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Diamagnetic-paramagnetic exchange has a profound influence on the magnetic field
dependence of the geminate recombination between the partners of a radical pair
generated in a pure spin state. We consider the situation that the exchange takes
place between two groups which are part of one molecule. We outline the proper
theory of the spin dynamics, discuss the limits of slow and of fast exchange, and for
these two situations provide an estimate of the B,,, value which characterizes the
magnetic field dependence at intermediate fields. The theory provides the basis for a
novel method of measuring the rates of electron transfer between two molecular sites.

with a defined geometry.

I. INTRODUCTION

In this paper we consider the recombination process
between two doublet molecules (radicals) 2D, and 2D,.
Such a pair can be generated photochemically, e.g., by
photoinduced electron transfer, and then is initially in
a pure singlet '(D, + 2D,) or triplet 3*D, + 2D) two
electron spin state. Since the recombination products also
assume a definite singlet (S) or triplet (*T) spin state,
radical recombination is selective with respect to the two
spin alignments '(*D, + 2D,) and (D, + 2D,).

In a typical application'? a radical pair is born in a
singlet alignment and is converted into fast (ns) triplet
products by means of magnetic interactions'~> according

to the scheme

S — @Dy + 2Dy) "5 32D, + D) — T, (1)
The reaction depends on the probability p;(¢) that the
initial singlet pair assumes triplet character after time ¢
before 2D, and D, recombine. The observation of 3T
furnishes important information on the reaction dynamics
of the radical pair 2D; + 2D, as reviewed for example in
Ref. 5. It has also been realized>® that such observations
allow to measure the paramagnetic-diamagnetic exchange
of one of the doublet partners, e.g., 2D, + 'Dy, — 'Dy,
+ 2D7%,. In Refs. 6, 7, and 8 the exchange considered
occurred by random encounters between separable mole-
cules. In the following we want to consider the situation
that the exchange takes place between two groups which
are part of one molecule. The theory developed for this
case should then allow to determine the rates of electron
transfer between groups with a defined geometry. For this
purpose one needs to observe the magnetic field depen-
dence of the triplet products *T of Eq. (1) and compare

the data to theoretical predictions.
* The dominant magnetic interactions of organic

doublet molecules in solution which contribute to the
time dependence of p:(¢) in Eq. (1) are the Zeeman and
the isotropic hyperfine interactions. These interactions
are collected in the following spin Hamiltonian:

1312 J. Chem. Phys. 82 (3) 1 February 1985

0021-9606/85/031312-05$02.10

H=H, + H,, (2)
Hi=3 apdi+S; + (gus/h)B-S,. 3)
k .

The sum in Eq. (3) extends over all nuclear spins I;; of
2D; with hyperfine coupling constants a; and electron
spins S;, g is the relevant gyromagnetic ratio, up the Bohr
magneton of the electron, and B the magnetic field. We
will assume identical g values for the two doublets. Since
most of the time during reencounters of 2D, and 2D, the
doublet partners are well separated, the contribution of
an exchange interaction to Eq. (2) can be neglected.

The triplet probability p;(f) relevant for reaction (1)
can be expressed approximately as®

pr() =3—U:,, 4)
where (a, 8 = +, —, zand i = 1, 2),
Uas = tr Sia(0)Sis(t)) (%)

are the spin correlation tensors which describe the electron
spin motion in each doublet, S;,(¢) are the electron spin
operators in the Heisenberg representation, and ( )
denotes an average over the nuclear spins as specified
below. The approximation in deriving Eq. (4) is based on
a representation of the nuclear spin operators

L= 2 awli 6)
%

as continuous classical vectors which are unchanged
during the electron spin motion. This approximation is
useful and valid in case of large nuclear spin systems.®’
Defining

w; = I,' + gﬂgé/h, (7)

the time development of the electron spins is described
by the equation of motion

98i(1) = w; X Si(1). (8)
In the representation of the spin vector operator S;

= (Sis, Si-, S;,) the solution of this equation is
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Si(1) = B(1)S(0), . %
where
v? wx?  —iwvx
B(r) = w2x? v? iwDx , (10)

=2iwvx  2iwx vD — w?
v = cos? §/2 &“? + sin? §/2 e~

= —gin @ sin(wt/2),

x = é°, an
The angles 8, ¢ describe the orientation of w; as given in
Eq. (7).

