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The universal asymptotic scaling laws proposed by Amari et al. are
studied in large scale simulations using a CM5. Small stochastic multi-
layer feedforward networks trained with backpropagation are investi-
gated. In the range of a large number of training patterns f, the asymp-
totic generalization error scales as 1/t as predicted. For a medium range
t a faster 1/#* scaling is observed. This effect is explained by using
higher order corrections of the likelihood expansion. It is shown for
small ¢ that the scaling law changes drastically, when the network un-
dergoes a transition from strong overfitting to effective learning,.

1 Introduction

Recently a growing interest in learning curves, i.e., scaling laws for the
asymptotic behavior of the learning and generalization ability of neural
networks has emerged (Amari and Murata 1994; Barkai et al. 1992; Baum
and Haussler 1989; Haussler ef al. 1994; Murata et al. 1993; Opper et al.
1990; Opper and Kinzel 1995; Saad and Solla 1995a,b; Seung et al. 1992;
Sompolinski ef al. 1990). Clearly, as soon as learning is applied, we ob-
serve the characteristics and the performance of the learning algorithms
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in terms of generalization and training error. Therefore, it is important
to study the bounds on how fast we can learn as a function of the num-
ber of parameters in general. The large-scale simulations presented in
this paper are addressing the question of scaling laws for training and
generalization errors in small multilayer feedforward networks with so
far up to 256 parameters, trained on a finite number of training samples
of up to 32,768 patterns.

We address the teacher-student situation, i.e., given a teacher net-
work, a student network of the same architecture learns from the exam-
ples generated by the teacher.

So far a number of groups have used statistical mechanics and the
replica trick to find the scaling properties of the generalization ability,
first for simple perceptron systems, and recently for tree-like networks
with hidden units (for reviews see Heskes and Kappen 1991; Opper and
Kinzel 1995; Saad and Solla 1995a,b; Seung et al. 1992; Watkin et al. 1993).

A further approach for estimating asymptotic learning curves is the
computational one, where the VC dimension is used to measure the com-
plexity of a given problem (Baum and Haussler 1989; Haussler et al. 1994;
Opper and Haussler 1991).

We would like to adopt the viewpoint of information geometry, which
provides an alternative method for estimating the asymptotic behavior
of learning based on an asymptotic expansion of the likelihood of the
estimating machines, always assuming a maximum likelihood estimator
(Amari and Murata 1993; Murata et al. 1994).

In this paper we examined whether the well-known universal asymp-
totic scaling laws found by Amari et al. can be observed in a simulation
of a finite continuous network and a finite number of continuous training
patterns. According to this theory the scaling law

= Hy+ = o (1.1)
holds for general stochastic machines with smooth outputs (Amari and
Murata 1993; Murata et al. 1993). The quantity ¢, denotes the averaged
likelihood (generalization ability), m is the number of parameters of the
model (bias + weights), and ¢ is the number of training examples pre-
sented to the network. Emphasis is set to the issue of evaluating whether
these asymptotic results have an impact on the practical user of neural
networks. Also the question of where asymptotics starts is addressed. A
further point of interest is to obtain insights about the dynamics of the
hidden units during the learning process.

In our simulations we use standard multilayer continuous feedforward
networks, trained with backpropagation and a conjugate gradient descent
in the Kullback-Leibler divergence.

The next section describes the model investigated. The technical de-
tails of our simulations are given in Section 4 and higher order correc-
tions to equation 1.1 are presented in Section 5. Section 6 discusses the
numerical scaling results, and finally a conclusion is given.
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2 The Model

We use standard feedforward classifier networks with N inputs, H sig-
moid hidden units, and M softmax outputs (classes). The output activity
O, of the Ith output unit is calculated via the softmax squashing function

exp(hP)
=C|xw)=0= ——————, I=1,..., 21
p(y 1 | X W) 1 1+ Zkexp(h](g)) M ( )
where
1
Oo = 1+ Y exp(h?)
and where b = ¥ w, s; — 97 is the local field potential. Each output

O codes the a poster10r1 probablhty of an input pattern being in class
Ci, Og denotes a zero class for normalization purposes. The m network
-parameters consist of biases ¥ = (9%,9°) and weights w = (w/, wO).
When x = (xy,...,xy) is input, the activity s = (s1,...,54) is computed
as

-1
s,=[1+exp( Z kxk )] , ji=1,....H (2.2)

The input layer is connected to the hidden layer via w¥, the hidden
layer is connected to the output layer via w®, but no short-cut connections
are present. The network approximates the probability distribution of the
outputs (Finke and Miiller 1994). Therefore, each randomly generated
teacher wr represents by construction a multinomial probability distri-
bution g(C; | x,wr) = Prob{x € C;} over the classes C; (/ =1...M) given
a random input x. We use the same network architecture for teacher and
student. Thus, we assume that the model is faithful, i.e., the teacher dis-
tribution can be exactly represented by a student g(C; | x) = p(C; | x, wr).

