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The coupling of angular ‘momenta is studied using quantum mechanics in the limit of large quantum
numbers (semiclassical limit). Uniformly valid semiclassical expressions are derived for the 3j (Wigner) -
coefficients coupling two angular momenta, and for the 6j (Racah) coefficients coupling three angular
momenta. In three limiting cases our new expressions reduce to those conjectured by Ponzano and Regge.
The derivation involves solving the recursion relations satisfied by these coefficients, by a discrete analog of
the WKB method. Terms of the order of the inverse square of the quantum numbers are neglected in the
derivation, so that the results should be increasingly accurate for larger angular momenta. Numerical
results confirm this asymptotic convergence. Moreover, the results are of a useful accuracy even at small

quantum numbers.

I. INTRODUCTION

3j- and 6j-coefficients describe the quantum mechani-
cal coupling of two and three angular momentum states,
respectively. Classically this coupling corresponds to
the addition of angular momentum vectors. For larger
angular momenta the classical concept of vector addi-
tion becomes increasingly valid; so that in the limit of
very large quantum numbers 3j- and 6j-coefficients
should have an interpretation in terms of classical vec-
tor diagrams (Figs. la, 2a, 3a). One can expect that
in this semiclassical limit 3j- and 6j-coefficients can
be expressed as simple functions of the geometric
variables which describe the classical angular momen-
tum addition. Such a functional relationship between
angular momentum coupling coefficients and classical
vector diagrams has been suggested, on the basis of
heuristic arguments, by Ponzano and Regge.® It is one
aim of this paper to give a rigorous derivation for the
expressions of Ponzano and Regge as the asymptotic
{WKB) solutions of the recursion equations which define
3j- and 6j-coefficients.

For certain quantum mechanically allowed 3j- and 6j-
coefficients, classical vector diagrams do not exist.
For example, the classical angular momenta associated
with some 6j-coefficients cannot be connected to give a -
vector tetrahedron as in Fig. 3a, and such cases are
called classically forbidden. Thus, the quantum number
domains of the angular momentum coupling coefficients
are to be separated into classically allowed and classi-
cally forbidden regions. Interestingly enough, the
algebraic definition of the geometric variables (volume
and dihedral angles of the 6j-tetrahedron, etc.) can be
continued from the classical domain of quantum numbers
to the nonclassical domains. Accordingly, Ponzano and
Regge stated three different expressions for 3j- and 6j-
coefficients valid in either the classical domain, the
nonclassical domain or at the boundary between these
two domains. These expressions do not, however,
smoothly connect with each other, and lacking a sys-
tematic derivation of their results Ponzano and Regge
were not able to correct this deficiency.

Miller,? starting from the correspondence relations of
classical and quantum mechanics, recently derived a
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semiclassical expression for 3j-coefficients restricted
to the classically allowed domain of quantum numbers.
Miller’s result is identical with the corresponding ex-
pression of Ponzano and Regge giving, thus, support to
the supposition that Ponzano and Regge’s formulas are ~
amenable to a rigorous derivation. We have, in fact,

found such derivation and present it here. The route we
have taken for this derivation will be outlined now.

One may recall that semiclassical expressions for
quantum mechanical wavefunctions can be determined as
asymptotic solutions of the Schriédinger second order
differential equation by means of the WKB approxima-
tion. The 3j- and 6j-coefficients are the solutions of
certain linear recursion equations which, as we have
shown, 3 provide the most efficient and stable algorithm
for their evaluation even for very large quantum num-
bers. The important role of these recursion equations
in determining, except for overall factors, the angular
momentum coupling coefficients had been well known
in the early days of quantum mechanics* but sank into
oblivion after the advent of group theory and the fol-
lowing derivation of closed expressions of 3j- and 6j-
coefficients by Wigner® and Racah. ® The three term
recursion equations can be formally written as second
order difference equations which are closely related to
the second order differential equations which result
from the Schrédinger equation for wavefunctions. In
view of this relationship, it seems reasonable to attempt
a derivation of the semiclassical formulas for 3j- and
6j-coefficients as the asymptotic (WKB) solutions of
their recursion equations. To this purpose we extended
the WKB theory from differential to difference equations
and this yields then the semiclassical expressions of
Ponzano and Regge.

The recursion equations determine the angular mo-
mentum coupling coefficients over a discrete domain of
quantum numbers. Classical angular momenta vary
over a continuous domain of values. According to the
correspondence of classical and quantum mechanics
one expects that the semiclassical expressions of 3j-
and 6j-coefficients can be defined over continuous do-
mains also. In fact, we have found that the asymptotic
solutions of the 3j- and 6j-recursion equations viewed
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as functions of continuous variables obey asymptotically
certain differential equations. Hence, the semiclassical
3j- and 6j-coefficients can also be understood as the
WKB solutions of these second order differential equa-
tions in order to account for the continuous variation of
the angular momenta in the semiclassical limit. If one
employs the uniform WKB approximation to these dif-
ferential equations, one obtains the 3j- and 6j-coef-
ficients in terms of Airy function formulas which are
uniformly valid over the entire domain of quantum num-
bers and, thus, present considerable improvement in
accuracy, over the expressions given by Ponzano and
Regge. .

In Sec. 2 we will present the recursion equations of
3j- and 6j-coefficients, and show that in the semiclassi-
cal limit these equations are conneeted algebraically
with classical vector diagrams. In Sec. 3 we derive the
WKB solutions for second order difference equations,
and demonstrate that these solutions also asymptotically
satisfy associated differential equations. In Sec. 4 we
apply the WKB approximation to obtain the semiclassi-
cal 3j-coefficients in analytic form. In Sec. 5 these
calculations are repeated to derive the semiclassical _
6j-coefficients. Finally, we compare in Sec. 6 the exact
and the semiclassical values of 3j- and 6j-coefficients
and demonstrate their convergence for large quantum
numbers. .

“1l. SEMICLASSICAL RECURSION EQUATIONS FOR
3-COEFFICIENTS

The Wigner 3j-coefficients define the algebra of the
quantum mechanical addition of angular momenta.” For
a classical mechanical system with two internal angular
momenta J, and J,; the resulting total angular momentum
is uniquely determined as J,=J, +J;. Quantum mechani-
cally, it is not possible to specify for the angular mo-
menta J, and J, simultaneously all three Cartesian vec-
tor components, but at most one component. If the z-
components m, and mg are thought to be specified the
system is said to be prepared in the internal angular

- momentum state |j,m,)|jgm;). The relative orientation
of the angular momenta J, and J; in the x,y plane, mea-
sured by an angle 7, is then necessarily undetermined,
each angle 7, being equally likely. Hence, the total
angular momentum |J,| can assume a variety of values
depending on the relative orientations 7, of J, and J,.
This situation is depicted by the classical vector
diagram in Fig. 1la. .

The system under consideration may also be prepared

in a particular total angular momentum state |(j,, j,)j,m,).

For a system prepared in such a fashion the components
of the angular momenta J, and J, have fixed projections
along J;,. The remaining components of J, and J;, per-
pendicular to J,, are then necessarily undetermined.
This situation is illustrated by the classical vector
diagram in Fig. 2a. In particular, the z-components of
J, and J, can take on a variety of values, depénéing on
the orientation ©, of J, and J; in a plane perpendicular
to J;. Because of the randomness of the orientations of
J; and J;, each angle @, is equally likely.
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FIG. 1. The series of 3j-coefficients (;} ;2 ;3), j; min=j

=j;max, in (c) and the corresponding manifold of classical

angular momentunt vector diagrams Jy+Jp+J3=0 (J;=j;

+%, J;g=m;) generated by rotation around the shaded circle

in (a). The quantum mechanical probability distribution
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diagrams in (a) are compared in (b) with Wigner’s semiclassi-

cal estimate (2j;+1)/4xA.
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angular momentum vector diagrams Jy+dp+J3=0 (J;=j; +3 3,
Jy,=m,) generated by rotation around the shaded circle in
(a), The quantum mechanical probability distribution

(2, + (! 22 232 for the occurrence of the classical vector

diagrams in (a) are compared in (b) with Wigner’s semiclassi~ .

cal estimate (2j4+1)/4rA.
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The unitary transformation T between the representa-
tion | j;my) | jymg) and 1(j ],, ig)iym,) of the system of two
angular momenta

|j2m2> fjsml"mz): JE T,,.2,1 |(jz,js)j1m1> (1)
. 1 .
defines the 3j-coefficients

Ji - e Js (e 128 [, 1/2
("m1 my mi‘mz) =(=1)" [2]1+1]- Tmz"l-
(2)

T is customarily chosen real with the phase convention
for its row vectors adopted as by Wigner. The squares
T,,;,’ of the elements of T are to be interpreted as the
probability for a system prepared in the internal angular
momentum state |j,m,) | jm, = m,) to be found in the
total angular momentum state |{j,,js)j;m,) and, vice
versa, as the probability for a system prepared in the
total angular momentum state |(j,,js)j,m,) to be found in
the internal angular momentum state | j,m,) | jsm, —my).
On the basis of this interpretation Wigner established an
approximate functional expression for 3j~-coefficients,
using the classical vector diagrams in Figs. 1a and 2a.
The probability that in Fig. 1a j, < {J,+J;l <j, +1, given
by T, *, canbe evaluated from the fact that each rela-
tive orientation 1, of J, and J; is equally likely. Wigner
found®

Tyt = (2, + 1)/4nA (3)

where A, the area of the triangle A(J,, J,, J;) projected
onto the x,y plane, is given by the Cayley determinant

(4)

Likewise, the probability for m, sd,, <m,+1 in Fig.
2a also given by T, ol 2 can be evaluated by assuming that
each angle ©, is equally likely. The result is again (3).

In Figs. lc and 2¢ the 3j-coefficients (_’1‘0 100 &) and
(20 mm m’_° ) are plotted representing the quantum me-
chamcal probab1hty amplitudes corresponding to the
classical angular momentum coupling depicted by Figs.
1a and 2a. Figures 1b and 2b present the associated
probabilities T, _, ? for a comparison with the Wigner

i1
_expression (3). %ne can see that Eq. (3) does not really

approximate individual 3j-coefficients, but does provide
an approximation for the average taken over a few
neighboring 3j-coefficients. Our aim now is to show how
Wigner’s estimate can be refined to give more accurate
expressions for individual 3j-coefficients.

