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We describe a two-layered network of linear neurons that organizes itself as to ex-
tract the maximal amount of information contained in a set of presented patterns.
The weights between layers obey a Hebbian rule, whereas the lateral, hierarchi-
cally organized weights within the output layer follow an Anti-Hebbian rule. For a
proper choice of the learning parameters, this rule forces the activities of the out-

ut units to become uncorrelated and the lateral weights to vanish. The weights
Eetween the two layers converge to the eigenvectors of the covariance matrix of
input patterns, i.e. the netwox%( performs a principal component analysis of the
input information. Consequently the output units become detectors of orthogonal
features, similar to ones found in the brain of mammals.

1. INTRODUCTION

Although part of the synaptic connections in the brain is genetically specified, postnatal
visual input plays an essential role in the organization, birth and death of synapses. One
expects that local rules, like Hebb’s rule [1], govern the postnatal organization of the brain
and the formation of feature detectors or visual filters. These expectations raise the general
question how a sensory system, in response to input information, can organize itself according
to local rules so as to form feature detectors which encode mutually independent aspects of
the information contained in patterns presented to it.

In the following section we describe a simple, two-layered neural network as a model for
such a system. We sketch the mathematical properties of this model and present results of
simulations yielding visual filters that respond to patterns of varying orientations and spatial
frequencies.

2. THE NETWORK MODEL

The network consists of an input and an output layer with N; and N, neurons, respectively.
The units exhibit real, continuous-valued activities i = (71, .., in;) and o = (o1,..,0y,). The
two layers are completely interconnected, and the weight of the connection between input unit
J and output unit m is denoted by wjim. The set of weights connecting an output unit m to all
input units forms the weight vector wi,, the transpose of which is the m-th row of the weight
matrix W. The set of N presented patterns is denoted by {p™ = (»T, ..,pf{yi), m=1,...,Nz}.
The activities of the input units correspond to the presented patterns, i.e., i = p”, the
activities of the output units are the sums of the inputs weighted by the synaptic strengths,
le., 0™ =WpT. -

The weights between the two layers are adjusted upon presentation of an input pattern p*
according to a Hebbian rule, i.e., Aw;, = np7of, with positive 5 [1]. As suggested in Ref.
[4], we choose the pattern set such that (p™) = 0. Here, the brackets (...) denote the average
over the set of patterns.

If the network contains a single output unit, the Hebbian rule and an Euclidean normalization
of weights after every update, i.e., 3; wizl = 1, render weights which characterize the direction
of maximal variance of the pattern set [4], [5]. Equivalently, the weightvector w converges
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to the eigenvector with the largest eigenvalue of the covariance matrix C of the pattern set,
whose elements are given by are given by Cj = (p}’p[) Diagonalizing a covariance matrix
corresponds to the statistical technique of principal component analysis [6]. Thus, a Hebbian
learning rule for normalized weights yields the first principal component of the input data set.
Consequently, the output unit corresponds to a visual filter extracting the most important
feature contained in the set of presented patterns.

Fig.1 Scheme of the proposed network.

However, a single unit only processes a fraction of the total information contained in a pattern.
In order to transmit the complete information between the two layers, more output cells and a
different learning rule are required. As a result of an unsupervised learning process, the weight
vectors of these units should represent the remaining principal components, i.e., the remaining
eigenvectors of C. For that purpose we assume the existence of lateral, hierarchically organized
connections with weights uj,, between the output units. Then the activity of the m-th output
cell is given by o], = Wm - P + jcm wmW; - P”. Figure 1 shows a scheme of the network.
We propose that these lateral weights adapt themselves according to an anti-Hebbian rule:
the change of the lateral synaptic weight uy,, between two output units / and m is negatively
proportional to the product of pre- and postsynaptic activities, namely

Aupp = —p O}T 0:;1’ (1)

where 4 is a positive learning parameter. This strictly local rule forces the lateral weights
to vanish and the activities of the output cells to become uncorrelated. Correspondingly, the
weight vectors win converge to the eigenvectors cq of the covariance matrix C. As a result,
the output units correspond to analyzers of mutually orthogonal features that extract the
directions of diminishing variance of the input patterns.

3. MATHEMATICAL ANALYSIS

Consider first the case of N; input and N, = 2 output cells, connected by the lateral weight
u = uy). For slow weight changes, average products of pre- and postsynaptic activities can
be used in the learning rules. Then it is possible to expand the weight vectors in terms of
eigenvectors cq of C and to derive differential equations for the expansion coefficients dj,,
d9q and for the lateral connection u, namely

Cima = —dpo + (1+7)a)dma + 6m2 nu g dg : = fdmo,(dmﬁa“)v (2)
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and
U= — Z Azdygdag — puwy /\,,3(1"%3 = fuldms,u), (3)
3 3

where the dot denotes the time derivative and A3 the J-th eigenvalue of C (A3 > \341).

