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Abstract. Color constancy is the ability of color
perception independent of the spectrum of the ambient
illumination. We present an algorithm that makes use
of biologically plausible assumptions concerning the
spectra of illumination and surface reflectance in order
to solve the undetermined problem of color con-
stancy. We test the proposed algorithm by means of
computer simulations and examine its range of
performance.

1 Introduction

While looking at a colorful painting under morning
light, evening light or a light bulb, we still perceive reds
as reds and blues as blues, although the light falling on
the photoreceptors of our eyes varies substantially
with regard to its spectral composition under the
different sources of illumination. Our visual system —
and that of many other biological species — is able to
discount the ambient light, without having any precise
information about the composition of this light (see
e.g. Kandel and Schwartz 1985; Livingstone and
Hubel 1984; Ingle 1985; Werner et al. 1988). The ability
of color perception largely independent of the ambient
light is called color constancy.

In this paper we present an algorithm that com-
putes the spectral surface reflectance, i.e. a measure for
a color sensation independent of the ambient light. As
the information available to the first stages of biolog-
ical vision is not sufficient to calculate the surface
reflectance, additional constraints must be imposed for
solving the problem of color constancy. The necessary
constraints are based on biologically plausible as-
sumptions and are formulated in the framework of
standard regularisation theory (Poggio et al. 1985).
These constraints could then correspond to the mini-
mal biological conditions under which color constancy

can be realized. The suggested algorithm could serve in
an artificial visual system for color perception.

In Sect. 2 we will give some preliminary definitions
and then state in Sect. 3 the problem of color constancy
in a mathematical form. Section 4 will contain some
remarks about existing algorithms yielding color
constancy. We will then present in Sect. 5 our ap-
proach and discuss the performance of the pro-
posed algorithm in Sect. 6.

2 Definitions

Consider a two-dimensional discretized scene with
coordinates (x,y), x=1,2,...,N,, y=1,2,...,N,. The
total number of pixels is N=N,N,. The scene is
illuminated by a source of light. Each point (x, y) of the
scene reflects a portion of the incoming light E(x, y, 4),
where the proportionality coefficient R(x, y,4) is the
spectral surface reflectance. For simplicity we assume
that the reflection is specular and that the angle
between the light source and the scene matches the
angle between the observer and the scene. The spec-
trum reflected from the scene E(x, y, 2) R(x, y, 4) falls on
a planar grid, where each node (x', y’) corresponds to
the three types of color receptors, namely the cones. As
each cone only obtains information from one point of
the scene, the coordinates of the array of receptors
(x',¥') can be identified with the coordinates of the
scene (x, y).

Each color receptor, labeled by j, is specified by its
spectral sensitivity S{4). The information that the
color receptor j at location (x,y) transmits to the
artificial visual system is

ofx,y)= [dAS{A)E(x, y, HR(x,y, 4), (1)

where the integral is taken over the visible range of the
spectrum. ¢(x, ) is the only information available to
the abstract visual system. Therefore, we are confron-
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ted with the problem of determining from 3N knowns,
i.e. ofx,y), the spectra E(x, y, /) and R(x,y, 2) that are
functions of an infinite number of degrees of freedom.
In order to solve this problem one first needs to reduce
the infinite space of possible solutions.

3 Models for Finite Bases

A large class of illumination spectra can be described
by the spectra of ideal Planckian radiators (Wyszecki
and Stiles 1982). Judd et al. (1964) have examined
daylight distributions and found that these spectra can
be described by three basis functions. Maloney (1985)
conducted a data analysis for Planckian radiators with
correlated color temperature between 1900 K and
10300 K. He found that three functions could account
for all the variance of the data within numerical
precision. Following this author, we represent the
distribution of ambient light by a linear, three-
dimensional model, i.e. as

3
E(x,y,4)= .; &(x, ) E{2), 2
with fixed known basis functions E{2).

A similar reduction of the number of degrees of
freedom is possible for the surface spectral reflectance.
Stiles et al. (1977) showed that many surface reflectance
spectra are smooth and low-frequency functions of
wavelength and, thus, can be described by a finite
number of basis functions. Similarly, Maloney (1985)
argued that, because of molecular processes, reflectance
spectra should be low-frequency functions. Cohen
(1964) analysed a set of randomly chosen Munsell
samples and found that three functions can account for
0.992 of the variance of the data. Buchsbaum and
Gottschalk (1984) computed the chromaticity coordi-
nates of frequency limited functions and proposed that
the space of color signals may be three-dimensional.
We will assume in the following that the surface
spectral reflectance R(x, y, 2) can be described by three
basis functions R/(~) and 3N coefficients f(x, y):