The 3j-coefficients in Figs. 1c and 2c are determined
except for an overall constant factor as solutions of re-

< cursion equations. The couplmg coefficients in Fig. 1lc

associated with the classical angular momentum diagram

in Fig. 1a obey the recursion equation®

K. Schulten and R.G. Gordon 1973



Gy + 1) aliy) (jl'l Ja j’) — (27, + 1) b0y

my m, my

X (Jl T2 J’)+jxa(jg+1)(jl+l Ja J’) =0
3

m, m, my m, m, m
(5a)
where . T '
a(jx) = {I(Jz +j3 + 1)2 ‘jlz}[sz - (]z "js)z][sz - mxz]}l /29
(5b)

b(j;) = zjx(jl ‘*'rr\l)mz + []1(]1 + 1) +jz(jz +1) "'js(ja + 1)]7”1-

(5¢)
The coupling coefficients in Fig. 2c associated with the
classical angular momentum diagram in Fig. 2a are the
solution of

h Ja Js \ + ! B Ja Js
c(m”m°)(m, my—1 m,‘+1) d(mz,ms)(mx m, m,)

o - J -
+c(mz+1,m,-1)(":l Wi 1) -0 (6a)
‘ where .
c(mza ma) '—"[(jz -my+ 1)(jz + mz)(js +mg+ 1) (.73 - ms)]”zs
‘ (6b)
d(my, mg) =j,(ju + 1) +jg( §g + 1) = §y(j§y + 1) + 2m my.
(6¢c)

In the limit of large angular momentum quantum num-
bers recursion equations (5) and (6) are algebraically
connected with the classical vector diagrams in Figs.
1a and 2a. To demonstrate this asymptotic connection,
one may multiply the quantum numbers j, and m, by a
parameter \ assumed to be large such that all terms in
Egs. (5) and (6) of order O(\"2) and smaller may be
neglected. Let us apply this approximation to Eq. (5)
first. The length of a classical angular momentum vec-
tor corresponding to the quantum number \j,; is \J,
=\j,+ % (in units %). Substituting this in (5b) gives

a(j,) =4F(\J, = 1, M,y MW )P(AJ, = £, Am,y)
where ‘
?
F(a,b,c)=Y(a+b+c)l~a+b+c)(a=b+c)(a+b-c)}/?

is the area of a triangle A(a, b, ¢) and P(7,2)=V7% ~ rrl
is the x,y component of a vector r with z component 2.
F(MJ, - 4, \J,, AJ,) may be factorized in the following
way:

F(\Jy - %, M,y AJg)
=[F(\J, = 1, M5, MW)F(AJy, Ay, MR /2

[F(J, ~(1/22), J,, J;) F(J, - (1/2X), J2 JQ]” 2
F(Jx - (l/x)o,Jzy J;) . F(Ju Jz: Js) e

=[1 4 0(A)][FOJ, = 1,7\, M) F(My, M, M)/,

Performing this factorization also for P(\J, = 3, Am,)
and \J, + gives .

(G, + D a(4,) =[1+002)]4[rd,(\J, + 1) F(J, - 1,0d5, \Js)

Substitution of the classical angular momenta \J, into
5Sc) yields -

b(j,) = 2A2J 2am, + (3,2 +23T,2 = A2, = Bam, = amy
=[1+ 0B[22, 2 am, + (A3F2 + 23,2 = 23T ).

Neglecting then terms of order O(x~?) allows us to write
(5a) in the more symmetric form .

(F(AJl-l,xJz,xJ,)P(xe'—l,km,l) 1/2 (kj,—l Ny My
. M, -1 Amy  Amg Amy

D22 am, + (\2J,2 +A2T2 = N Phmy
4F(\J;, \Jp, \Jg)P(AJy, Am,)

-2

x(F(le, xJ,,xJ,)P(le,xml)) 2 f2j, Ny M,
Ay Ay Am, Amg

+ (F(w1 + 1,\J,, \Jg) P(AJ, + 1,Am,) ) 12

A, +1
Ny +1 Aj, A |
X 1 2 E]
(it e 3 ) =0 ™

if one sets in addition AJ,/[(\J, = 1)(\J, + 1)]/2
=1+0(\"})=1.

Keeping the parameter \ explicitly in the following
derivations would lead to a somewhat cumbersome
notation. We will therefore omit the parameter \ in the
remaining formulas and assume instead the quantum
numbers j(J,) and m, to be large.

The classical vector diagram (prism) in Fig. 1a is the
geometrical counterpart of the 3j-coefficients (f,,‘l 2 I3,
Its triangular base a(J,,J,,J;) contains the sides 2
jy+4%, ja+3%, and jg+3, the parallel edges L,, L,,L; are
connected with the magnetic quantum numbers through

mlsz-L,, m2=L3—L1, m,:L,—L,. (8)

The second base in the x,y plane is the triangle
A[P@,, m,); P(j,, m,); P(js,m,;)]. To emphasize the
geometric interpretation of the 3j-coefficients we define

[Jl Jz JS] = (Jl jz j3 ) . (9)
L, L L my m; M,

Since for nonvanishing 3j-coefficients m, + m, =0, the
three magnetic quantum numbers represent only two in-
dependent variables for the 3j-coefficient. This property

is reflected upon the new variables L,, L,, and L,
through

Jl J2 JS _ Jl Jz JS
L,+L L,+L Ly+L] ~|L, L, L,

for any constant L, Addition of such a constant L is
geometrically equivalent to a parallel displacement of
the x,y plane in Figs, 1a and 2a along the z axis.

The coefficients in Eq. (7) are related algebrailcally,

to the classical vector diagram associated with {7}, ;7 7 .

X FM 3, My, M) POy = 1, am )Py, Am ) /2. The area A of A[P(j, ,m,); P(j;,my); Pljs, my)] is
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A= UL J3 J) P, my)
J!
where 6,, the dihedral angle of the prism adjacent to the
side J,, is determined algebraically through!®

cost, =[212m, + (0,3 +J,? = I Im, }/AFW,,J5, J5) PU my).

(10)

siné,

- (11)
By virtue of Eqs. (10) and (11), Eq. (7) becomes
AW, -1) )*“ Jy-1Jd, Jy +( A, +1) | 22
siné,(J, — 1) L, L, L, sinf,(J, +1)
X[J,+1 Ja J,]'
L, L,L, .
AJ) )”* [J J; J,]
ik 5 1N 1 =0. 12
+ 2 cosé,(J,) (sw‘(’m L L L) (‘)

This equation, the asymptotic form of Eq. (5) for large
quantum numbers, may be regarded as the semiclassi-
cal version of the recursion equation for the 3j-coef-
ficients in Fig. lc. '

The asymptotic form’ of recursion equation (6) can
also be derived by expansion in terms of the parameter
A introduced above. We will not follow this procedure
explicitly, but point out that the approximation taken
again neglects only terms of order O(1\"%). Equations
(6b) and (6¢) are then approximately

c(m,, ms) =[P(Jzo my~ 1)P(J,, mz)P(Jsp ms)P(Jm mg+ 1)]l 2,
d(my, my) =J2 +J 3 =J,* + 2m,my,

so that (6a) takes the symmetric form

_ 1/2 j; jz js
[P(J,, m; - 1)P(Jg, mg+1)] (m1 mym1 my +1)

_ 1/2 j1 jz js
+[P(Jz,mz+ 1)P(J39m3 1)] (’"1 m2+1‘ m’_l)

J,? +J 2 —J2 + 2mam, »
i P(J,, m,) P(Jg, m
P(Jz, mz)'P(JS!ms) [ ( 2 2) ( 39 ’)]

x (:‘; je Js ) ~o.
my; my, Mms -
The coefficients in this equation can be related algebrai-

cally to the classical vector diagram in Fig. (2a). By
means of the identities!®

2A = P(Jz: mz)P(J:u m;) simy,

(13)

(14)
and

J2+d2=d.2+2m,m
__1Y2 3 1 2Ms
COST = =2 "B(,, mg) P(J3, ms)

where 7, is the dihedral angle of the angular momentum
prism adjacent to the side L,, Eq. (13) becomes

20 d, Jp dy +(._A(L,+1) )“2
L,-1 L, Lyj \simn,(L;+1)

g, Iy Jy A(L,)') 1/2
x [L,+1 L, L,] =2 cosmy(L,) (s‘mn,(L,)

(15)

( A(Ll -1)
sim,(L, - 1)

et 4N Nrrmlane TOTTE

(16)

J, J, J.
x |Yr Ya Ys
[Lx L, Ls] =0

Equations (12) and (16) may be formally written as
second order difference equations., Defining

A /AR A
L, L, L)

RYRY) AL 2[4, J; 4
glL)=(-1y1""8 (——L—m,@,)) [L: % L] (1)

FU)=(=1)172s (A(;&)_ (17a)

sin6,(J;)

(12) and (16) are
[A’(Jx) +2-2 cosG,(Jl)]f(J‘) =0, (18a)
[Az(Lx) +2-2 COSI‘)I(Ll)] g(L,) =0, (18b)

where the second order difference operator is defined
through A%(x) h(x) = h(x + 1) = 2h(x) + h(x - 1).

The complete quantum number domains of Egs. (18a)
and (18b) are confined by the selection rules for 3j-co-
efficients. Equation (18a) holds over the J,~domain

Ui mta® 3 J1aee 3] With jy o =max{ |m, |, [5,=7s}
and j; por =J2 +Js-

Equation (18b) holds over the m,-domain

(7 s M3 mee)  With 15 gy, = max{=jz, = js = m;}
and m, o =min{j,, js—m}.

The J,- and m,-values occurring in the manifolds of the
classical vector diagrams in Figs. la and 2a, respec-
tively, are further confined to the smaller domains

() oiw Y1 muhiMa mias Mang)- In Fig. 1a the smallest
and largest J,-values J; ,,, and J, ., are assumed in
the limit that the triangle A(J,, J;, J;) comes to lie per-

_ pendicular to the x,y plane (flat prism! ). Hence, J) 4,

and J, ,, are determined as solutions of

A%(J,)=0 (19)
or, alternatively, as solutions of either of the equations
cosé (J,)=x1, cosn,(J,)=21 (20)

where 6, and n, are the dihedral angles of the prism

[:‘ 2’ ;’] adjacent to the sides J, and L,, respectively.
THe ilgtbraic expressions for 6,, 65 and 7,, 1, can be
obtained from Eqs. (11) and (15) by circular permutation
of the labels of J,, J;, J; and my, m,, m,. Clearly, in
the limit of a flat prism the dihedral angles are either

Oormw. .

