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ABSTRACT. We consider the case of a chemically active AFM tip experiencing a
bistable potential near a substrate while being driven by a periodic force of frequency
). The average position of such a tip traces a hysteretic loop which encircles an
area mH(2), which can reveal information on the tip-substrate interaction and on tip
friction. We model this situation via a Smoluchowski diffusion equation and provide
numerical results as well as construct asymptotic expansions for H(2) in the limits
of high and low frequency.

1 Introduction

Historically, the atomic force microscope (AFM) has been used in two modes: imag-
ing and non-imaging [1, 2. In the imaging mode the tip is scanned across the surface
of the sample while a feedback circuit keeps the interaction with the surface con-
stant. In the non-imaging mode the tip is slowly lowered to the surface and then
retracted, allowing the elasticity of the sample and the adhesion force binding the tip
to the sample to be measured. Recent applications of the AFM to biological systems
have extended this method by fixing ligands to the tip, allowing the measurement of
biologically significant interactions [3, 4, 5].

We consider in this contribution an extension of the non-imaging mode of op-

Figure 1: Example of the formation of a bistable potential between a substrate and the
tip of an atomic force microscope. Left: Tip-substrate potential. Center: Harmonic
potential due to AFM cantilever. Right: Bistable potential V' (x) comprising the sum
of the tip-substrate and the cantilever potentials.



eration in which a chemically active AFM tip experiences a bistable potential due
to an attractive tip-substrate potential and a quadratic potential accounting for a
stiff cantilever. Figure 1 illustrates such a bistable potential. A bistable potential
will only arise for certain tip positions and cantilever spring-constants, but once a
suitable combination is found, information about the dynamics of the tip-substrate
interaction can be readily abstracted, as demonstrated below.

In order to obtain such information we follow the suggestion in the lecture of
Israelachvilli at this conference and assume that a weak periodic force of varying
frequency be applied to the AFM tip. Such force could be supplied, for example, by
magnetic material on the tip interacting with an external magnetic field or by the
same mechanism which raises and lowers the tip. The periodic force causes the tip
to repeatedly jump on and off the surface, tracing a hysteresis loop. Observation of
this loop and its dependence on the frequency of the periodic force provides a view
of the dynamics of the tip-substrate interaction, while regular adhesion experiments
only explore the form of the tip-substrate potential.

The motion of the tip in the bistable tip-substrate potential with added periodic
force can be characterized succinctly through the area enclosed by the hysteresis
loop of the average tip position (x(¢)). This area can be easily measured, requiring
knowledge only of the relative deflection of the tip and of the phase of the sinusoidal
driving force. Since this area corresponds to the work done by the driving force,
alternative approaches to its measurement are available as well. We hope that our
theoretical description of the hysteretic behavior of the AFM tip motion will motivate
respective observations and serve for their analysis.

In this contribution we study hysteresis in a periodically driven stochastic system
in the strong friction limit, both in general and in a symmetric bistable potential of
the form i:){;4 - %3:2 assuming a linear driving potential. Periodically driven stochastic
processes have been the topic of recent study [6, 7], particularly with regard to the
phenomenon of stochastic resonance. Perturbative approaches have been tried in the
limits of small driving strength [8, 9]. Hysteresis in this type of system has been
considered primarily in the deterministic limit [10] with some interest in the effects
of thermal fluctuations [11, 12]. We consider hysteresis at all noise levels and driving
strengths, in the high and low frequency limits.

In Section 2 we introduce the relevant stochastic description, define hysteresis,
and comment briefly on numerical solutions. In Section 3 we present approximations
for the hysteresis in the high and low frequency limits and a further approximation
which holds in the limit of both low frequency and low temperature. In Section 4 we
discuss our results.