3
R(X,,V, /“)= lgl ﬂl(x,y)Rl(;')' (3)
Combining (1), (2), and (3) yields

3
efx, )= 12;1 Aledx, y) B, y), “)

where the tensor 4 is given by
A= [diS{DE(AR(Z). )

From now on, we assume that the illumination is either
constant, i.e. g(x,y)=g¢;, or else displays a linear
gradient over the scene, i.e. &(X, y) =&+ 7,x + J;y. Solv-

ing the problem of color constancy is then reduced to
computing from the 3N signals ¢(x,y) given by (4)
three coefficients ¢; (in the case of constant illumina-
tion) or nine coefficients ¢; 7;, and J; (in the case of a
linear illumination gradient) as well as 3N coefficients

Bix, y).

4 Previous Models

Land’s retinex algorithm (Land 1983) certainly is the
best-known algorithm realizing color constancy. Land
calculates separately for each color channel the surface
reflectance (called lightness value) at some point of a
scene by measuring the reflectance along randomly
chosen paths over the scene passing through this point.
Brainard and Wandell (1986) analysed the retinex
algorithm and compared the results of the algorithm
with those of psychophysical experiments. They found
that the computed lightness values depend too much
on the composition of the scene and that an optimal
choice of the path length is problematic. In a newer
version of the retinex algorithm (Land 1986) the
lightness value at a given point is no longer calculated
by means of one-dimensional paths, but by a two-
dimensional normalisation procedure in the neighbor-
hood of this point. To our knowledge, precise and
quantitative results concerning color constancy have
not been published in that case.

Several approaches exist which associate color
constancy with adaption mechanisms (see €.g. West
and Brill 1982 or Hunt 1987). However, such associ-
ation does not appear convincing in view of the fact
that adaptation is a temporal effect, whereas color
constancy is realized almost instantaneously (Land
1983).

Hurlbert and Poggio (1988) developed a color
algorithm from a set of examples which as inputs
comprised the signals ¢ (x, y) and as outputs (solutions)
the reflectance coefficients §,(x, y).They, as well as other
authors (for a review, see Hurlbert 1986), require in
their approach equality of the basis functions E{(4) and
R{(+)and assume that these functions are orthogonal to
the spectral sensitivities S,(4). These assumptions are
not met by the sensitivity curves of human cones and
by the basis functions for illumination and reflectance
spectra obtained by data analyses (Stiles et al. 1977;
Wyszecki and Stiles 1982; Judd et al. 1964).

By imposing the condition that the number of color
receptors is larger than the number of degrees of
freedom of the reflectance function R(x, y, 4), and that a
sufficient number of different surface reflectance spec-
tra are present in the scene, the problem of color
constancy as stated in (4) can be solved (Maloney and
Wandell 1986; Yuille 1987). The first assumption



implies that one either deals with more than three color
receptors or that only reflectance and illumination
spectra described by two basis functions {cf. (3)] can be
recovered. However, examination of the frequency
limits of reflectance spectra implies that at least three
basis functions are needed for a proper description of
these spectra. Therefore, more than three color re-
ceptors would be needed for computation of the
spectra. The implication for biological vision would be
a contribution of the rods to color vision. However, no
rods are present in the central part of the fovea and a
possible contribution of rods for color vision has not
been demonstrated (Wyszecki and Stiles 1982).

A different approach consists in reducing the
infinite space of possible solutions to (4) by further,
biologically plausible assumptions concerning the so-
lutions. This approach was proposed by Poggio and
coworkers (1985) for solving different low level vision
problems and we will follow it in the context of color
constancy.