In Fig. 2a the smallest and largest m,-values M, ,,,
and M, , , are also assumed in the limit that AWy, Jy )
is oriented perpendicular to the x, y plane; i.e., M, in
and M are the solutions of

2max
A¥(my)=0 (19")
or ,
cosf(m;)=+1, cosnm,)=#1. (207

As an illustration we may consider the string of 3j-co-~
efficients () 1% %) in Fig. 1, the solution of Eq. (18a).
In this case, the full quantum mechanical domain is
[40. 5, 160.5], and is divided into the smaller classical

K. Schulten and R.G. Gordon 1975



domain [47.5, 114. 5] and the two complementary non-
classical domains (40. 5, 46.5] and (115.5, 160.5). The
division into a classical and two nonclassical domains is
reflected by the functional behavior of the 3j-coefficients,
as can be seen from Fig. 1c. While progressing along
the j;-domain, the 3j-coefficients oscillate rapidly in
the classical region, but decay monotonically to zero in
the outer nonclassical domains. This situation that the
domain of Eq. (18a) can be divided into a middle classi-
cal region and two outer nonclassical regions applies in
general, though in some instances a nonclassical domain
may contain only one or no gquantum number. '

. Figure 2b which presents the string of 3j-coefficients
(12060 T ) demonstrates that the partitioning into a
classical domain and two distinct nonclassical domains
prevails also for the domain of Eq. (18b). For the
example chosen, the classical m,-domain [-21,30] lies
well within the quantum mechanical domain [- 60, 60]
separating the two nonclassical domains [- 60, — 22) and
{31,60]. Again, the values of the 3j-coefficients os-
cillate while progressing through the classical domain
and monotonically decay to zero in the nonclassical
domains, )

How is the existence of classical and nonclassical

domains reflected by the difference equations (18a) and
(18b)? Over the classical domains the dihedral angles J

2J12m, + [Jiz +J22 - ng]miﬂ: (4J1m2 + 2J1m1))\'1 + (2mz+ mi)k-z

6, and 7, are real by definition through the geometric
formulas (11) and (15). In the nonclassical domains the
angles 8, and 0, together with all remaining dihedral
angles are complex. This can be verified directly from
the expressions (11) and (15), which give absolute values
<1 for classically allowed quantum numbers and ab-
solute values >1 for nonclassical quantum numbers.
One can also show from Eq. (4) that A? is positive in the
classical region, zero at the boundaries of the classical
domain Jy nie, J1max OF My min, My max as postulated by
Eqgs. (19) and (19’), and negative in the nonclassical
domains. Although the classical vector diagrams do not
exist for 3j-coefficients in the nonclassical domains,
the algebraic formulas originating from these diagrams,
i.e., Egs. (4), (10), (11), (14), and (15), remain valid
beyond the domain of classically allowed quantum num-
bers. Of importance for the following, is the fact that
the expressions for cos 6, and cos 7, are real in the
nonclassical regions, so that the real parts of 6; and n;
are constant in these regions, and equal to either 0 or =.

To solve Eqs. (18a) and (18b) we start from the ob-
servation that the dihedral angles 8, and n,, in the limit
of large quantum numbers, vary slowly with J; and L,.
To demonstrate this for 6,(J,) one may again employ an
expansion in terms of the parameter A introduced above.
From (11)

cosf(AJ 1) =~

or

cos8,(AJy +1) - 2cos8; (M) +cosb;(AJ; - 1) = o). 21
For slowly varying 8,(J,) and n,(L,) the difference
equations (18a) and (18b) can be solved by a discrete
analog of the WKB approximation, commonly applied to
the solution of the Schrodinger second order differential
equation in the semiclassical limit. The “discrete WKB
approximation” for difference equations is developed in
the following section. It should be pointed out here that
this approximation applied to Eqgs. (18a), (18Db) neglects
again only terms of order o(\"?) and, thus, is consistent
with the approximations so far employed.

11l. WKB APPROXIMATION APPLIED TO SECOND
ORDER DIFFERENCE EQUATIONS

We will now consider the approximate solution of the
second order difference equations (18a) and (18b) which
may be written

[A%+2 ~ 2cosk(x)] f(x)=0

where we assume k(x) to be real and 0 <k(x) <7. The
case of imaginary k(x) can be treated the same way as
the case of real k(x) and will be commented upon at the
end of this section.

Equation (22) determines f(x) over a discrete set of
values x, x=1, x+2, *. However, since x stands for
some classical angular momentum variable, Eq. (22)
can be assumed to hold over a continuous domain of real
numbers x. In this instance the solution of (22) can be

(22)
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4F(J1,J2,J3) P(J1! nll) ‘

=cos8, (M) O(X1) + O (1Y),

E/iewed as a function over a continuous domain, too,
since one may take any x as a starting point for the re-
cursion implied by Eq. (22). As a function of a con-
tinuous variable one would expect f (x) to be determined
as a solution of a differential equation, rather thana
difference equation. Indeed, there exists a second order
differential equation which is closely related to the dif-
ference equation (22) and which has f(x) as a solution.
This holds, however, only within the realm of the semi-
classical approximation which had been employed when
the difference Eqs. (18a) and (18b) were derived.

We will show now that the differential equation which,
within the semiclassical approximation, determines the
f(x) in Eq. (22) is

(—(—;‘-—:—2-+k3(z')> (SmEe) ™ ) 0.

The semiclassical approximation implies that k(x) is a
slowly varying function of x, so that we may neglect in
solving Eq. (23) all terms of order O(k’?) and smaller
[k’ = (d/dx)k(x)] and also all derivatives of k(x) of order
2 and higher. With N=[sink(x)/k(x)]! /2 £q. (23) can then
be written

(23)

. (A
FOs_p o2 %_‘fu) (24)

since N"/ N=0 within the approximation stated. We de-
fine here f ™ - (7 /dx") f. Equations (24) allows us to
express all derivatives of f(x) in terms of Fx) itself

and its first derivative. It is then readily checked that
the third and fourth order derivatives are approximately
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fmz_szm —2kk' _Pka’
f(‘)gk‘f - 4kk'f“’— zkaf(l)

where p = —2N"/N. The even order derivatives are in
_general

f(Z’l) =,(_ l)n[anf -2(n-1)n kZR-SkIf(I) -n k2ﬂ-2 pf(l)]'
- (25)

This result permits the evaluation of the difference A
=f(x +1) - 2f (x) +f(x - 1) by a Taylor series expansion
around x: '

= " pin
A2f~2n§ (-\1) (2)1)!f-2f

n M 2n=3 1.1 ¢
- "Zz; -1 (2n)! BRI
R L T
=[2cosk(x)—2]f(x)+[(£ _SLk“(E;()l‘_).) _S_;;lz_gf_) p(x)]

x £ D(x),
The second term on the right-hand side of the last
equation vanishes identically since

__d . sinkk)
p(x)—-dx In %(x) ’

so that f(x), the solution of the differential Eq. (23),
also obeys the difference Equation (22). It may be noted
that the derivation carried out here holds also if k(x) is
pure imaginary.

The approximation which had been invoked to derive
the connection between the difference equation (22) and
the differential equation (23) is also employed within the
customary WKB approximation applied to these equations.
Hence, it must be possible to demonstrate by means of
the WKB approximation that (22) and (23) have identical
solutions. The application of the WKB approximation to
Eq. (23) is standard and we may just state that from it
results

flx)= siflk(x)' cos(f B(x"Ydx' + a) (0<k<m),

!0 -

<

(26)
where a and C are constants to be chosen in accordance
with possible boundary and normalization conditions.

The WKB approximation can-also be applied to the
difference equation (22). One sets

f(x)=A(x) cos[Qx) +a] (27)

where the functions A(x) and 2(x) to be determined are

assumed to be slowly varying such that
|97] «1 and |A7/A|<«1 (28)

and 21l higher derivatives of Q(x) and A(x) can be
neglected. One has

’
flxz1)=A (1 + %) cos(@+axQ +Q7/2)
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where
” \ 2
cos 9+a:9'+9—— = 1-1(9—) cos(Q+ax V)
2 2\2 v
[ 4
- %— sin(R+ a Q).

Neglecting the terms (2"/2)? and (4'/A)(Q"/2), one
obtains

A

'] AP i
flxt1)=A (cosn' F %— sin@' & 4 cosﬂ’) cos(+a)
Q7 Al ’
+A (¥sinQ’ - 5 cosR’ — Y sinQ’ ) sin(Q+a),

which inserted into Eq. (22) leads to
A(2cosS¥ - 2cosk)cos(f+ a),

?
- A(SZ" cosf¥ +2 %— sinﬂ') sin{Q+a) =0,

or
Q =k,
AL cos®
A 2 sin®

These last equations determine Q(x) and A(x) as

Qx) = j;: k(x")dx’, (29)
A(x)=C/Vik (), (30)

which together with (27) shows that the WKB solutions of
(22) and (23) are indeed identical. This finding holds, of
course, only as long as the conditions (28) are met. The
condition 1927] <1 is equivalent to |2’| <1 which had
also been assumed in deriving the equivalence of (22)

‘and (23). The condition |1A’/A| «1 is more restrictive

and does not hold for & close to either 0 or 7.

The equivalence of Egs. (22) and (23) within the semi-
classical approximation allows a solution which holds
uniformly over the entire domain 0 <k <. Such solution
is obtained by means of the uniform WKB approximation
applied to the differential equation (23) setting

172 -
(ﬁi—"’ﬂﬁ) f &) =A(x) F(@(x)), G

k(x)

where F(Q) stands for the regular or the irregular Airy
function, 8 the solutions of

F"(Q) - QF(Q) =0.
Inserting (31) into (23) gives by virtue of (32)

A'
(5

(32)

’

+0°Q +k2)F(m+ (2 ‘%— Q4 n") F'(R)=0.