Actual observations involve radicals with a random
orientation of nuclear spins I;; in Egs. (6) and (7) and,
hence, an ensemble average over the nuclear spin orien-
tations is required. At large fields (B — oo0), this average
denoted by {( ) in Eq. (5) yields the spin correlation
tensor® (wo = gugB/h)

exp(iiwot)e()(t/‘f,') CICB =4+—, —+
306 = 22 L, (1
0 else

Uap =

eo(u) = exp(=u?),
72 =34B% B} =3 akluy + 1). (13)
k

Here the /. represent the nuclear spin quantum numbers,
e.g., 1 for hydrogen. The tensor describing the spin motion
at arbitrary fields can be described as well.”

l. TRIPLET YIELD WITHOUT EXCHANGE

The yield of triplet products which are generated by
the mechanism (1) assumes its maximum for small fields
of a few Gauss and decreases monotonically to a constant
asymptotic value at large fields of about 1 kG. The
magnetic field dependence of the triplet yield ¢7(B) can
be characterized by the so-called B, value. This value
measures the magnetic field strength at which half of the
asymptotic (B — oo) decrease of the triplet yield is
observed, i.e.,

$HB = 0) — ¢1(Bi) = 1[¢7(B = 0) — $:(B — 0)]. (14)

The B,,; value is defined properly only for situations in
which ¢(B) does, in fact, reach an asymptotically constant
value at fields of about 1 kG, i.e., at the strongest fields
applied in an observation.

The B,;; value can be estimated on the basis of the
approximation leading to Egs. (4)-(13). The mean square
magnetic moment of a doublet with many hyperfine-
coupled nuclei is B? as given by Eq. (13). If one assumes
that the doublets for the second term I; in Eq. (7) all take
on the absolute value B;, ie., I, = B;-e;, one can
determine the average orientation y; of w; relative to the
field B on the basis of an arbitrary orientation of the unit
vector e;. In case B; < B one obtains for the average over
all e;,

{cos ¥y = | — §(Bi/B)*.

The relative orientation y between w, and w, is determined

+

by cos ¥ = cos ¥, cos ¥, — sin ¥, sin ¥, cos(a; — ay), o;
representing the azimutal angles around B. The average
over the azimutal angles deletes the second term and,
hence, the average relative orientation between w; and w;
is simply (cos ¥,){cos ¥2). One may now characterize
the relationship between the Zeeman and the hyperfine
interaction at B = B, by a certain prescribed value of
(cos Y. At high fields {cos y) approaches the value 1,
at very low fields holds {cos y;) = 2B/B; and {cos ¥)
approaches zero. We have determined empirically that a
value 0.9 for {cos y) yields a good characterization of
the B, value, i.e., the By, value can be determined by
the relationship

[1 = 5(B1/B12) )1 = §(B2/B12)] = 0.9. (15)

Figure | demonstrates for data taken from Ref. 9
that an excellent agreement results between observed and
estimated B;,; values. This agreement holds only as long
as exchange processes or short lifetimes of the doublet
pair 2D, + 2D, do not alter the asymptotic field dependence
of the triplet yield.

lil. INTRAMOLECULAR DIAMAGNETIC~
PARAMAGNETIC EXCHANGE !

Equations (7)-(13) describe the electron spin motion
of a doublet molecule as long as the unpaired electron
resides only at a single molecular site. We will now
consider a molecule in which two identical sites D, and
D, exist between which the unpaired electron can be
exchanged, i.e.

Dy —X-'Dy—'D,— X - *D}.

We will assume that the electron exchanged is the one
labeled by i = 1 above and we will not specify this index
in the following formulas. The group X should hold D,
and D, preferably in a sterically fixed conformation.'®
One of the groups is ionized and in a doublet electron
spin state. However, the charge and, concomitantly, the
unpaired electron spin can exchange between D, and D;.
For this exchange one should distinguish two limiting
situations:

80 ..’
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- ",
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FIG. 1. Experimental B, values B,,; (exp) plotted against the theoretical
values B, (theor) as determined through Eq. (15); the values B, are
taken from Ref. 9.
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(1) The exchange interaction between the groups D,
and D, is strong such that the “jump rate” is much faster
than the vibrational relaxation within the groups; in this
limit the charge must be considered delocalized in a
coherent quantum state over both D, and D,.