A training and test set of the form § = {(x',c¢”) | p =1...t} is gen-
erated randomly, by drawing samples of x from a uniform distribution
and forward propagating x? through the teacher network. Then, ac-
cording to the teachers’ outputs 4(C; | x’) one output unit is set to one
stochastically and all others are set to zero leading to the target vector
y' =(0,...,1,...,0). A student network w is then trying to approximate
the teacher given the example set S. For training the student network w
we use a backpropagation algorithm with conjugate gradient descent to
minimize our objective function: the Kullback-Leibler divergence

M C
Dig.ptw) = [ dx - qa(Ci im0 @3)

Here q(C; | x) denotes the class conditionals with respect to outputs of
the teacher and p(C; | x,w) are the class posteriors as approximated by
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the student network. The Kullback-Leibler divergence is the natural |
objective function to measure the degree of coincidence of the teacher
and student distributions 4 and p. To measure the Kullback-Leibler (KL)
divergence one has to know the stochastic source underlying the data
set that can be decomposed into the input-generating part g(x) and the
output probability distribution q(C; | x). In practical applications there is
typically no such knowledge. So in our training procedure only the log
likelihood

1
er=-—y Zlnp(c” | X, w) (24)
4
will be available, using the empirical joint distribution

. : 14 1: x=x"and C,, = ¢’
7" (x,Cp) = ;;{ 0:  otherwise

to evaluate equation 2.3; ¢” refers to the correct class label associated to
xp.1

Our results based on training with equation 2.4 have practical im-
portance, since as mentioned above, in general practical problems only
the empirical distribution is known. On the test set we use a better ap-
proximation to the KL divergence by sampling equation 2.3 for which all
necessary ingredients are known

1 M
© T T Htest set;g

X [9(C [ ¥)Inp(Cy | X, w) — (Cr | ¥) Ing(C; | ¥, w)]  (25)

So given a random uniformly distributed input, we can use the a pos-
teriori probabilities q(C; | x”), which are exactly the output values given
by the teacher networks on the presentation of an input vector x*.

3 Order Parameters

For the committee machine several authors have observed a phase tran-
sition, where the generalization error first scales as N/t in a so-called
symmetric phase whereas for more patterns a transition takes place and
the system scales as NH/¢ in the symmetry broken phase (Barkai et al.
- 1992; Schwarze and Hertz 1993; Seung et al. 1992; Kang et al. 1993; Saad
and Solla 1995a,b). Below the transition all hidden units learn uncor-
related to each other and to all the teacher hidden units (see Fig. 1a).

1We use equation 2.4 instead of equation 2.3 because minimizing the KL divergence
and minimizing — [ dx Efio 4(x)9(Ci | x)Inp(C; | x,w) differs only by a constant and
is therefore equivalent. In the learning situation, only the set of training examples is
available, so we have to use equation 2.4.
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Figure 1: Schematic picture of the weight vectors of the student and the teacher
(a) before and (b) after the transition from uncorrelated to correlated learning.

Above the transition every student hidden unit decides for one teacher
hidden unit and is maximally uncorrelated with the other teacher hidden
units (see Fig. 1b).

We would like to determine whether this transition also occurs in con-
tinuous multilayer feedforward networks being trained with continuous
patterns. We therefore define a set of order parameters that allows a
more careful inspection of the correlations between student and teacher
than the Kullback-Leibler divergence.

3.1 Angle-Based Order Parameters. In the committee machine the
overlap

1N Lw n
Rik=ﬁzwrikwﬁ=ﬁwr w;

e~ Wie
k=1

and the self-overlap describe the dynamics of the hidden units during
learning, where we used the abreviation wil, = (w,,...,w#y). To have
only one parameter we consider all permutations ¢ of the hidden units
in the multilayer perceptron case to make the overlap independent of
the actual permutation. In our case the weights have to be normalized,
since our system is not binary. Let w, and w,, be the vectors of all
weights from the input layer into hidden unit i éor teacher and student,
respectively, and let w§,, and w?u(,-) denote the weight vectors from hidden
unit i to all output units. Based on this notation we define two measures
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for the correlation of the weight vectors

cwl
T]o a(j)e
H = — 2P and
HZ wl ]
O = max XH:M (3.1)
7 lwlllllwd, )l

where max, is the maximum over all possible permutations o of the
hidden units. In other words, we consider the overlap of the hidden
units given a permutation such that the weights of the hidden units
of the teacher and the student are maximally correlated. A transition
from uncorrelated to correlated learning, as mentioned above, would be
detected as a change of the angles between teacher and student vectors.