Assuming now that A’ is slowly varying such that A%/A
=0 leads to the equations

Q2Q+k2 =0,

A'fA=- (@ /@),

the solutions of which are

Qx) = —(% I f,: k(x')dx' I)“ : (33a)
A)=c{i o | kR1Y (33b)
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Finaily,

|n|l/4
flx)=C ik F7* F(ﬂ(x)).

The integration limit x, in (33a) must be either of the
zeroes of sin 2(x). In the x region distant from x, where
|Q(x)| is large, i.e., where the solution (26) holds, the
expressions (34) and (26) can be identically matched.
This follows from the asymptotic behavior of Airy
functions ®; For |Q(x)I > 1 and w= f:o k(x')dx’

(34)

cos(w ~n/4) for w>0

ﬁln'“‘Ai(_gh{cos(w+1r/4) pre>9. G5
7 _ fcos(w+n/4) for w>0
Vi |a|14Bi(- Q)= {co%(w—w/#l_) for @ <0 " (35b)

The derivation above for the equivalence of Egs. (22)
and (23) holds also in the case that k(x) is purely imagin-
ary. The uniform WKB approximation applied to Eq. (23)
gives in this case

a0 =(3 L ke ax)*”, (362)

A)sclam Y k)|, (36b)
and hence

F)= [s%f"k’(j:)—/]fﬁr(la(x)l). (37)

1V. SEMICLASSICAL SOLUTION FOR 3/-COEFFICIENTS

The semiclassical solutions for the difference equa-
tions (18a) and (18b) have been derived formally, and we

will now evaluate explicit expressions for individual 3j- .

coefficients from these solutions., It is instructive to
consider first solution (26) for the difference equations
which holds only in the classical domain distant from
the classical boundaries J| nyyy Yqmass 2nd My 10, My s,
For Eq. (18a) this is

iy Iy gyt €
[Lt L Ls] ={(~1) 7‘-}( cos[J,) + a] (38)
where
‘ ., .
Q) = f; 6,(J})dr; (39)
{ min

and for Eq. (18b)

[}": 'Z I:I:] =(~-1)1"%2"s %f cos[®(Ly) + 8] (40)

where

eLy= [ gLy (41)
1 min

Of course expressions (38) and (40) must be identical -

and to show this the phase functions Q(J;) and #(L,) need

to be evaluated explicitly. In doing so, we will closely

follow Ref. 1.

We had pointed 9utiat}ove that the three variables
Ly, Ly, and Ly in ["11 1, ) are only defined up to a con-
stant which can be adé to these variables without
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changing the value of the 3j-coeificient. Hence, one is
free to let L,, L,, L; go to infinity keeping the differ-
ences my=Ly~ Ly, my=Ly~ L, mg=L,~ L, constant.
In this limit the angular momentum prism associated
with [i" ?2 ?J resembles a tetrahedron T(J,,J,, J;,
L,,L,,Ly) with the triangular base A(d,, J,, J,) and in-
finite edges Ly, L,, L;. In order to evaluate Q(J;) and
®(L,) one can, hence, take advantage of the. identity

é Jyd8; +L;dn,) =0, (42)
a special case of a theorem first derived by Schlaefli?
which holds more generally for elliptic tetrahedra.
From (42) follows

d‘%; (J:9:+Lm¢)=‘£l3 6,dJ +nydLy
or

2

oy 15 W8, +Ling)=8,, 3)
3

2
oL, “21 (J¢8¢+Ll77l)=77k’

and one can conclude immediately that 2)?., J,8,+ Lpn)
is the solution of both Eq. (39) and (41).

It should be demonstrated that with this solution (38)
and (40) are indeed independent of the absolute lengths

_of Ly, L, and Ly, This follows from the geometrical

relationship ,
Ny +My+13=27,

since then
‘Zj% Lin,=-nm, +ngtty +21Lg,

The constant term 27Ly (mod 27) can be added to the
phase constants o and 8 in (38) and (40), so that we
may set
3
9(J1)=4’(L1)=‘Z’> Jy 8, —ngniy +mymy, (44)
(38) and (40) are therefore identical if we set C;=C; and
a = ﬁ,

The normalization constant C, and the phase constant
a still need to be determined, We will derive here only
C; and must leave the problem of choosing o correctly
to a later discussion of the boundary conditions of the
3j-coefficients in the nonclassical domains. The 3j-co-
efficients represent the matrix elements of the unitary
transformation T connecting the basis sets |j,m,) |jsm,)
and 1(j,, j;)j,m,). One may exploit the unitary property
of T in order to determine the normalization constant
C,:

Jy By dy) [y Iy
: =0; ;..
% 21 [Li Ly Ly Ly Ly Ly gt 43
In the limit of large quantum numbers this may be
written for Ly =L’ with
o Jy J
[L: L: L:] = N(Jy, Ly) cos[Q(Jy, Ly) + ],
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L7 ady 20, NGy, Ly cos[@Wy, Ly) +al

x cos[Wy, L) +al=8(Ly - Ly’).
The method of stationary phase can be applied to get

° an e

J:: dJ‘ JXN(Jb L1)2 cos ((f"’ - Ll) —a—l:;') = 6(L‘ Ll )
which holds only if :

1 3:Q ) 1/2

N=\T50 | L))

To evaluate 3°Q/3J,0L, = dn,/3J, we note that

A%/ ad2
P(JZ’ mZ)P(JIS’ ma)

(46)

cosny=-4

which can be derived from Eq. (4) and Eq. (15). To-
gether with (14) this gives

oy __Ji @mn

ad, - 24

and, hence,

1 1/2
N=2% (_211A ) .

This result is in agreement with (38) and (40) for Cy
=1/V3r. Evidently, this determination of the normaliza-
tion constant also yields the correct functional depen-
dence 1/VA for N. It is well known that the phase func-
tion of a semiclassical operator alone determines the
normalization factor N. Our resuit supports therefore
(38) as the correct semiclassical 3j-coefficient. We
have finally for the 3j-coefficients in the %lassical
domain

J1 Ja Js\ il qyttevis _1
(ml "y m,) =1 V2uA

XC08(J, 0y +J, 0, +Jy0y = Mgy + Mgy + Q).
(48)

This result, except for the phase constant a to be
determined yet, is identical with the expression of
Ponzano and Regge and that derived by Miller from the
‘correspondence relationships of classical and quantum
mechanics.

'i'he expression for semiclassical 3j-coeft'icients'uni-
formly valid over the entire quantum number domain
can be evaluated from the solutions (34) and (37) of the
difference equation (22). These solutions are valid even
near the classical turning points Jj nis 2nd Jy max (M3 oa
and M, ,,) provided that k(J; ns,), etc. vanish. However,
in Eqs. (18a) and (18b) 6, and 7, are either 0 or 7 at
the turning points. In the latter case, a phase trans-
formation has to be employed which induces the proper
turning point behavior of the difference equation.

For the following, it may be sufficient to gonsifier
Eq. (18a) only, since (18b) would lead to an identical
solution. We define the phase function

00=J10“’+J20‘2’+J393 +m1’lg"m2’12 - 49)

“qo0 1 AR oal D e AJmd 18 Na 1 Artabar 1975

where

_ {0 it‘OsReg‘s,,/z
%= {u it 1/2< Reé, <7’ (50a)
0 if 0<Ren, <

7 if 1/2<Renp <7w°

Red, (Ren,) stands here for the real part of 8,(n,). For
all quantum mechanically allowed J; and m,, R, thus de-
fined is either an integer or a half-integer multiple of =,
A simple criterion can be found which distinguishes be-
tween these two possibilities if JysJy 51, OF Jy 3 pag!

/7 half integer (integer) e= Q- Q, positive (negative).
(51)

To derive this rule one may express i - 1, through
[(8,-6,°)dJ,. ForJ,=J,

min

71
n— no - '/;1 min

(6, - &) dJ,
and since 6, is a monotonous function in the neighbor-

hood of J, ,, it follows from 6,(J; n;,) = 6

. _ )0 if =0
n“""{<o if =7 "

However, for &(J; ,,,)=0

R & eg]_ [o T o]
[ni’ n sl Lm0 (v22)
and 2,/7 is half integer, and for B, ,,,)=7

(52b)

[9‘1’ &Ry} _[0q
nm Nl lr 0w
and ,/7 is integer. Similarly, for J,=J,
4 m|
Q‘Qo='_j;l! - (91-9';’)de

is negative for 6 =0 and positive for 62=7. But in this
case one finds for &(J, . )=0

q8a) [0

[ m ) =lora) (o2e)
i.e., R,/7 integer, and for &, ) =7

& & 6‘,’]_ [17 0 0]

[n? o0l 07w}’ (2d)

i.e., Q,/n half integer. Equations (52a)—(52d) are
readily checked geometrically by drawing the corre-
sponding angular momentum diagrams.

At the boundaries of the classical domain J; ., J) g
the dihedral angles 6, and 7, are either 0 or r. Since
the dihedral angles are slowly varying functions of the
quantum numbers, the angles 6} and 59 are constant near
Jy miy a0d J; One may then set for the solution f of
Eq. (18a)

max *

f=cosf, f, - sin®, f, (53)

and show that in the regions of constant ¢{=0 or = the
functions f; and f, must satisfy the modified difference
equation,

[a%(J,) +2 -2 cos(6, - &)] £,(J,) =0. (54)
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The new representation (53) for the 3j-coefficients
together with this new difference equation, has favorable
behavior at the boundaries of the classical region, and
will also facilitate the evaluation of the 3j-coefficients

in the nonclassical region.

In the classical domain distant from J, ,,, and J;
f(J;) may be written according to Eqs. (17a) and (4 7

f=[27sing,}*/2 [cosQ, cos(R - Q, + @)

- sin@Q, sin(Q - Q, + )] (55)
and f, and f, must be chosen such that (53) identically
matches this expression for J, ,,, < J, < ...

It had been shown in Sec. 3 that the solutions of (54)
in the semiclassical limit must obey the differential
equation
&£ 2\ (sin(6, - )\ /2
—— — b R SRS V.20 = 6
(d'ﬂx (o, 92)) ( s fU)=0  (56)

where J; is now assumed to be a continuous variable. In
this equation (6, - 9°)2 is positive in the classical domain,
2zero at J; =J, ., J) . and negative in the nonclassical

domain. Accordmg to Eqs. (33a,b) and (34) the solutions
of (56) are in the classical domain

ZV4 Z4
W Ai(-Z) and (-"-e—)'rl—z' Bi(~ 2)

where Z =(31Q - Q,1 ?/3. The solutions in the nonclassi-
cal domain obtained by analytical continuation are |

1 a cosf, cos(R — Q, + n/4) - bsin®, sin(Q - Q, +1r/4)
a’cosQ cos(f2 - Q +7/4) - b’ sinQ, sin(Q - Q +1/4), Q- Q >0.

f= (nsing,)*/?

