. [8] . However, this approximation
will not be very accurate either at very long times. A
long-time approximation by means of a generalized
moment expansion cannot be constructed. The reason
for this calamity is that the observable for small D’ val-
ues decays nearly as #~3/2. As a result the long-time
moments

u_‘n=(n—:11—)!0fdn"—15(t) (16)

do not exist for n > 1 and, hence, a moment expansion
reproducing further long-time moments does not exist.

6. Summary

We have developed a numerical procedure which de-

termines the fluorescence intensity observable in a
photobleaching experiment involving a time-indepen-
dent grating with a local rate constant of photobleach-
ing 7 sin%kx. We have demonstrated thereby that the
corresponding observation is sensitive to diffusion co-
efficients in the range 0.05r < 4Dk? < 5r, We have
also provided a simple approximation which holds in
this range of diffusion constants for times up to 10/r.
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