2 Statement of Problem

Tip-sample adhesion experiments conducted on inorganic samples generally produce
consistent and repeatable pull-off forces, while experiments on biological systems



produce a wide distribution of pull-off forces [4, 5]. One possible interpretation of
these results is that thermal excitation of the tip plays a strong role in biological
systems. In order to model the motion of a thermally excited tip we employ the

Langevin equation ) .
mX = —0xU(X) — 71X + o&(t). (1)

Here the position of the tip is described by a coordinate X. The potential U(X)
represents the tip-substrate interaction. v is the friction coefficient, ¢ is the rms value
of the fluctuating force, and £(t) represents white noise of unit strength characterized
through

@) =0 (e = ot—t). (2)
v and o are related through the the fluctuation-dissipation theorem; it holds 02 =
2kgT~. For an effective mass of the tip on the order of nanograms, operation of the
AFM in a physiological solvent and for frequencies of kHz or less the strong friction
limit can be applied, i.e., the velocities of the tip can be assumed to obey the Maxwell
distribution. In this limit the inertia term mX can be neglected in (1) and the tip is
governed by the stochastic differential equation [13, 14]

X = —DaxBU(X) + V2DE(t) . (3)

where 3 = 1/kgT and D = 02/2v* = kgT/~. Since one is interested in the average
behavior of the tip position one prefers a description in terms of the probability
P(X,t) to observe the tip at position X at time ¢. Such a description is provided by
the so-called Smoluchowski equation.

We will state in this section the Smoluchowski equation which we attempt to
solve, extract the key parameters characterizing the system in this formulation, and
define the quantity hysteresis which we use to account for the behavior of the system.
We also comment briefly on the numerical solution of the Smoluchowski equation.

2.1 SMOLUCHOWSKI EQUATION

The probability distribution P(X,t) for the tip position X corresponding to Eq. (3)
is governed by the Smoluchowski equation [15]

OP(X,t) = 0xD (0x + fUx) P(X,t) . (4)
The potential experienced by the tip, entering this equation, is of the form
UX,t) = V(X) + W(X)sin(£2) (5)

where V(X)) describes the bistable potential illustrated in Fig. 1. One can assume
that V(X)) diverges for X — £oo faster than W, ensuring that the location of the
particle is bounded.
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Figure 2: Hysteretic behavior of the distribution over a full cycle of the applied
periodic force. Thin line: Potential u(z,d). Thick line: “Steady-state” (see text)

probability distribution p(z,6) for w = 0.1, 7 = 0.1 (§ = 10). The plot in the upper
left corner corresponds to 8 = 0.

2.2 KEY PARAMETERS

In order to identify the key system parameters we introduce the dimensionless quan-
titles v = X/Xo,u = U/Uy,v = V/Uy,w = W/Uy, 0 = Qt, p = XoP, and
T =kgT/Uy=1/3. Then (5) and (4) become

u(z,0) = wv(zr) + w(x)sin(0) (6)
XEy Opp(z,0) = 0.(Ugt 0p + Upuy)p(z,0) . (7)

Defining w = X3y /U, allows one to write (7)
wopp(x,0) = 0,(70r + ug)p(z,0) . (8)

This identifies, besides v(z) and w(z), the two parameters w and 7 as the key charac-
teristics of the system. These parameters describe the two basic properties of the tip
dynamics: frequency and temperature; w contains information on the frequency of the
driving force relative to the relaxation time of the system and 7 contains information
on the temperature of the system relative to the energy scale of the potential.
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Figure 3: Hysteresis loops at high, moderate, and low frequencies. Note that time
is in the counter-clockwise direction. Medium line: High frequency loop (w = 1,
7 = 0.1). Thin line: Moderate frequency loop (w = 0.1, 7 = 0.1). Thick line: Low
frequency loop (w = 0.01, 7 = 0.1).

2.3 HYSTERESIS

We will explore only the “steady-state”, or long-time behavior of the system, i.e.,
the behavior of the system after all of the transient modes have died out and p(z, 0)
has become periodic in . This behavior is presented in Fig. 2. The figure compares
the potential u(z,8) with snapshots of the distribution p(z, ) obtained through a
numerical integration of (8). The snapshots are taken along the cycle of the periodic
driving force. A plot of the average position (x(6)) = [z p(x,0)dzr as a function
of sin(f) yields the hysteresis plots shown in Fig. 3. One obtains the corresponding
distributions p(z, 8) as the Floquet eigenfunction with coefficient zero. We will use
below that p(z, ) can be expanded in a Fourier series, i.e.,

p(x,0) = ag(z) + a1 (x) cos(f) + by (z) sin(0) + - - -. (9)

We wish to determine now the area A inside of the loop shown in Fig. 3, the
so-called hysteresis, defined as

A=— ¢(x(0))dsin(0) . (10)

Employing the Fourier expansion (9) one can express

—1 2w

™ Jo

H = (2(0)) cos(0)dd = — (a1(x)). (11)

Thus, the hysteresis is equivalent to the mean of the out-of-phase (cos(#)) component
of the Fourier expansion of p(z, 8). This result can be compared to the spectral power
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Figure 4: Hysteresis H, as defined in (10), versus frequency w for several tempera-
tures. Top: Low temperature (7 = 0.1). Middle: Moderate temperature (7 = 1).
Bottom: High temperature (7 = 10).

amplification of interest in stochastic resonance, which is proportional to {(a;(z))? +
(b1 ())* [6].