The condition that this expression must identically
match (55) is met fora=n/4 and a =b=a =8’ =S/V2
where S=z1, is an arbitrary phase factor. The 3j-co-
efficients are then finally

!
m; m, my

N 1/4
=S(- 1)11 YIRY R4

VoA

%

cosf, Ai(-Z)-sinQ,Bi(-2), Q-Q,<0
cosQ, Bi(~Z) - sin®, Ai(-2), 2-92,>0 (60)
in the classical domain and

o d2 Js = S{— 1Y1*2%3 z!\
m, m, ms) S$¢-1) V2TAl

% cosQ, Ai(Z) ~ sin@, Bi(Z), @-9,<0

cos, Bi(Z) -sinQ, Ai(Z), 2-9,>0

(61)

in the nonclassical domain. The phase factor S may be
defined according to the phase convention of Wigner

sgn{(.]g +]3 jz js )} =(_ 1)«'2"3""1.

m, m, my

(62)
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To identify the functions f, and f, the boundary conditions
to be imposed on the 3j-coefficients have to be taken
into consideration. Evidently, the 3j-coefficients must
decay monotonically to zero in the nonclassical domain
so that the irregular Airy function Bi(J) which exhibit

an exponential increase must be rejected in this domain.
This boundary condition is satisfied if we set for

<d<d) e

Zl/4
f= (sing,)t/?

1 mia

acosQ, Ai(-2)-bsinQ,Bi(-2), 2-8,<0
@ cosQ, Bi(-Z) - b’ sinQ Ai(-Z), Q-0,>0

(57)

which analytically continued into the nonclassical domain
is

Z4/4
f= GwhTe, — @y
a cos®, Ai(2) - bsinQ, Bi(Z), Q~Q,<0 (58) -
@ cosQ, Bi(Z) - ¥ sinQ, Ai(Z), ©-9,>0.

Over the discrete set of quantum mechanically allowed
J, and m, (i.e., J,, m, either integer or half integer)
the factors sin®, and cosf, multiplying the irregular
Airy functions Bi(Z) vanish in the nonclassical domains
as had been postulated. (57) becomes for

Jl min<< Jl < JX max

2,<0
B0 < (59)

lFor Jy
and

c05§2,(R ~ 24> 0) = - sinQy(Q - 2, <0)

Jotiaemqel
=(_1)2 3*m s

=j, +js +% in the nonclassical domain Ai(Z)>0

so that

Sgn{ ]1 ]2 ]3 )} =s(_1),‘3n‘3¢m101
m; m, mg

and §=(-1)"'s"

The 3j-coefficients (60) and (61) had been derived as
the semiclassical solutions of the recursion equations
(5) and (6). These recursion equations can be derived
from the following eigenvalue problems:

(5) : diagonalization of J,_ in the basis |(j,, j;)j,7,): eigen-
values my=m, _, +n, n=0,1,2 <o,

(6) : diagonalization of (J, +J,)? in the basis |j,m,) 1jymy):
eigenvalues j,(j, + 1) where j,=j, o,, +7n, n=0,1,2,

. The eigenvectors i.e., the rows and columns of the

unitary transformation matrix T defined in (1) and (2),
are then determined except for overall constant factors
by the recursion equations (5) and (6). In solving these
recursion equations one may treat the eigenvalues m,
and j,(j, +1) as unknowns to be determined through the
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boundary conditions to be imposed on the solutions (60),
(61). The boundary conditions that the 3j-coefficients
decay to zero in the nonclassical domains can only be
satisfied if J,(j,) and m, are either integer or half-
integer for otherwise the coefficients sinQ,(2 - 2, <0)
and cos®,(R - 2, > 0) in (61) multiplying the exponentially
increasing irregular Airy functions Bi(Z) do not vanish.
The semiclassical 3j-coefficients exhibit, hence, a

typical quantum character in the variables J, and m,(m;).

Since the semiclassical solution (60), (61) is indepen-
dent of the recursion equation from which the de-
rivation is started, this quantization property must hold
for all the variables of the 3j-coefficients. Further-
more, it is important to notice that the set of semi-
classical quantum numbers J, and m, being thus defined

~ as the allowed values J; and m, coincides with the set
of quantum mechanical quantum numbers I +3, my.

V. SEMICLASSICAL 6/-COEFFICIENTS

The 6j-coefficients {, .2 ,:} define a unitary trans-
formation T

T, =1(j, +1) @1, +1)p72 {;: ;: ;:} (63)
between two total angular momentum states with the
common internal angular momenta ,, I, j, coupled in
different ways to the same total angular momentum j,.”
One state is coupled according to the scheme (j;, (I,
1)y 3 72), i.e., 1, and I, are coupled to the infermediate j,
which in turn is coupled with j; to give j,. The other
state is coupled according to the scheme (I(%,,j)1; 7)),
i.e., l,,js are coupled to the intermediate I, which in
turn is coupled with /, to give j,. Classically this corre-
sponds to two ways of addition of angular momentum
vectors, namely L, +L;=J,,J, +J;=J, and L, +J,
=L,, L, +Ly;=J,. This angular momentum coupling
situation is illustrated by the classical vector diagram
in figure 3a where the classical angular momentum
vectors are defined in the usual way, J;,=j, + 3 and L,
= l +1 1.

Let us now assume as fixed the lengths of the classi-
cal angular momenta J,,J,, L,,L, and L, in Fig. 3a and,
accordingly, the quantum numbers )2,]3,1,,12,1 in
{:: :: f;} and let us consider the 6j-coefficients for all
possible j; together with the corresponding classical
vector diagrams. The manifold of all possible classical
vector diagrams is generated by moving vertex 3 of the
angular momentum vector tetrahedron in Fig. 3a along
the circle indicated whereby the angle 1, goes from 0 to
7. J; assumes then all values which correspond to the
varying distances between vertex 1 and 3. To complete
the correspondence between 6j-coefficients and classi-
cal vector diagrams it may be recalled that the matrix
elements defined in (63) squared T, are to be inter-
preted as the quantum mechanical probability for /,,1,
to be coupled to give j,, or, conversely, that J, -3
< 1Ly + Lyl <J, +%. On the basis of this interpretation

- Wigner® established an approximate functional relation-
ship between 6j-coefficients and the associated classi-
cal angular momentum tetrahedra. From the assumption
that each angle ), in Fig. 3a is equally likely, he esti-
mated for the probability T,l,l"’

« e « Rt ~ . N? 1 e~ a. o~ o~ PR
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FIG. 3, The series of 6j-coefficients {,‘ 151 , jymin=j,
=jymax, in (¢) and the corresponding mani ld of classical
angular momentum tetrahedra (Jy=j; +4%, L,=I,+4) generated
by rotation of vertex 3 around the shaded circle. ’l'he quantum

mechanical probability distribution (2j;+ 1)(2l,+ 1){,l 22

J32
for the occurrence of the classical vector diagram In af}are
compared with Wigner’s semiclassical estimate (2j,+1)
(20,+1)/24xV.
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Ty, =@, D@L +1/240V (64)
where V is the volume of the angular rhomentum
tetrahedron given by the Cayley determinant

0 L2 L3 L} 1
p o A4 1
V)= | L3 B 0 1 (65)
B g o
11 110

Equation (64) provides only an estimate for the absolute
magnitudes of the 6j-coefficients. Figure 3¢ which
presents the series of 6j-coefficients i1 50 159 illu-
strates that the 6j-coefficients oscillate rapidly while j;
is progressing along the circle of classically allowed
jy-values in Fig. 3a. Figure 3b which compares the .
corresponding probabilities Ty, With Wigner’s esti-
mate (64) demonstrates that (if) holds only as an
average over several neighboring quantum numbers.
The exact progression of the 6j-coefficients is, how-
ever, determined by the recursion equation®

il +1) {j‘zl » ;:} + ) {;1 ’ ;:}

h(ix) = (ij + 1){j1(j1 + 1)[-11(]1 +1) +jz(jz +1) +j3(j3 + 1)]
+ (L + 1) [,G, + 1) + 7,03 +1) = jss + 1]
+ la(la + 1)[jx(jx + 1) -jz(jz + 1) +js(j3 + 1)]

- 2;',(1:x +1)1,(, + 1)} (66¢)

We will show in the remainder of this section that for

large angular momentum quantum numbers this recur-
sion equation allows us to refine Wigner’s result (64).

In the limit of large quantum numbers recursion
equation (66) takes on a more symmetric form which
allows a geometrical interpretation in terms of the
classical vector diagram 3a. This asymptotic recursion
equation is again derived through a dilation of the angu-
lar momentum quantum numbers (i.e., j;,[;—~ My Aly)
and a consecutive expansion of (66) in terms of A neglec~-
ting terms of order O (x"?) and smaller, assuming that
A is large. Thus (66b) and (66c) may be written

(jy +1) gy = [1 + 0] 16[aJ, 0, +1) F Ay, 2, A
x F(\Jy, ALy, AL3) F(AJ; = 1,0d3, AJ5)
X FOWJ, = 1,0L,, ALy 2

and

h(xjy)

+ G, +1) gGy) {’3 . fl: Js } =0 (662)  =-2AJ[1+ O[22 ANLE - X2~ N3} + L L))
1 3
where - A2BO + 2L - L)
Y 212 _ 3272 42272
26 ={[G, +7s + 17 = B2 - Gy = 3P 1L+ 15 + 1) = ] MBS = WLE + L]
X[7 = (1, - 1?2, Neglecting terms of order O(x"?) allows us then to bring
(66b)J (66a) into the following symmetric form:
(F(x.}l ~1,00,,Adg) FOJ, =1, ALy, ALs) ) 12 (35, =1 Aj, My
A, -1 A, AL Al
N (F(XJ1+1,AJ,,AJ3) F(xJﬁl,xL,,Ui)) 12 (Aj,+1 M, M 1)
2, +1 Ay Al A

2ALE = (- T+ L+ LE) = A + L= L) = AU - L3+ 1)

-2 16 F(J,,J5,Js) F(Jy, Ly L)

x(F(le,xJ,,xJ,)F(xJ,,xL,,ij)_) 12 (nj, My Ms
Ay AL Ay Al

We will omit the parameter A in the following derivation to avoid a somewhat cumbersome notation. Doing so, we
assume the quantum numbers j, and [, to be large. It is again pointed out that all the following approximations taken
- to solve Eq. (67) are consistent with the neglect of terms O(x"%).