(2) The exchange interaction is weak, e.g., for a
longer bridge, such that the jump rate is slower than
vibrational relaxation in each group; in this limit the
unpaired electron can be considered localized on one
group at each instant of time.

In case (1) the hyperfine coupling constants a;
assume half the values of those in separate doublets. In
this case holds

Bi(d) = §B(s), (16)

where B,(s) and B,(d) describe the B, values of Eq. (13)
for a separated and for two strongly coupled groups,
respectively. In this limit one expects that the B,
value of the magnetic field dependent triplet yield
will be diminished upon replacement of 2D} by *D} — X
— 'Dy < 'D, — X — 2D}. The change of the B, value
can be estimated by means of Eq. (15). For example,
considering the system pyrene-dimethylaniline, one de-
termines on the basis of the hyperfine coupling constants
given in Ref. 4, a B, value of about 61 G which is close
to the experimental value of 57 G. In the case of two
strongly coupled dimethylanilines one predicts a lowering
of the By, value to 45 G.

If situation (2) applies one has to distinguish two
further limiting possibilities, fast (slow) exchange with an
exchange rate 7;! where 7, is much smaller (larger) than
the time constant 7 for the electron spin motion given in
Eq. (13). In the case of fast exchange one expects that the
electron spin precession: (8) is governed by the angular
velocity 1/2(w, + wp) where w, and w, describe the
precession in the separated groups 2D, and 2D,. This
situation cannot be distinguished then, as far as the
electron spin motion is concerned, from the situation (1)
above. For a proof we consider the equation of motion
(8) and assume for the sake of simplicity that the jump
events take place at discrete times n7,, n =1, 2,.... The
variation of the spin operator S(7) after 2» time steps 7,
is

AS = 1 nw, + nw) X S(1), 17)

where terms of order w,7, and w,7, have been neglected.
This variation of S(¢) corresponds to the equation of
motion

s = 1/2(w, + wp) X S(2). (18)

dt
Hence, one expects that for fast exchange between groups
of the type (2) the spin motion approaches the behavior
expected for strong coupling (1).

Next we consider the case of very slow exchange,
i.e., 7. > 7. In the limit that at most one exchange event
takes place during the geminate recombination process
(1) one can describe the evolution of S(¢) in analogy to a
description given in Ref. 11,
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S@) = [exp(—t/-re)<B(t)>a + 7! fo ar

X exp(—1'XBU DB ~ 0[SO, (19)
where (), and { ), denote the nuclear spin averages
for the groups D, and D,, of the bridged compound. The
time evolution (19) reproduces exactly the behavior of
paramagnetic-diamagnetic exchange by random encoun-
ters as described in Refs. 6, 7, and 11.

For faster exchange when more than one exchange
event is likely to take place during the recombi-
nation process (1) one has to consider that the 2D} — X
— 'D, < 'D, — X — 2D} transitions involve two random -
but fixed nuclear spin alignments and not a new alignment
afier each exchange. In case of exchange between two
random, but fixed nuclear spin alignments one has to
replace the spin evolution operator B(7) by the following
series expansion of its Laplace transform:

B(s) = 3 B™(s), (20)
n=1

where

BU(s) = By(s + 77"),

BA(s) = 77 'By(s + 77 )Bys + 75), @1

B (s) = 72" By(s + 72")BEs),

B 2(s) = 77'By(s + 7, H)BEN(s). (22)
This yields
B(s) =[1 + 77'By(s + 7201 — 722B(s + 77Y)

X By(s + 7207 Bys + 70, (23)

Equations (20) to (23) furnish the main result of this
paper. These equations can be generalized in a straight-
forward way to describe exchange between three, four,
. . . groups. Unfortunately, the averages ( »;and { )
over this operator are difficult to perform. We will carry
out the average below for the case of spin motion in high
magnetic fields, a situation which renders the operator
B(#) diagonal. For the case of exchange by random
encounters the average overall molecular sites a, b, c,

. . visited by the hopping electron has to be performed.
As a result the operator corresponding to Eq. (23) becomes

B(s) = C[1 — 722C'[1 + 7;'Cl = C[1 — 77'CI™!, (24)

where C = (B(s + 7.')) is a diagonal operator. As to be
expected this expression reproduces the evolution operator
for exchange by random encounters derived in Refs. 6
and 7.