Given a particular potential u(x, #) we are interested in the w— and 7—dependence
of H. We will determine H for the frequently-studied double-well potential of the
form v(x) = 2*/4 — 2?/2 with a linear driving potential w(z) = —ax, a = 1/2.
Note that « has deliberately been chosen large enough to “dump” the distribution
between the two wells twice each cycle, as shown in Fig. 2, and may therefore not be
considered small.

The qualitative dependence of H on w, presented in Fig. 4, may be deduced from
the results shown in Fig. 3. At low frequencies, the tip position follows the changes
in the potential almost adiabatically, with (x(6)) tracing out a narrow loop which
extends to the locations of the two wells. But at sufficiently high frequencies the tip
becomes too inert to respond to changes in the potential and (x(¢)) remains nearly
constant, actually tracing out a narrow, horizontal loop as shown in Figure 4. In both
the high and low frequency limits, the hysteresis H becomes very small. Between these
limits, H assumes large values for frequencies to which the tip can respond, albeit
doing so “clumsily”, showing a maximal perturbation by the periodic force applied.
From Fig. 4 it can also be seen that lower temperatures generally result in a larger
hysteresis. This is because at higher temperatures the barrier is more easily crossed
by the distribution, allowing the system to respond to changes faster, and because
the distributions are wider, favoring the middle of the potential.



2.4 NUMERICAL SOLUTIONS

The hysteresis behavior shown in Figs. 2, 3, 4 is based on a numerical solution of the
Smoluchowski equation (4). Standard methods for the time-propagation of diffusion
equations [16] were used for this purpose and (4) was integrated until the hysteresis
did not change significantly between cycles. Then data were taken and the parameters
were changed slightly. This reduced computation time by allowing relaxation of the
system from an almost stable state for additional data-points.

3 Limiting Behavior

In this section we determine the hysteresis (10) in the limits of low and high fre-
quency. This is done analytically through asymptotic expansions [17] in w and 1/w,
respectively. The high frequency expansion obtained below, i.e., (14), is simple and
independent of 3, while the low frequency expansion derived below, i.e., (18), requires
a numerical integration. For this reason we provide also a low temperature approx-
imation (23) for the low frequency expansion, based on Kramers’ approximation.
Comparisons with numerical solutions are made for all cases.

In considering the experimental conditions to which this theory could be applied,
we must consider which frequency ranges are relevant. The driving frequency can-
not be so large that it is comparable to either the velocity relaxation rate or the
resonant frequency of the tip. However, a high frequency reduces the amount of
instrumental drift likely to be encountered. Conversely, a low driving frequency in-
creases the amount of drift likely during a measurement. Also, at low temperatures
the breakdown of our approximation with increasing frequency is extremely fast, re-
ducing the applicability of the expansion. Moderate driving frequencies may contain
more information, but its extraction is difficult since adequate analytical results are
unavailable.

3.1 HIGH-FREQUENCY EXPANSION

In order to expand about the high-frequency limit we define ¢ = 1/w and write (8)
c%p(x,@) = 5a:v(7—a:v + u:v)p(xa‘g) (12)

In the high frequency limit holds ¢ < 1 and one may expand p(x,6) as p(x, ) =
po(z,0) + ep1(z,0) + e*pa(z,0) + - - -. Substituting this expression into (12) yields

O] po(x,0) +epi(x,0) +%py(x,0) +- -] = €0,(70p + ug)|[po(z,0) +epi(x,0)+---].

(13)
Matching equal powers of € generates a sequence of simpler equations for the functions
pi(z,0). The first such equation, containing terms of order O(g%), is dppo(z,0) = 0.
At high frequencies the sinusoidal driving force cancels itself out and only the time-
averaged potential will influence the distribution. pg(x) thus characterized is given by
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Figure 5: Hysteresis H versus 1/w illustrating the high-frequency expansion of the
hysteresis. Straight line: Expression (14), i.e., H ~ a/w = 1/w. Thin line: Low
temperature (7 = 0.1). Medium line: Moderate temperature (7 = 1). Thick line:
High temperature (7 = 10).

the Boltzman distribution py(r) = Ne™#Wo = Ne=#@)  where N = (f e_ﬁ”(“’)dx)il
is a normalization constant.