The coefficients in Eq. (67) are related algebraically to the classical vector diagrams in Fig. 3(a). This can be

recognized by virtue of the relations

3 VJ,=F(J,,J;,J5) F(J,, Ly, Lg) sinb; (68)
and!

N P CE RS R L ELACH +12-13)-J2I2-L3+1D) ©9)
cosb, = 16 F(J,,d;5,J3) FJy, Ly, Ly)
e P - Nt AL Rm T e -, O K. Schuiten 2~d R.G. Gordon 1982



(67) may then be formally written as a second order
difference equation ’

[82(J,) +2 — 2 cos6,] £(j,) =0 (10)
where
(VN (G g d
ra= () " kB a

This difference equation is valid over the domain

[, gt0) j1 me) Of the j;-manifold of 6j -coefficients
111213t i gy 30 i e 2T determined as the smallest

and largest j,-values satisfying the triangular conditions
for{;} 2 3 de, 1 aia=max{ij, = sl i1, -1} and

71 mee = Min{ j, +j3, Iy + 13}, Obviously, the J,-values oc-~
curing in the manifold of the classical vector diagrams
in Fig. 3a also lie within a finite interval /A A,
The smallest and largest c’lassically‘allowed J,-values,
Ji mis and Jy o, are those for which all angular momen-
tum vectors in Fig. 3a happen to lie within a single
plane (flat tetrahedron). Hence, J; n, 314 Jy gy 3T€
determined as solutions of either of the equations

cosé,(J,)=+1, cosn(J)=%1 (72a)

where 6, and n, are the dihedral angles of the angular
momentum tetrahedron adjacent to the edges J; and Ly,
respectively. The algebraic expressions for 6,, 65,1y
1.,7, can be obtained from (69) by permutation of the
labels of J; and L, and by permutation of J and L. Clear-
ly, in the limit of a flat tetrahedron the dihedral angles
are all either 0 or 7. Alternatively, J n, 304 J ny

may be determined as solutions of

V3(J,)=0.

3

To compare the quantum mechanical domain (71
j1 may ) and the classical domain [J) gy, < maz] We turn
to Fig. 3c which presents the whole string of 6j-coef-
ficients { /3 2 139, The classical j,-domain is for this
case [131,190] and lies well within the domain [110,230]
of all quantum mechanically allowed j,-values. Hence,
the quantum mechanical domain [110,230] is divided into
a classical domain [131,190] and two nonclassical do-
mains [110, 130] and [191, 230]. This situation that the
quantum mechanical j,-domain of a series of 6j-coef-
ficients can be divided into a middle classical domain
and two outer nonclassical domains applies in general,
though in some instances the nonclassical domains may
contain only a few or no j,-quantum numbers. The
division into classical and nonclassical domains has an
important meaning which is reflected by the functional
behavior of the 6j-coefficients, as can be seen from
Fig. 3c. The 6j-coefficients as one progresses along the
j,-domain oscillate rapidly in the classical domain and
decay to zero in the nonclassical domains.

(72b)

The existence of classical and nonclassical domains
is also reflected by the difference equation (70). Over
the classical domain [J, ,,, J ms) the dihedral angle
6,(J,) is real by virtue of its geometrical meaning, but
in the nonclassical domains the angle 8,(J,) together
with the remaining dihedral angles is complex. This
can be verified directly from the algebraic expression
for cosé, given in Eq. (69) which gives values between
-1 and +1 for classical J, and values exceeding —=1

3
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and +1 for nonclassical J,. Equation (65) reveals that
V2(J,) is positive in the classical domain, zero at the

classical limits J, ,, and J, .., and negative in the non-

“classical domains. Hence, to a 6j-coefficient in the

non-classical domain corresponds an angular momentum
vector diagram with complex dihedral angles and
imaginary volume.

To solve the difference equation (70) we start as be-
fore in the case of the 3j-coefficients from the observa-
tion that for large quantum numbers 6,(J,) is a slowly
varying function of J;, since again

cos6,(\d, +1, AJy, +)=cos6,(J, +1/x, Iy, =),

as can be readily checked from Eq. (69). Hence, the
“discrete” WKB approximation derived in Sec. 3 may
be employed to solve Eq. (70).

In the classical domain J, o, < Jy < J ,, the solution
as given by (26) is

{11 1) oo o
where
J
Q)= f: Yoewaly. (74)
. 1 mia

" Q(J,) is again readily evaluated by means of Eq. (43)

which holds also for the angular momentum tetrahedron

in Fig. 3a: '
3

QW,) = ‘}_‘1, ,6,+L,). (75)

To determine the normalization constant C in (73) the
unitary property of 6j-coefficients

ll l2 ZS
for L,= L}, we have for large quantum numbers

[ aJ,4J,L, N*(J,, L,) cos[aW,, L,) + ]

IZE Tmleg =61111' (76)
- can be en{ployed. With
{J‘ % Ja}=N(J1,L1)cos[Q(J,,L,)+0t] (77)

x cos[QW,, L) +a]=6(L, - L}).
The method of stationary phase applied to this integral
gives

/ dJl 2J‘L1 I\F(JI,Ll) cos ((Li —Iq) ‘aig—) =5(L1"le):
1

which holds only if

N—( 1 EY) )1/2
T\2J\Lym | 3J,8L, ’

However, by virtue of Eq. (43) and 3n,/3J, =J,L,/6V
this is )
N=1/VIZaV ,

(78)
so that C=1/V127 ‘is the correct normalization constant.

The validity of solution (73) is subject to the condition
N-'13N/3J,| <1, This condition cannot be satisfied for
small V in the neighborhood of J, py, 2nd J) n,, - AR €X-

_ pression for the semiclassical 6j-coefficients which is
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also valid in these regions is found by performing first
a suitable phase transformation of the solution f{(J,) of
the difference equation (70). We define for this purpose
the phase function ‘ ’

Q,= ‘2’2 .8+ L) (79)
where
_§0 if 0<9,<n/2
g‘;_{" if n/2<6,<7’ (80a)

n if n/2<n,<s7’

Q, is either an integer or 2a half-integer multiple of 7. It
can be shown as for the phase function (49) defined for
3j-coefficients that

Q,/m half-integer (integgr) = Q — Q, positive (negative).

, (81)
We then set for the solution of (70)

F(J)=cosQ, f, ~sinQ, f, (82)
and it is readily checked that f,(J,) and f,(J,) thus de-
fined must satisfy the modified difference equation

[a%(J,) +2 -2 cos(6, - &)] £,(J,) =0 (83)

in the region of constant 6. For J, ., <J, <J; nury fJ,)
determined through (73) and (78) is

f(J,)=(127sinb,)?/2 [cosQ, cos( - 2, +a)

- sin@, sin(Q — @, +a)]. (84)
Hence, f,(J,) and £,(J,) should be determined as to
satisfy Eq. (83) in the neighborhood of J; ., V) my 20d

to match identically through Eq. (82) this expression for

J1 mu« Jl < Jl max *

From the result of Sec. 3 one can infer that the solu-
tions of the difference equation (83) in the semiclassical
limit must obey the differential equation

&£ sin(6, - &) \ /2
(a7 - @-ar) (R250) " aw=0 69

where J, is assumed to be a continuous variable. As
was the case in Eq. (56), (6, - &) is positive in the
classical domain, zero at J) ., J; n,, and negative in
the nonclassical domain. The solutions of (85) and (56)
are therefore formally identical, only the explicit al-
gebraic form of the variables involved being different.
Furthermore, the boundary conditions to be imposed on
the solutions of the 6j-coefficients (82) are identical to
the boundary conditions postulated for the 3j-coefficients,
i.e., the 6j-coefficients must decay to zero in the non-
classical domain as is illustrated by the example given

in Fig. 3c. We have therefore for J, ,,, < J; < J;

1l min max

Zl/4
f= (sinb, 7%

x @052 Ai(-Z) - bsinQ, Bi(-2Z), Q-,<0
@ cosQ, Bi(-Z) =¥ sin@, Ai(-2), 2 - 2,>0
(86)
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and for J, € J, .,

1214

/= (sinh1 6, = @172

a cosQ, Ai(Z) - b sinQ, Bi(Z) for 2-9,<0
a cosQ, Bi(Z) - ¥ sinQ, Ai(Z) for Q- Q>0

412 J) nm

87
where )
z=@¢|a-q)re. *(88)

L 4

Over the discrete set of quantum mechanically allowed
J; and L, the factor sinf, (@ - Q,<0) and cosf, (R
- §,>0) of the irregular Airy functions Bi(Z) vanish in
(87), so that (86) in the classical domain together with
its analytical continuation (87) in the nonclassical do-
mains indeed represent a possible solution. This
solution matches identically with (84) if one chooses
a=b=a" =b' =S/V12 in (86) and (87) and a =7/4 in (84),
S being an arbitrary phase factor. The 6j-coefficients
are then finally
{jl 2 ja} =S Zt4

L L L

vi2v

cos®, Ai(- Z) - sin®, Bi(-2), Q-0,<0
cos®, Bi(- 2Z) -sin@, Ai(-2), @-2,>0

. (89)
in the classical domain and
i 5 43 ) 1/4
A RE
{cosno Ai(Z) - sin®, Bi(Z), ©-0,<0
cosQ, Bi(Z) - sin®, Ai(Z), 0-Q,>0
(90)

in the nonclassical domain, The phase factor S may be
determined according to the phase convention

Jima Ja s )_ Jatisttatls
sgn =(-1) .
£ ({ A z,}
For 2 - R, <0 one finds at J, =J, ..

