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I. Voltage Bias to Translocate and Stretch ssDNA

DNA translocation can also be induced by applying a voltage bias across the graphene mem-

brane (see Fig. S4). In a previous study1 we had shown for the case of a SiN pore that, under

the voltage bias, a strong electrostatic potential gradient arises around the narrowest constric-

tion of the pore (see Fig. 4d in Ref. 1), stretching the DNA inside the pore. The stretching

can be further enhanced by using a membrane of a p-n conductor.2 Accordingly, we propose

to employ a multi-layer nanopore device that consists of a monolayer graphene sheet sand-

wiched between two layers of thicker solid-state material such as SiO2 and SiN, as depicted

in Fig. S4. With this design, DNA can be stretched and translocated simultaneously by the

voltage bias. We note that also in the case of a biological nanpore, namely α-hemolysin,

ssDNA adopts a stretched conformation when translocated by a voltage bias, as illustrated

very clearly in a movie showing an MD trajectory of a DNA being translocated through an α-

hemolysin pore (see http://www.ks.uiuc.edu/Research/hemolysin/translocationDNA.mpg).
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Figure S1: ssDNA pulling forces for poly(dA), poly(dC),poly(dG) and poly(dT). This figure
presents the pulling force for four types of ssDNA translocated through a 1.6 nm pore at a
speed of 2 Å/s. It supplements the results shown in Fig. 3b.
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Figure S2: Permeability (left panels) and force signal (right panels) as ssDNA is pulled 5′

end first through a graphene nanopore at a velocity of v = 0.2 Å/s [(a),(b)] or in the opposite
orientation, namely 3′ end first [(c),(d)]. The data reported in the main text were determined
when pulling ssDNA 5′ end first at a velocity of v = 2 Å/s.
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Figure S3: Permeability (left panels) and force signal (right panels) as ssDNA is pulled
through an elliptical graphene nanopore [(a),(b)] and through a circular MoS2 pore of 1.6 nm
diameter [(c),(d)]. The non-bonded interaction of MoS2 were modeled as in a previous
study.3(e),(f) Permeability and force signal for a less-stretched ssDNA, namely stretched
to a distance between adjacent bases of 0.68 nm. The data reported in the main text are
determined for circular graphene nanopores of 1.6 nm or 2.4 nm diameter and for ssDNA
stretched to a 0.77 nm distance between adjacent bases. Skipping events in nucleotide
permeation, in which multiple bases permeate the nanopore simultaneously, are indicated
by arrows.

5



v = 1.5 V

v = 4 V

v

0

1

2

3

4

5

6

0 20 40 60 80

Pe
rm

ea
te

d 
nu

cl
eo

tid
es

 (#
)

Simulation time (ns)

cis

trans

Figure S4: Permeability of stretched ssDNA translocating through a 1.6 nm diameter
graphene nanopore driven by bias voltages of 1.5 V and 4 V. Inset shows schematic of
DNA nanopore translocation.
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Figure S5: Schematic illustration of a proposed multilayer nanopore device to stretch,
translocate and sense ssDNA simultaneously. The device consists of a monolayer graphene
sheet sandwiched between two layers of thicker solid-state material such as SiO2 and SiN.
The rim of the graphene nanopore is exposed to the pore volume to interact with DNA
bases to produce the stepwise DNA translocation reported in this study. The stretching of
DNA molecules inside nanopores can be readily accomplished by applying an electric field
inside nanopores.1 The stepwise translocation of DNA through the pores can be driven by
a voltage bias, VTC . The sensing of DNA is accomplished by measuring the transverse sheet
current across the graphene sheet under a source-drain voltage, VDS.
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Figure S6: Steered molecular dynamics (SMD) simulations of ssDNA. Aim of the SMD
simulations is to pull ssDNA, 5’ end first (from bottom to top), through the graphene
nanopore. For this purpose a spring is attached with one (first) end to ssDNA and pulled
at the other (second) end at constant velocity. The spring elastic property is characterized
through a spring constant kspring. The first end of the spring is actually connected equally
to all phosphorus atoms of ssDNA such that the spring pulls effectively the center of mass
(CoM) of the phosphorus atoms. This connection applies the spring force uniformly along
the whole ssDNA. As a result of pulling the second end of the spring, ssDNA moves upward
through the graphene nanopore. If friction experienced by ssDNA due to ssDNA-graphene
interactions would be uniform in time the ssDNA would move with a constant velocity.
However, as discussed extensively in the main text, the interactions are not uniform and as
a result ssDNA translocation is sometimes slower and sometimes faster. When ssDNA slows
down, the length L(t) of the spring extends; when ssDNA moves faster, L(t) decreases. The
force acting on the ssDNA is associated with the spring length L(t) through the expression:
force(t) = kspring(L(t) − L0), where L0 is the original spring length. Respective forces are
presented in Fig. 3.
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