5 A Regularized Approach to Color Constancy

Many problems in early vision (e.g. edge detection,
stereo vision, color vision) are underdetermined in the
sense that the number of unknowns exceeds the
number of knowns. The information about the scene
available to the photoreceptors does therefore not
allow a unique interpretation of the sceme. Such a
problem, where a unique solution that depends con-
tinuously on the data does not exist, is called ill-posed
(Tikhonov and Arsenin 1977). In order to solve an ill-
posed equation Hz=y, one chooses stabilizing func-
tionals P, such that the minimum of the cost function

[Hz =yl + ¥ 2, | Ppii? (6)

yields a unique solution z. A sufficient condition for the
uniqueness of the solution is the linearity of H and P,.
| -l is an appropriately chosen norm and the regu-
larizing parameters 4, control the amplitudes of the
stabilizing terms.

Minimizing (6) in the context of color constancy is
equivalent to solving (4) under additional constraints.
These constraints express assumptions that are pos-
sibly made during the visual process of color percep-
tion. The first assumption about the scene concerns the
spectrum of the light source. The reddish or bluish look
of all objects in a discotheque, where tinted light bulbs
are used, is a well-known example for the breakdown
of color constancy. We therefore require the spectrum
of ambient light to be as “white” as possible, i.e. as close
as possible to the spectrum of average daylight Dy
(Wyszecki and Stiles 1982). In the case of constant
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illumination the corresponding stabilizing functional
will take the form

Py=} (e;—&{Dgs))*, (7

where &/Dy;5) are the coefficients of the spectrum D¢ 5 in
the basis used.

The assumption expressed in (7) alone does not
lead to a unique solution. If ¢; and B, minimize

ZZ(

J oxy

i

) Aljedx, ¥)Bix, y)— 0;(x, )')')2 +4, Py,

then ¢;/a and a-f#, do so as well. Therefore, we re-
quire the averages of the reflectance coefficients in each
color channel to take a fixed value b, corresponding
to an average color sensation of grey. This situation
is matched in case of a scene with many different color
patches, but also in case of a single color stimulus,
surrounded by a large enough grey area. Psychophys-
ical experiments have yielded, in fact, color constancy
in these two cases (Arend and Reeves 1986). The
assumption of fixed averages can be forced by the
stabilizing functional

.y 2
P2=z(z B";"’—bz) . )

1 x.y

In case of linear gradients the spectrum of ambient
light can be described by the coefficients g(x, y)=g¢;
+7:x +J;y. We require the gradients to be small and
express this with the additional term

Py=3i+4f. ' 9

H

In order to calculate the spectra of illumination and
reflectance, we need to minimize the cost function

3
E= Z Z (Z A{IS,'(.X, y)Bl(xs .V)_ Qj(x’ }‘)>2 + Z ;~nPn .
Jox.y \il n=1 (10)
E is locally convex in each variable and, therefore,
globally convex (Tikhonov and Arsenin 1977). We can
use a steepest descent procedure, updating the vari-
ablesif the corresponding change lowers the value of E.
The configuration (g;, #,) at the global minimum corre-
sponds then to the optimal visual interpretation of the
scene. Since we consider only non-fluorescent objects,
we allow the coefficients B,(x, y) to take discrete values,
such that the the reflectance spectrum is bounded
between 0 and 1. The resolution of f,(x, y) is limited to
+0.01, which is justified by the fact that the number of
discriminable colors is limited (Richter 1981). Fur-
thermore, too high of a resolution slows down the
convergence of the minimization procedure. The crite-
ria leading to a choice of regularizing parameters 4, at
the start of the minimization procedure will be discus-
sed in Sect. 6.
Instead of starting with random variables, starting
with a configuration that solves (4) and therefore
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corresponds to a minimum of E in a restricted space,
will reduce the computational effort. An important
reduction of computational effort during the minimi-
zation procedure can be achieved by realizing that the
reflectance spectra are either constant or show discon-
tinuities. Since the illumination is supposed to be
smooth, jumps in the color signals g{x,y) can be
related to locations where the reflectance coefficients
are discontinuous. Therefore, we first detect discon-
tinuities in the color signals ¢/(x, y) by means of the
Laplace operator (Marr 1982). The values of B(x, y) are
then only computed at the discontinuities and the
missing B/(x,y) are interpolated within surfaces of
constant reflectance.