 EEANRER,
nyonz nsf {0 7 wf’
i.e., cos,=(-1)2""*"2"3 por 2 - Q >0 there are two

possibilities:

(@) j,+is> L +1,:
AN R
m onz M3y {000
b) jy+js<b+1ly
6 & 61 _Jrool.
nona 3y 0 7 af’
: : _ ) FRY R : J1tizely
i.e., =sinQ,=(-1)1"2""3 or —sinQy=(~1) . But
4 @ e
"ig M2 ng
is constant throughout the nonclassical domains, hence

for (a) j, pu =1l +1s, i.e., —sin, =(=1)2"3"2"'3 and
(0T (b) jy pyy =Jz +Jsi i.6.  —sin@y=(~1)275"2""3_since

(91)
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in the nonclassical domain at j, = j, ,,, Ai(Z) and Bi(Z)
are both positive, the sign of (90) is

Jot] g¢l atl
(=1)3"s"3 s,
so that the sign convention (91) is met for S=1.

Let us finally compare our result (89) and (90) with
the semiclassical expressions for the 6j-coefficients
stated by Ponzano and Regge. These authors give three
formulas, one valid for Jy ,,, < J; < J; .., one for
Jx « Jl min? Jl > J! max
classical domain distant from Jy .., J) ne» We have

By J2 Js 1 . : + I
{z, L z,} i vr °°S(" 4)
which is identical with the expression of Ponzano and
Regge in this region. In the nonclassical domain distant
from J; 10, J) e (90) becomes for J; and L, either

integer or half-integer

92)

A A TR ’z"a"i"; 1 ~lo-
{l, L z,}‘( 1 TETyT Pl (2= %))
: (93)
in agreement with the result of Ponzano and Regge.

To describe the 6j-coefficients in the neighborhood of

J) mins Y1 mgs PONZANO and Regge introduced the variable

9V _,
3 1?;""9"901

where F,= F(J,,d,,J5) F(J;,L,, L) F(L,,L,, J) F(L,,d,, Ly)
and the variable

q)_{ﬂo—Zw for ~Q,<0
Q,-37 for Q-9,>0

(94)

Inserting these variables into (89) and (90) yields for
Q-9,20

T Ja Js =2"4/3 F;1/%cosd Ail-Z)zsind Bi(-Z)]
Lkl

(89")

and
hy Jo Js
LWL L

where Z =(3V)?/(4F,)*/3. For physical values of J, and
L,, ® is an integer multiple of 7 and (89’) and (90’) are
then identical with the expressions of Ponzano and Regge.

=2°4/3 F1/%[cosd Ai(Z)-sind Bi(2)]
_ (90

Thus we have demonstrated that the semiclassical
expressions for 6j-coefficients first stated by Ponzano
and Regge on the basis of only heuristic arguments can
be derived systematically from the recursion relation-
ship (66). It is admirable that Ponzano and Regge
succeeded in obtaining their results without the
guideline of a step-by-step derivation.

Equation (94) holds only in a small neighborhood of
Jy mia» Y1mae FOT this reason the expressions of
Ponzano and Regge (89’) and (80’), though identical with
our results (89) and (90) near J, ., J ng» d0 not match
the functions (92) and (93) which hold distant from the
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and one for J,=J, p1us Jymeg- I0 the

classical boundaries. But our results (89) and (90) hold
uniformly over the entire domain of quantum numbers
and represent therefore an improvement over the
‘approximations of Ponzano and Regge.

‘The recursion equation (66) of the 6j-coefficients can
be derived as the secular equation of a certain eigen-
value problem in which [ (I, +1) represents the eigen- ‘
values and v; (j,) ={f: f: ,’:} (1 min € 71 S 1 mee) the eigen-
vectors.® We may have regarded LZ={,(l, +1) in Egs.
(66c) and (67), (69) as unknown, carried through the
derivation to be finally determined by the boundary con-
ditions, i.e., v;,(j;) = 0 for j, > J) n,, and j; <Jy gy, The
semiclassical expressions (89) and (90) reveal then, that
these boundary conditions are met only for L, being
either integer or half-integer, for otherwise the coef-
ficients sinQy(Q - Q, <0) and cosRy(Q - 2, > 0) in (90)
multiplying the irregular Airy functions do not vanish.
The semiclassical solution of the 6j-coefficient recur-
sion (eigenvalue) equation exhibit thus the expected
quantum character for L,. More interestingly, it pre-
dicts the exact discrete set of quantum numbers (integer
and half-integer). Since the solution (89) and (90) is in-
dependent of the recursion equation used as a starting
point for the derivation (there are 6 different recursion
equations), this remark holds as well for all variables
in the 6j-coefficients which must all be quantized ac-
cording to Eq. (90). It is a remarkable fact that the
semiclassical quantum numbers coincide with the set of
exact quantum numbers for such a coincidence is only
found in few situations (for example, for the Coulomb
potential and harmonic oscillator eigenvalue problem)
which possess special underlying symmetries, It may be
speculated that it is the puzzling Regge-symmetry of 6j-
coefficients !° (and 3j-coefficients) which is responsible
for this remarkable coincidence.

Vi. COMPARISON OF EXACT AND SEMICLASSICAL
WIGNER COEFFICIENTS

A comparison of exact and semiclassical 6j-coef-
ficients had already been carried out by Ponzano and
Regge. Since earlier algorithms (and tables) for 6j-co-
efficients were restricted to the domain of only moderate
quantum numbers, these authors were not in a position
to demonstrate directly the accuracy of semiclassical
6j-coefficients (and 3j-coefficients by the same token)
involving large quantum numbers. Because of the sur-
prisingly good agreement between exact and semiclassi-
cal 6j-coefficients at small and moderate quantum num-
bers Ponzano and Regge expected that the semiclassical
expressions should give very satisfactory values for
large quantum number 6j-coefficients.

Recently, we have developed an algorithm for the
evaluation of 3j- and 6j-coefficients on the basis of the
same recursion equations (5), (6), and (66) from which
the semiclassical 3j- and 6j-coefficients had been de-
rived as asymptotic solutions.® This algorithm was
found numerically stable even for large quantum num-
bers-in fact, it served to evaluate the 3j- and 6j-coef-
ficients in Fies. 1—-3. Hence, it is now possible to
examine directly the accuracy of large quantum number
semiclassical Wigner coefficients. In Tables I-III are
given some sample values of the Wigner coefficients
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5\BLE 1. Accuracy of semiclassical 3j~coefficients

TABLE II, Accuracy of semiclassical 3j-coefficients

Exact quantum
mechanical®

Uniform semiclassical®

(8 %2 1%
71 Exact quantum Uniform semiclassical® m
mechanical®
40 0,4999 (- 04) 0. 4833 (~ 04) ~60
46 0.0848 (- 01) 0.0847 (- 01) - 50
48 0.1563 (- 01) 0.1562 (- 01) - 40
50 0.1857 (- 01) 0.1858 (—01) -30
52 0.1139 (= 01) 0.1141 (- 01) -24
54 -0.0352 (- 01) - =0,0349 (~01) ~-22
56 —-0.1385(-01)~ -0.1385 (~01) -20
58 -0,0927 (- 01) -0.0929 (—01) ~18
60 0.0519 (- 01) 0.0517 (- 01) -16
70 0.0119 (- 01) ~0,0115 (—01) ~14
80 -0,0213 (- 01) —0.0214 (- 01) -12
90 ~0.0808 (- 01) - 0.0807 (—01) ~10
100 - 0.0926 (~01) —0..0927 (- 01) 0
106 0.0320 (~01) 0, 0322 (- 01) 10
108 0,1051 (-~ 01) 0,1052 (- 01) 20
110 0,1372 (- 01) 0.1372 (~01) 22
112 0.1300 (- 01) 0.1300 (- 01) 24
114 0.1006 (- 01) 0.1005 (~01) 26
116 0. 0665 (~01) 0.0664 (~01) 28
118 0. 0385 (~01) 0. 0384 (—01) 30 -
120 0.0197 (- 02) 0.0197 (- 01) 32
130 0. 1407 (- 04) 0.1404 (- 04) 34
140 0. 7206 (- 08) 0.7191 (- 08) 40
150 0.1438 (~12) 0.1433 (- 12) 50
160 0. 3811 {~ 20) 0. 3672 (—20) 60

0.1749 (~-30)
0.7794 (- 17)
0.5450 (- 09)
0,4795 (- 04)
0.0286 (~01)
0.0682 (- 01)
0. 1207 (=~ 01)
0.1445 (- 01)
0.0841 (- 01)
-0.0462 (- 01)
-0.1163 (- 01)

~0.0255 (- 01)°

0,0863 (—01)
0, 0357 (- 01)
~0.,0810 (- 01)
~0.1043 (- 01)
0,0120 (- 01)
0.1229 (- 01)
0.1418 (- 01)
0.0974 (- 01)
0.0474 (- 02)
0.0174 (~ 02)
0.1951 (- 04)
0.8202 (~ 10)
0.3218 (~19)

0.1626 (- 30)
0.7760 (- 17)
0, 5436 (- 09)
0,4788 (~04)
0.0286 (~01)
0,0682 (- 01)
0.1207 (-01)
0.1446 (-01)
0.0842 (-~ 01)
—~0,0461 (~01)
-0,1163 (- 01)
-0,0257 (-01)
0,0862 (- 01)
0.0354 (—01)
—~0,0812 (~01)
—~0,1042 (- 01)
0.0122 (- 01)
0,1230 (- 01)
0.1418 (- 01)
0.0974 (- 01)
06,0474 (- 02)
6,0174 (—~02)
0. 1948 (- 04)
0,8177 (- 10)
0.3099 (-19)

‘Evaluated by recursion, Ref. 3
YEvaluated from Egs. (60), (61)

% Evaluated by recursion, Ref. 3.
®Evaluated from Eqs, (60), (61),

presented‘in Figs. 1—3 together with the corresponding
semiclassical values. The relative errors between the

exact and the semiclassically evaluated 3j- and 6j-co-
efficients are found to be in general small (less than 1%).
Exceptlons are only the terminal 3j- and 6j-coefficients
%), etc. for which the error is of the order

4y
(L

1%.