However, in the case of exchange between only two
sites the effect that exchange processes repeatedly return
the electron spin to the same molecular site with the
same nuclear spin configuration introduces memory effects
which are difficult to deal with. If this memory effect is
neglected one would predict for very fast exchange that
the effective B, value of Eq. (13) vanishes and, that
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according to Eq. (15) the B, value for the respective
pyrene-(dimethylaniline), system should be only 18 G.
However, this prediction is at variance with the expected
spin dynamics derived from the evolution equation (18).
This equation implies that for fast hopping of the electron
between groups D, and D, the B, value should be given
by Eq. (16) and, accordingly, the B,,, value should rather
be about 45 G. If one is able, by appropriate synthesis of
compounds D, — X — D, for a pyrene-(dimethylaniline),
system, to vary the exchange time 7, over a wide range
one should observe for 7, > 10 ns a B, value of about
57 G and for 7, < 1 ns a By, value of about 45 G. For
these extremes the magnetic field dependence should be
similar to the situation without exchange, i.e., as observed
in Refs. 1 and 2.

In order to predict the field dependence for the
intermediate situation 10 ns > 7, > 1 ns one needs to
determine the spin operator (23). For this purpose we
suggest that one may actually evaluate the series expansion
implied by Egs. (20)-(22), employing the single site
operator (10) and to carry out the average explicitly by
means of a computer code capable of algebraic manipu-
lations, like SMP. 2

Expression (23) can be evaluated for the case of large
magnetic fields. We will carry out this calculation as a
demonstration of our theory. In the limit of large fields
the operator (10) simplifies since for # = 0 one obtains

exp(iwt) 0 0
B=1|0 exp(—iwt) 0 |, (25)
0 0 1

i.e., a diagonal single site evolution operator. As a result,
Eq. (23) assumes a diagonal form as well with elements

(wo = gua/th),

e()exp(iwol) 0 0
B(?) = 0 e(t)exp(—iwet) O (26)
0o 0 1

e(t) replaces ey(t/7) in Eq. (13). From this follows according
to Eq. (4),

pr0) = 172 — 1/2e(t)ent/r),

where the electron on 2D, is being exchanged. In analogy
to Eq. (23) the correlation function e(t) is given by'3

en) = L™[s" — il.]7'[1 — 725" — il)™'(s" = il,)™"]
X[+ 72'(s" — i)~ ])u; (28)

where L™ denotes the inverse Laplace transform s’ = s
+7;' and :

(** * Dap = (77/4m) L: dlaﬁz dly

X exp[—(1/4)7*(15 + 19)] - - - (29)

For a further evaluation one may expand Eq. (27) in
terms of partial fractions

er) = L7'([i(y + R) + 1)/[2iR(s' — i(x + R)]
= [y = R) + 1}/12iR(s' = i(x = R))x,, (30)

(27)
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where x = (I, + I))/2, y = (I, = 1,)/2, R = (* = 1)'/,

and

l o0 oo
Codm g [ ax [ ay
X expl=1/2(r/roP0c + Y] -+ . (3D

Carrying out the x average and the inverse Laplace
transform yields

e?) = exp[~t/r. — 1/2(¢/ryK{[i(y + R) + 1]/2iR}
X exp(iRt/7;) — {[i(y — R) + 1]/2iR}

X exp(—iRt/7.))y, (32)
and, since the y distribution is even,
et) = expl—t/7, — 1/2(1/7)]
X {cos Rt/7, + R"' sin Rt/1.),. (33)

~ This function can be expanded in terms of products of

Bessel functions. However, the result appears to be neither
illuminating nor useful. Alternatively, the factor { )yin
Eq. (33) can be expanded in powers of /7.,

2y Z/T"
(Y= 2( (/) [1+2 +1]

(ZV), 2( (e

_x{1-3---(2p—1) k=12..)
1 (p=0)

This expansion agrees with a result obtained recently in
Ref. 14. Below [Egs. (37) and (38)] we furnish a more
convenient expression for the evaluation of Eq. (33).