In case of constant illumination the algorithm can
be reduced to a fully deterministic procedure. Averag-
ing (4) over the scene and interpreting the averages
(B, as free parameters 2, set by the assumptions made
about the scene, yields the illumination coefficients

£i=§k:(A:l)ik<Qk>7 (11)
where the matrix A3 ! is the inverse of the matrix 4,
with coefficients

(A +)mn = % 1kA:|"k . (12)

Combining (4) and (11) leads to the expression for the
reflectance coefficients

ﬁl(xa )’)= % (B‘ l)lek(x’ _V), (13)

where the matrix B is given by

mn"ZA Z(A |k<gk>' (14)

The parameters «, are determined as to minimize the
reduced cost function E(e)

E(@)=4, Z (; {ew) ((A-:l)ik_ai(D65))2
+/'.2;(ot,—b,)2. (15)

As the minimization of this expression is analytically
intractable, it has to be solved by a standard numerical
minimization procedure (e.g. Powell’s method, cf.
Press et al. 1986). Since the reduced cost function does
not depend on all variables, but only on the parameters
a;, the computational effort is considerably reduced in
case of the deterministic procedure.

A deterministic version of the algorithm can also be
used in case of gradients in the ambient light, if the
tensor A4}, is diagonal (4} ~d,0;;). But, as stated above,
this is a somewhat artificial situation that does not
apply to realistic basis functions and sensitivity curves
of human or animal cones.

We want to stress here that, just as it is the case for
the human visual system, the algorithm cannot in
general yield perfect color constancy. The performance
of the algorithm can be seen as a balance between two
extreme situations: Setting the parameter 4, equal to
zero would lead to perfect color constancy which is in
general not possible unless all scenes do have a grey
reflectance average. On the other hand, setting 4, equal
to zero would correspond to the “naive” view of color
perception, namely that the illumination is always
white.

6 Results of Simulations

We tested the performance of the proposed algorithm
by computing the reflectance spectrum of a so-called
Mondrian, the prototype of the two-dimensional
scene (Land 1983). Our Mondrian consists of ten
rectangulary shaped, homogeneously colored regions
of varying size. The aim of the algorithm is to- deter-
mine the reflectance coefficients f°** of the Mon-
drian regions. We have chosen two displays of the
resulting f°*. In the first kind of display the coefficients
are plotted as a function of the pixel location (x, y) for
each color channel separately. The second kind of
display is more intuitive and presents the reflectance
coefficients as colors on a monitor. This display allows
a qualitative judgement about the performance of the
algorithm. As the reflectance coefficients do not repre-
sent an absolute measure for color perception and,
furthermore, depend on the chosen basis we actually
display the color signals 9™ and ¢, where o!*f

= Z Alje (Dgs) Bi"(x,y) and Qom ZAuE {(Dgs)Bi(x, )

rathcr then the input coefficients ,3"‘ and the calculated
coefficients f°*. o™ and ¢°** correspond to the ap-
pearance of the input Mondrian and the computed
Mondrian under standard daylight Dgs. Thus, a
comparative judgement of the given and the computed
reflectance spectra is possible.

As a color display we used an Apple RGB Monitor
with a resolution of 480 x 640. pixels. As this monitor
can display only 256 colors simultaneously, we limited
ourselves to Mondrians of 10 x 10 pixels. where each
pixel is enlarged to a square of 30 x 30 pixels on the
screen. The color signals were displayed by linearly
assigning RGB-values of the monitor to g, such that
the extremes of the possible reflectance spectra —
namely R(x, y,A) equals 0 or 1 — correspond to black
or white. Considering two surfaces 4 and B with
reflectance coefﬁciems b’“ and B® and corresponding
color signals ¢# and ¢”, we can ask what the minimal
difference per color channel Adg; (where Adg;=|of

o7]), must be, such that the colors of A and B are
percelved as different. From data about color dis-
crimination (cf. e.g. Richter 1981) it follows that, for



adjacent surfaces, 4g; should be between 0.01 and
0.02. By informal experiments we came to the same
conclusions. But this result constitutes only an approx-
imate guideline, since the discriminability of colors is
not homogeneous in color space and, to a large
extent, depends on the setup of the experiments
(Wyszecki and Stiles 1982). Furthermore, in realistic
stiuations, as opposed to laboratory conditions, the
difference 4g; will have to be much larger in order to
yield a significant difference in color sensation.