-850

We discussed above the connection between Egs. (89),

(90) and the semiclassical expressions (92), (93), (89’),
(90’) stated by Ponzano and Regge. While (89), (90)
provide a uniform approximation to the 6j-coefficients
over the entire domain of allowed quantum numbers, the

expressions of Ponzano and Regge hold only over mu-

TABLE IIL. Accuracy of semiclassical 6j-coefficients {;3} 8 150

J1

Exact quantum mechanical *

Uniform semiclassical®

Ponzano and Regge semiclassical

110
120
126
128
130
132
134
136
138
140
150
160
170
180
182
184
186
188
180
192
194
200
210
220
230

0.3865 (- 13)
0.2191 (- 06)
0.0307 (- 03}
0.0973 (- 03)
0.2405 (- 03)
0.4552 (- 03)
0.6285 (- 03)

0.5503 (- 03) .

0.1216 (-~ 03)
~0,3852 (~03)
~0.3367 (- 03)
~0.4230 (- 03)
~0.3378 (— 03)
~0.4400 (~- 03)
— 90,0969 (— 03)

0.3378 (- 03)

0.5611 (- 03)

0.5289 (~ 03)

0.3666 (~ 03)

0.2021 (- 03)

0.0919 (~ 04)

0.3194 (- 05)

0.5648 (- 09)

0.1537 (~14)

0.2427 (- 23"

o

0.3725 (- 13)
0.2186 (- 06)
0.0307 (~03)
0.0972 (-~ 03)
0. 2402 (~03)
0.4550 (~03)
0. 6284 (- 03)
0. 5507 (- 03)
0.1224 (- 03)
~0.3847 (—03)
-0.3359 (- 03)
-0.4231 (- 03)
-0.3372 (~03)
~0,4398 (~03)
~0,0963 (- 03)
0.3383 (- 03)
0. 5612 (~03)
0. 5288 (- 03)
0. 3664 (—03)
0.2019 (- 03)
0.0918 (—04)
0.3190 (- 05)
0.5637 (- 09)
0.1533 (- 14)
0. 2339 (~23)

0.3737 (~13)
0. 2206 (- 06)
0.0315 (- 03)
0.1018 (- 03)
0. 2362 (—03)
0.4541 (- 03)
0.6154 (- 03)
0.5466 (- 03)
0.1069 (—03)
~-0,3931 (~03)
-0.3381 (~03)
—0.4231 (—03)
~0.3392 (-~ 03)
—-0.4491 (- 03)
—0.1090 (—03)
0.3265 (- 03)
0. 5606 (- 03)
0. 5202 (—03)
0. 3665 (~03)
0.1983 (- 03)
0.0964 (~ 04)
0. 3239 (—05)
0. 5667 (- 09)
0.1537 (- 14)

0,2342 (-23) -

*Evaluated by recursion, Ref. 3
®Evaluated from Egs. (89), (90).
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TABLE IV, Convergence of semiclassical 3j-coefficients (;{x

45 3.5

=3¢5% 2,50 *
js A=1 A=2 r=4 - A=8 T a=16 =32
1 0.2789 (00) 0.1769 (00) 0.9692 (= 01) 0.4032 (=01)  0.0977 (~01) 0.0806 (-02) QM*
0.3043 (00) 0.1959 (00) 0.9520 i~ 01) 0.3878 (~01)  0,0926 (—01) 0.0758 (-02) SC
2 —0.9535 (-01)  ~0.8063 (—01)  0.0457 (=01  —0,3174 (-01)  0.1288 (~01) 0.0297 (~02) QM
—0.9303 (=01)  ~0.8294 (-01)  0.0523 (~01)  —0.3172(~01)  0.1285(=01) . 0.0285(-02) SC
3 ~0.6742 (=01)  —0.6995(—01) ~—0.0141(=01)  —0,2728(—01)  0.1378 (~01) 0.6773 (-02) QM
—0.6975(=01)  -0.7031(-01) -0.0143(=01)  —0,2730(-01)  0.1378 (~01) 0.6773 (~02) SC
4 0.1533 (00) 0.5646 (-01) =—0.2083 (~01)  =0.1316 (-01) —0.0825(~01)  -0,0275(-02) QM
0.1558 (00) 0.5571 (=01) ~-0.2158 (=01)  =0.1325(~01) —0.0823(~01)  —-0.0281(-02) SC
5 ~0.1564 (00) 0.9203 (~01)  0.3313 (- 01) 0.2863(~01)  0,1021(~01)  —0.4379 (=02 QM
~0.1566 (00) 0.9204 (-01)  0.5315 (- 01) 0.2865(=01)  0.1023 (~01)  —0,4376 (-02) SC
6 0.1099 (00) 0.4867 (~01)  0.1711 (~01) 0.0397 (=01)  0.4149 (—03) 0.8876 (-05 QM
0.1090 (00) 0.4835(=01)  0.1704 (= 01) 0.0397 (~01)  0.4145 (-03) 0.8870 (- 05) SC
7 —0. 5536 (~01) 0.1177 (~01)  0.9524 (- 03) 0.1178 (~04)  0.3496 (—08) 0.6071 (-=15 QM
-0, 5441 (—01) 0.1162 (—01)  0.9452 (- 03) 0.1173 (=04)  0.3488 (-08) 0.6064 (-15) SC
8 0.1800 (~01) 0.9460 (—03)  0.4072 (- 05) 0.1220 (~09)  0.1804 (-18) 0.6568 (-36) QM
0.1727 (=01)  0,8079 (~03)  0.3915 (- 05) 0.1174 (-09)  0,1738 (- 18) 0.6332 (-36) SC

AQM= quantum mechanical va:lues; SC =semiclassical values.

tually exclusive regions of the quantum number domain
and do not connect smoothly with each other near the
classical boundaries J; ui0s 75 max Miminr Mime) ID
Tables I—II the 3j- and 6j-coefficient quantum mechani-
cal and semiclassical values are presented for several
consecutive values near the classical boundaries to
demonstrate the uniformity of the semiclassical formu-
las (60), (61) and (89), (90). As can be seen from the
quoted numerical values, the uniform expressions are
very accurate and furnish thereby an improvement over
the expressions of Ponzano and Regge.

The derivation of the semiclassical Wigner coefficients
as the asymptotic solutions to the recursion equations
(5), (6) and (66) had been based on the expansion of

My Mz Ms\ gng fMi M Ms
Am,; Am, Amy, S )AL AL Al

in terms of pou;ers of A, such that all terms up to order
0(x7!) had been kept. This suggests that the semiclassi-
cal Wigner coefficients should converge to the quantum-
mechanical values with increasing x. This conjecture is
examined in Tables IV and V, for 3j- and 6j-coefficients.
In Table IV the series of 3j-coefficients ('1* 3% 3:2) are
evaluated for x=1,2,4,8,16,32 by means of recursion
of Eq. (5) and by its asymptotic semiclassical solution
(60), (61). As can be inferred from the tabulated values
the relative error of the semiclassical 3j-coefficients
does decrease with increasing A. Similarly, one can
observe from Table V which presents the values of the
6j-coefficients { /4, .3, A} for A=1,2,4,8,16 that the
semiclassical 6j-coefficients converge to the exact 6j-
coefficients with increasing A. 4

Finally, the question may be raised if for very large
quantum npumbers a semiclassical evaluation of the

TABLE V. Convergence of semiclassical 6j-coefficients {5’.‘; S
js A=1 A=2 A=4 A=8 A=16
1 0.3491 (- 01) 0.1218 (~01) 0.3226 (- 02) 0.0513 (- 02) 0.0302 (~ 03) QM*
0. 3482 (-01) 0.1201 (~01) 0.3155 (- 02) 0.0499 (- 02) ©0.0292 (- 03) SC
3 0.1891 (-01) -0.7077 (- 02) »0?0185 (—-02) -0.1458 (- 02) 0.2156 (- 03) QM
0.1905 (- 01) ~0.7068 (- 02) 0.0180 (- 02) -0.1458 (- 02) 0.2157 (- 03) SC
5 - 0.2359 (- 01) 0. 8663 (- 02) 0.2973 (- 02) 0.0887 (- 02) 0.1358 (- 03) QM
-0,2382 (~01) 0.8706 (-02) 0.2982 (- 02) 0.0889 (- 02) 0.1362 (- 03) sC
7 0.0129 (- 01)" -0,7728 (-02) 0.1603 (- 02) —-0.0698 (- 02) 0.0315 (- 03) QM
0.0152 (~01) ~0.7717 (- 02) 0.1596 (- 02) —0.0699 (- 02) 0.0318 (- 03) sC
9 0.1677 (—01) 0.0231 (-02) —0,2800 (~02) 0.0854 (—02) 0.0697 (- 03) QM
0.1671 (=~ 01) 0.0198 (~02) -0.2800 (- 02) 0.0854 (- 02) 0.0696 (- 03) sC
11 ~0,2135 (- 01) 0.7795 (- 02) 0. 2264 (-02) —0.0020 (- 02) -0.3562 (- 03) QM
-0.2147 (- 01) 0,7793 (- 02) 0.2259 (- 02) ~0.0022 (- 02) - 0,3561 (- 03) SC
13 0.2521 (- 01) 0.9407 (- 02) 0.1724 (- 02) -0.1184 (- 02) 0.4040 (- 03) QM
0.2527 (-01) 0.9429 (- 02) 0.1731 (- 02) -0.1183 (- 02) 0.4039 (- 03) sC
15 0..027%1 (- 01) 0.7636 (- 04) 0.1171 (- 06) 0.5415 (- 12) 0.2293 (- 22) QM
0.0257 (- 01) 0.7175 {-04) 0.1095 (- 06) 0.5051 (-12) 0.2136 (~22) SC

$QM = quantum mechanical values; SC=semiclassical values.
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Wigner coefficients should be favored over a recursive
evaluation. The recursive evaluation of the Wigner co-
efficients generates simultaneously whole strings of 3j-
and 6j-coefficients like

(j; Ja ja) and {jl Ja j’} for all allowed j,,
m‘ mz ms l[ ls

whereas the semiclassical formulas need to evaluate
each 3j- and 6j-coefficient individually. In cases for
which such whole arrays of coefficients are needed, the
recursive method involves less numerical effort than
the semiclassical method, and also provides more ac-
curate numerical values. In cases where only individual
coupling coefficients are needed a semiclassical evalua-
tion may nevertheless be quite useful. In addition to
numerical evaluation, our systematic derivation of the
semiclassical Wigner Eoefficients should contribute to 2
better physical understanding of the quantum mechanical

K}
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theory of angular momentum coupling.
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