We consider now e(f) in the limits of fast and slow
exchange. In case of slow exchange, ie., 7. > 7, the y .
distribution as defined in Eq. (31) is very broad, such
that the contribution of large y values is dominant. In
this limit R = |y| and, hence,

e(t) = exp[—1/2(t/7)*Kexp(iyvt/7.)D,
= exp[—(7/7)’], (35)

1.e., the spin correlation function of the situation without
exchange is reproduced [see Eq. (12)].

In case of fast exchange, i.e., 7, < 7, the y distribution
is very narrow and centered around y = 0. This yields
with R = |,

e(t) = exp[—1/2(¢/7)*], (36)
i.e., the result expected according to the discussion above.

A numerical expression for e(¢) in case of intermediate
7. can be constructed if one replaces the continuous y
distribution in Eq. (33) by a discrete binomial distribution
for some suitable N, i.e., N = 5,

Cd) = O,
N
> 2-2N(]\2,145j)f(2jre/71/ﬁ).

j==N

(34)

(37)

J. Chem. Phys., Vol. 82, No. 3, 1 February 1985



1316 K. Schulten: Radical pair recombination

T T i | T T 1 T T
= o08F -
d" a B=0
Z 06} .
3 ; 5

- 00

S o4t 0o -
5 b .
- (4
S
3 02| .

1 1 1 1 )| i i 1 L

4 8 12 16

time /ns

FIG. 2. Triplet probability for the pyrene~(dimethylaniline), encounter
pair starting in a singlet state (r; = 4.35 ns, 7, = 14.13 ns at zero and
very large external field; (a) 7. — oo, (b) 7. = 5 ns, () 7.= 0.

Equation (33) implies

Sw) = expl~t/7. — 1/2(t/7)*}{cos(Vu? - 11/7,)
+ sin(V? = 1t/7)/Vu? — 1). (38)

This result can be employed to evaluate the triplet prob-
ability pr(7) according to Eq. (27). Figure 2 represents the
resulting triplet probability for the case of a pyrene—
(dimethylaniline), doublet pair. The triplet probability,
e.g., curve (b) in Fig. 2, compares well with that evaluated
by means of expansion (34)." We found that Eq. (34)
provides reliable results for the triplet probability over a
broad range of 7, values up to the limit of very fast
exchange, e.g., for 7, = 0.04r.

We may finally note that Eq. (30) furnishes also the
exact high field description, i.e., the description which
does not envoke the representation of expression (6) by a
continuous Gaussian distribution. The exact description
involves discrete values 7, and I, taken from the set

{Z My, My = —hy, =i+ 1, ..., Ilk} s (39)

k

where my; are the magnetic quantum numbers of the
nuclear spins. For each J, and 1, expression (30) can be
readily evaluated by means of

L7\(s' = ia)™" = exp(—t/7. + ia).

In case of dimethylaniline the set (39) entails 1536
elements and, therefore, the exact description is not very
useful. However, for molecules with a small number of
dominant hyperfine coupling constants [and a small set
(39)], the exact description must be used.

IV. POTENTIAL APPLICATIONS

The effect of intramolecular paramagnetic-diamag-
netic exchange should allow to measure the exchange
rates 7, ', For this purpose, Eq. (23) needs to be evaluated
for arbitrary fields. This evaluation appears to be rather
formidable [however, see comment below Eq. (23)]. One
can then match predicted yields ¢+(B) to the observations
in analogy to the treatment in Ref. 8 and determine r,.
The material constant 7, for a given bridge X is of great
interest since it characterizes the conduction properties
of X. Such conduction, e.g., along the hydrocarbon tails
of chlorophylls, pheophytins, and quinones in the pho-
tosynthetic reaction center, is of great importance for
biological redox processes.

The theory outlined can be applied in an analogous
way to describe the dynamics of triplet excitons, when
the exciton migration is connected with reorientation of
the molecular frame in which the triplet experiences the
fine structure interaction.!’ Observation of a magnetic
field dependence of triplet-triplet annihilation may yield
information on the energy migration in the light harvesting
systems of photosynthesis. In these systems membrane
proteins which carry a small number of chromophores'
and, thereby, furnish intramolecular exciton coupling
between a small number of sites, may be investigated.
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