The terms of order O(g) in (13) lead to the equation dyp; = N sin()9, (w,e @),
This can be integrated to obtain p; = —N cos(#)9, (w,e @), Comparison with (11)
then gives, to order O(g),

H = 6/90N8$(wxe’ﬁ”(‘”))dx = —5/wae’ﬁ”(x)dx = e(—Wyz)po (14)

where we have employed integration by parts and used v(400) — oo. If the sinusoidal
component of the potential is linear, i.e., for w(z) = —ax, (14) can be expressed
H = ae + O(g?). Thus, for a constant driving force holds H ~ a/w where « is the
amplitude of the driving force. Comparison with numerical results in Fig. 5 verifies
this high frequency behavior.

3.2 LOW-FREQUENCY EXPANSION

We will now evaluate the hysteresis in the low frequency, or adiabatic limit, i.e., for
w < 1. In the extreme case of this limit the system is time-reversible and follows
the adiabatic Boltzman distribution N(6)exp[—pfu(x, )] where N(#), in the present
case, is a function of . We expand about this limit to determine the departure from
it. For this purpose we substitute the expansion p(z,6) = po(z,0) + wpi(z,0) +
w?py(z,0) + - - -, into (8) and obtain

w Ogl po(w, 0)+wpr(z,0)+- -] = 0u(10, + Ux)[po(l‘,Q)—i—wpl(x,Q)—l—uﬂpQ(x’@)_}_..(.]j
15
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Figure 6: Hysteresis H versus w illustrating the low-frequency expansion of the hys-
teresis. Straight lines: Expression (18) evaluated numerically. Top: Low tempera-
ture (7 = 0.5). Middle: Moderate temperature (7 = 1). Bottom: High temperature
(1 =10).

Matching terms of order O(w?) results in 9,(70, + u,)po = 0, the solution of which
is the Boltzman distribution. Matching terms of order O(w) results in

aGPO(I70) = a:v(Taac + um)pl(xv‘g) (16)

which has a solution of the form p;(x,0) = M (0)po(x, 8)+ f(x,0) where f is a function
yet to be specified. The condition [dxp; = 0 implies for M the value M = — [ fdx.

In order to determine f, we rewrite (16) Oypy = TO.e "*0,e’*f which can be
solved by double quadrature. We choose the inner lower limit of integration as —oo
to ensure convergence. Since the outer lower limit of integration corresponds to the
addition of a constant multiple of py(z, ), which will be adsorbed into M () during
normalization, we choose zero for convenience. Thus we arrive at

fz) = Be Pule) /Ox U [/_xl 39190(95”)6[3:”] dz’. (17)

This expression can then be evaluated numerically, for which purpose it is convenient

to employ Jppo = B({ug)p, — te)Po-
Normalizing the solution, as noted, and substituting into (11) gives, to order O(w),

oo Y 02” UOO . (f(x,@) ol 0) [ f(x’,&)dx’) dx] cos0do.  (18)

™ —00 —00

Although cumbersome, this expression can be evaluated quickly by computer. Com-
parison with numerical simulations in Fig. 6 shows agreement. We also see that H
increases quickly with 3 at small w. Since H itself is bounded, the range of w for
which this linear approximation is valid, therefore, must also decrease.



3.3 LOW-TEMPERATURE BEHAVIOR OF LOW-FREQUENCY EXPANSION

In case of large @ (small 7) one can simplify the low-frequency expansion (18). For
this purpose we will employ Kramers’ approximation [18] for the crossing rate of the
potential barrier. This approximation is only valid in the limit of large barrier heights,
measured in units of kg7 or, at present, in units of 7. In our model the barrier is
reduced to zero during the cycle. However, since we are in the adiabatic limit the vast
majority of the distribution will have crossed the barrier before the barrier becomes
small and, therefore, the flux will be negligible when Kramers’ approximation is
invalid. Of course, when ( is not large the barrier height is never large and so our
approximation breaks down.