In our simulations we used the spectral response
functions of the cones derived by Judd (Wyszecki and
Stiles 1982). As basis functions for the reflectance
spectrum we chose Fourier functions as suggested by
Wandell (1987). For the spectra of ambient light we
used the three distributions obtained by a principal
component analysis of a set of daylight distributions
(Wyszecki and Stiles 1982). However, in the case of the
color displays, we used Mondrians with somewhat
artificial reflectance spectra described by three Gaus-
sians peaked at different wavelengths. The reason for
this choice is that, when looking at the screen, the
displayed color signals ¢ are distorted by a second
convolution with the sensitivity curves of the human
cones. We chose Mondrians with very peaked re-
flectance spectra, because they allow a clearer and
more vivid display. We want to stress, however, that
this choice of basis functions in the case of the
Mondrians used for color display does not affect in any
way the results of our simulations.

With the exception of the case where a gradient in
illumination was presented we used the deterministic
version of the algorithm for all simulations. However,
in order to show the convergence of the cost function
and the time evolution of the reflectance coefficients
during the stochastic procedure, we present results of
the stochastic algorithm. As far as the optimal choice of
regularization parameters 4, is concerned, there exist a
number of procedures for evaluating or adjusting the
values of 2, during the minimization of the cost
function (Tikhonov and Arsenin 1977). We found that
in practice it is sufficient to choose the parameters 4,
such that the amplitudes of the corresponding stabiliz-
ing terms P, are of the same order of magnitude as the
main term of the cost function. However, if we have an
a priori knowledge about the composition of the scene
or the ambient light, we can set the parametersin a way
that will take this knowledge into account. In all the
presented simulations the parameters 4, were set to the
same fixed values (4, =10, A, =105, and 4, =10%in the
case of the stochastic algorithm, 4,/4,=10"2 in the
case of the deterministic algorithm).

Figure 1 shows the logarithmic convergence of the
different terms of the cost function in the case of
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Fig. 1. Logarithmic convergence of the different terms of the cost
function as a function of time steps in the case of standard
conditions. Top left: total cost function E, top right: main term,
bottom left: illumination term P, bottom right: grey average
term P,
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Fig. 2. Computed reflectance coefficients f°*' (crosses) versus
input coefficients ™" (solid line) as a function of pixel position in
the case of the standard Mondrian

standard conditions, i.e. average daylight D¢ and grey
average of the reflectances. The top left graph displays
the total cost function E, whereas the main term,
corresponding to (4) is shown in the top right graph.
The stabilizing terms P,, forcing the illumination to be .
close to average daylight and P,, forcing the average of
the reflectance spectrum to correspond to grey are
shown in the bottom left and right graphs. One can see
that all the terms decay on the same time scale to their
asymptotic values. Figure 2 illustrates the performance
of the algorithm for the same case as Fig. 1. The



°ut and o™, a o™ for a Mondrian with grey reflectance average (standard Mondrian). b ¢°™ for

Fig. 3a-k. See text for definitions of o™, ¢
the standard Mondrian under average daylight D¢ at the start of the simulation. ¢ same as b after 30 steps. d same as b after convergence
of the algorithm. e input to the algorithm o' in the case of extreme daylight with correlated color temperature 10000 K. f output g°*
corresponding to the input displayed in e. g input to the algorithm o™ for a Mondrian with a linear gradient of illumination. h output p™*
corresponding to the input displayed in g. i o™ of a two-color stimulus with non-grey reflectance average. j 0™ corresponding to i, the

out

illumination was average daylight Dgs. k ¢°*' corresponding to i, the illumination was 10000 K-daylight




computed reflectance coefficients S, displayed by
crosses, match well the input coefficients ™ represen-
ted by solid lines. The colored Fig. 3a and d displaying
the corresponding o™ and ¢ shows what the input
and the computed Mondrians would look like under
standard daylight. Figure 3b and c displays ¢°"* for the
standard Mondrian at the start of the simulation and
after 30 time steps. While the pixels have totally
random reflectance values at the start of the simula-
tion, a considerable degree of convergence has been
attained after 30 time steps.