Carrying out a linear stability analysis for this system of coupled differential equations [3],
one finds upper and lower limits for the learning parameter g,
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In order to get analytical results for the case of more than two output units, we assume that
n —1 of the total N, weight vectors have already converged to the first n — 1 eigenvectors of
C and that the lateral weights between the corresponding output units have vanished. (Note
that a corresponding procedure is not necessary in practice, since our simulations have shown
that the weight vectors converge simultaneously). Then, for reasons of symmetry, only those
variables ump and dpq are coupled for which m = a < n. Requiring a stable fixpoint for the
corresponding differential equations, again yields a lower limit for x, namely

AL +7Aq)
We have checked these analytical results by applying the proposed learning scheme to one-
dimensional, random patterns with nearest-neighbor correlations. This corresponds to di-
agonalizing the tight-binding Hamiltonian of a linear chain of atoms, the eigenvalues and
eigenvectors of which are well-known. Thus, we can compute dma(t) as well as the upper
and lower limits for 4. The numerical behavior of the weight vectors and lateral weights is in
excellent agreement with the analytically predicted behavior [3].

4. ORIENTATION AND SPATIAL FREQUENCY SELECTIVE CELLS

In the following, we examine which are the essential features of spatially varying patterns
and compare the receptive fields obtained by our learning scheme with the ones of simple
cells, feature detectors selective to edges or bars, which represent the first stage of spatial
information processing in the primary visual cortex [7].

For this purpose, we consider a rectangular lattice of N; x N} sensory input units representing
the receptive field of N, output units, with N, < N; ‘,\71{_ We generate two-dimensional pat-
terns of varying intensity by first selecting random numbers from the interval [~1, 4+1]. Then,
in order to introduce information about the topological structure of the receptive field, the
random input intensities are correlated, e.g., with their nearest neighbors in both directions.
We assume vanishing boundary conditions. Note, that this averaging of neighboring signals
corresponds to introducing an additional layer with random activities and with fixed and
restricted connections to the input layer.

Receptive fields of simple cells in cat striate cortex can be described by Gabor functions
[8], which consist of an oscillatory part, namely a sinusoidal plane wave and a Gaussian,
exponentially decaying part. In analogy to the one-dimensional case of random patterns,
one expects receptive fields corresponding to the eigenfunctions of a tight binding lattice of
atoms, i.e., sinusoidal plane waves with vanishing boundary conditions. In order to implement
an exponential decay, we scale the weights between layers by a two-dimensional Gaussian
distribution centered at the lattice location (N;/2, N!/2) with widths in z- and y-directions
o1 and 9. The non-homogeneous distribution of weights between layers could correspond to
a higher density of nearby input cells.

If the Gaussian distribution is not rotationnally symmetric (i.e., if 01/09 # 1), degeneracy of
eigenvalues is broken and mixing of eigenfunctions does not occur. However, the orientation of
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Fig.2 From left to right and top to bottom: contour plots of receptive fields
of output units 1-8 in the case of a square lattice of 20 x 20 input units.

receptive fields is pre-determined, due to imposed symmetry axes. Figure 2 displays contour
plots of the receptive fields of the first eight output cells after 10000 learning cycles (from
left to right and top to bottom). Solid lines correspond to positive, dashed lines to negative
synaptic weights. The input lattice was square, with 20 x 20 units and the parameters of
the Gaussian distribution of weights were o1 = 11 and o9 = 14. Learning parameters  and
p were equal to 0.05 and 0.1, respectively. Due to the non symmetric Gaussian distribution
of weights, all units have slightly elongated receptive fields. The first unit corresponds to
a simple cell with all-inhibitory synaptic weights. The receptive fields of the second and
third units display an excitatory and an inhibitory region and resemble simple cells, selective
to edges of a fixed orientation. The fourth and sixth units have receptive fields with two
zero-crossings, corresponding to simple cells, selective to bars of a fixed orientation. The
seventh unit is as well orientation selective, with four alternating excitatory and inhibitory
regions. This unit would maximally respond to two parallel lines or bars with fixed distance
and orientation. All the described units have receptive fields that resemble recorded receptive
fields of simple cells in the primary visual cortex [8]. Up to now, there has not been any
experimental evidence for receptive fields of the type of the fifth and eighth units, displaying
four and six lobes. However, if the scheme of spatial information processing in terms of a
local Fourier analysis is correct, such receptive fields might exist in the visual cortex.
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