In our present approximation the potential u(z, 8) (6) will be characterized through
the following quantities: the magnitudes of the second derivatives at the bottom of
the left and right well, w% and w%, respectively; the magnitude of the second deriva-
tive at the barrier maximum , — w?; the height of the barrier going from left to right
and right to left, us and upg, respectively; the fraction of tips in the left and in the
right well, N4 and Npg, respectively. The latter quantities obey, in the limit of high
barriers, the rate equation

Na = —ksNa+ kgNg (19)
Np = —kgNg + kaNy (20)
where, according to Kramers’ approximation, holds ky = %e*ﬁ“f‘ and kg =
WfWC e—Bus
™y

In case of the bistable potential v(z) = /4 — 2?/2 the wells remain approxi-
mately at +1 and the maximum at z = 0. Accordingly, we assume wy = wg ~ /2
and we ~ 1. Similarly we approximate us &~ 3 — asin(f) and up ~ § + asin(f).
Note that u, actually becomes negative but, as explained above, at this point holds
N4 < 1 such that the terms k4N, in (19, 20) are negligible. Recognizing that for
(> 1 the tip will sit near the bottoms of the wells, one can assume (x) ~ Ng— N4 =
2Np —1=1—2Ny4. The rate equations (19, 20) yield then

2
(x)p = £e’ﬁ/4 sinh(ésin(G)) — (z) cosh(é sin(6)) | . (21)
W 2 2

Expression (21) is still too unwieldy for an evaluation of H according to (10).
However, one can expand (21) in terms of the small parameter ¢ = we*. One
eventually obtains

(x(9)) ~ tanh(g sin(f)) + ¢ <;_\ﬁ/72_r cos(@)sech?)(g sin(0)) + tanh(g sin(9))> . (22)
In evaluating the integral (10) to obtain H one exploits 5 > 1 to obtain finally the
simple expression

weblAn

V2

H ~ (B>1, w<e P, (23)
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Figure 7: (?d—?:]wzo versus (3 showing low-temperature (large-/3) agreement. Dotted line:

Evaluation according to the low-frequency expansion. Straight, solid line: Evaluation
according to (23).

As demonstrated in Fig. 7, this approximation is in excellent agreement with the
numerically integrated low-frequency expansion; given the number of approximations
involved in the derivation of (23) this is a surprising, but welcome result.

4 Discussion

In this contribution we have provided the theoretical framework for a description
of an AFM tip subject to a bistable interaction with a substrate, moving in the
strong friction limit (solvent), and being subject to a periodic driving force. This
scenario should be applicable to AFM studies of biological systems using chemically
active tips. The theoretical description is based on the Smoluchowski equation which
describes diffusion in the presence of a force field.

The aim of this contribution is to show that the measurement of the hysteresis
loop traced by the AFM tip, in particular, the measurement of the area circumscribed
by this loop, the so-called hysteresis, can yield valuable insight into the microscopic
interaction between tip and substrate, and into the dynamics of the tip, i.e., the
tip’s friction coefficient. In order to relate the hysteresis to microscopic properties
one needs simple expressions which can be inverted to yield the mentioned quantities,
once the hysteresis has been measured. For this purpose we have provided asymptotic
expansions for the hysteresis in the limits of high (14) and low (18) frequency of
sinusoidal forces. The expressions are valid for arbitrary temperatures and driving
amplitudes. In addition, we have simplified the low-frequency expansion in the limit
of low temperature (23) for the case of a simple bistable potential. The validity of the



expansions provided has been demonstrated via comparison with numerical results.

The simplicity of the high-frequency expansion (14) in the case of a linear driving
potential is particularly striking and useful. The independence of the hysteresis of
both temperature and form of the potential suggests that this limit may be useful for
determining the friction coefficient v in an experimental situation where 2, «, and
‘H are known.

The complexity of the low-frequency expansion (18) makes it difficult to invert.
In addition, the large slope and limited validity range of this expansion reduce its
applicability. However, this expansion may be useful in the study of hysteresis in the
deterministic limit.

The range of situations that could be studied in AFM experiments is not lim-
ited to symmetric, double-well potentials as studied here. For actual experiments
experimenters may prefer to operate in the range of large-hysteresis and moderate
frequencies, i.e., in a range not covered by the approximations provided. These sit-
uations might well be approached using numerical solutions of the Smoluchowski
equation. This possibility to obtain, from measured hysteresis values, information
for arbitrary potentials and frequencies should not be discounted.
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