We have examined the performance of the al-
gorithm when the illumination is changed. Figure 3e
shows the input to the algorithm g"=Y 4je"pin

il

under a daylight illuminant with 10000 K correlated
color temperature, i.e. an extreme of daylight (Wys-
zecki and Stiles 1982). Figure 3f displays the corre-
sponding 0°*, i.e. the computed Mondrian under
standard daylight. Comparison of Fig. 3a and f shows
that the computed reflectance spectrum recovers well
the input spectrum. Figure 4 shows a quantitative
estimate of the averaged discrepancy between com-
puted and given color signals {(4¢) under daylights
with correlated color temperatures between 4000 K
and 10000 K. The abscissa 4, is a measure for the
discrepancy between the actual spectrum of illumi-
nation and the standard daylight spectrum. We define
4, and {49) by

doy=Y% Z) |05 (x, y) — 05 (x, y)I/3N
i xy

and 4,=§ lei* —(Dss)l/3. The blue and red extremes

of daylight with correlated color temperatures of
10000 K and 4000 K correspond to values 4, of 0.54
and 1.58. Figure 4 shows that, for most phases of
daylight, the error {(4g) is close to the threshold of
discriminability mentioned above.

0.04 |- -

0.03 1

(8p)
T
L

0.02

0.01 ]

02 05 08 11 14
A,
Fig. 4. Averaged deviation of the computed color signals from the
reference color signals (4g) as a function of the averaged
discrepancy between the actual spectrum of illumination and the
standard daylight spectrum 4,. See text for definitions of {(4¢)
and 4,
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Fig. 5. Averaged deviation of the computed color signals from the

reference color signals {4g) as a function of the deviation from

the grey average condition 4. See text for definitions of {4¢)

and 44

Figure 3g shows the input ¢'" when the Mondrian
is illuminated with a linear horizontal gradient. The
corresponding output ¢°*' is displayed in Fig. 3h.
Comparison of Fig. 3h and a shows that the computed
reflectance spectrum agrees well with the input
spectrum.

Similarly, we examined the performance of the
algorithm when the average of the reflectance spec-
trum over the scene does not correspond to grey. We
quantify the deviation from the grey average condition
by 4.4, = ;](,B;’“)-—b,l/S, where b, are the reflectance

coefficients of a spectrum yielding a color sensation of
grey. Figure 5 shows the average discrepancy between
output and reference color signals {4¢) as a function
of 4.4, in the case of standard daylight. Even for a
Mondrian composed of mostly blue patches (where
4y equals 0.12), {4g) is small.

Presenting as input this same Mondrian under
illuminations differing from the standard daylight wiil
yield correct interpretations of the reflectance spec-
trum for daylights with correlated color temperatures
in the range of approximately 5500 K to 8000 K (i.e.
4,£0.30). However, when neither the condition of
white illumination nor the condition of grey reflectance
are approximately fulfilled, the algorithm will not give
a correct interpretation of a scene. Figure 3i—k illus-
trates this fact. Figure 3j and k shows the computed
color signals g°* of a two-color stimulus with non-grey
average under standard daylight and under 10000 K-
daylight. They should be compared with the corre-
sponding ¢™f in Fig. 3i. Whereas the reflectance spec-
trum has been correctly recovered under average
daylight, one can see that in the case of 10000 K-
daylight the computed reflectance coefficients g do
not match the input coefficients ™"

7 Conclusions

This paper presents an algorithm for computing the
surface reflectance of a two-dimensional scene, inde-
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pendently of the ambient illumination. We tested the
algorithm for different Mondrians under varying
phases of daylights and linear gradients in the illumi-
nations. In most of the situations tested, the reflectance
spectrum was well recovered. We gave a quantitative
estimate of the range of performance of the described
algorithm.

In order to recover the refléctance spectrum we are
confronted with an ill-posed problem that can be
solved by standard regularization methods. Poggio
and Koch (1985) showed that problems of this type can
be implemented by analogue networks. Therefore, a
neural network model could be used as well for
realizing the proposed algorithm.

It would be interesting to compare the results of
our simulations with data about color constancy (see
e.g. Arend and Reeves 1986). We could then adjust the
free parameter of the algorithm — namely the regulariz-
ing parameters A, — such that the results of our
simulations match the data from experiments about
human color constancy.
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