3.2 Length-Based Order Parameters. The order parameters intro-
duced in the last section essentially measure the angle between teacher
and student machine. Now we have to take into account that we do not
deal with binary weights, which are nicely normalized, but with students
who can change the lengths of their parameter vectors quite drastically in
the dynamics of the learning process. We therefore introduce a new set
of order parameters based on the ratio between the teacher and student
weights

H
ratioH = Z A and
j= wT/o”
w
ratio O = Z“ o)l (3.2
[y

3.3 Correlation-Based Order Parameters. Since the hidden units im-
plement functions, we measure additionally the functional £2 norm, which
corresponds with the correlations between the hidden units activities

1 2
o (xP) — si(xP .
ActHj= o — §pj [sm:(x") — 5;(x")] (33)

The sum is taken over the test set and sy denotes the activity of the
ith hidden unit of the teacher while s; is the student’s activity at hidden
unit j (cf. equation 2.2). A value of Act H;; ~ 0 corresponds to a maximal
correlation between student and teacher. This parameter gives a very
clear picture of the dynamics of the functional distance between teacher
and student hidden units during learning.
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3.4 Output Measure. As a last-order parameter we consider the ex-
tremality of the output activities

#SetZ me{l—ol(x" )1, [010¢7) — 017} (34)

The sum over p is taken either over the training or the test set and we
normalize over the cardinality of the respective set (denoted by #set). The
quantity Ext measures how strongly the network fits the extreme values
of the targets, so if the network outputs are close to either 0 or 1 we
obtain Ext ~ 0. In this sense Ext is a measure of overfitting, assuming
a smooth posterior g(C; | x,wr) of the teacher. As Ext takes nonzero
values the student network starts to provide a smooth estimate of the
a posteriori distribution of the teacher.

4 The Simulation

The simulations were performed on a parallel computer (CM5). Every
curve in the figures takes about 3-5 hr of computing time on a 128 or
256 partition of the CM5. This setting enabled us to do the statistics for
a single teacher over 128-512 samples (different training sets). The exact
conditions under which our simulations were performed are as follows:

1. A teacher network wr is chosen at random, where weights and
biases are normally distributed with zero mean and variance 1.

2. Then a random training set of size ¢ and test set with fixed size
100,000 is drawn by choosing x” from a uniform distribution of ap-
propriate width. The output distribution q(C; | x, wr) is generated
by the previously chosen teacher wr and the 1 out of M class target
vectors y” are generated stochastically.

3. A student w is initialized randomly or as the teacher configuration
wr. Conjugate gradient learning with linesearch on the log likeli-
hood equation 2.4 is applied. Given the student has reached a local
minimum of the training error (equation 2.4) we assess the different
order parameters of equations 3.1-3.4.

4. Furthermore the generalization ability of the student is measured
on the test set via equation 2.5.

5 Higher Order Corrections

To obtain the asymptotic theory for the learning curve of the student
networks w we have to expand the likelihood function (KL divergence)
around the teacher wr following (Amari 1985; Amari and Murata 1993;
Murata ef al. 1994; Akahira and Takeuchi 1981). We now give the results
for the higher order corrections to the asymptotic expansion yielding a
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refined scaling law, not only consisting of equation 1.1, but of higher
order terms, responsible for the deviations seen in the simulation.

% + g + higher order terms (5.1)
The 1/# corrections have a prefactor A, which is very complicated and
unfortunately strongly model dependent. The first m/2¢ term is model
independent. The variance of the first order term in ¢, has the form
o = (m/2t*)"V2. The complete correction term A is discussed in the
Appendix.

Eg=H0+

6 Results

In our simulations we can distinguish between three ranges of ¢, which
will be described subsequently. First we summarize the general picture
and then we relate this picture to the numerics.

1. Small #: in this range we observe strong overfitting, which induces
diverging weights and generalization error, whereas the simulations
typically show a finite generalization error due to finite numerical
precision and the flatness of the error surface.

2. Medium t: a 1/# scaling is observed. So far, neither the statistical
physics predictions nor statistical considerations have addressed the
scaling of learning curves in a medium range of t. We propose
necessary higher order corrections that have to be taken into account
to explain the phenomena.

3. Large t (asymptotic range): the asymptotics underlying equation 1.1
are observed in the range of a large number of patterns.

6.1 Few Examples: Overfitting. In the following we will first give
a theoretical explanation of the small ¢ range and then report on our
experimental findings.

6.1.1 Why overfitting? Theoretical Considerations. For small t we are
below storage capacity. A network is considered to operate below storage
capacity if the student can reproduce the correct labeling on the training
set with probability 1 and can therefore classify all given training patterns
without error. The best and global solution of the learning problem in
this case is one output set to 1, all others equal to zero, and diverging
weights. If the weights diverge, the generalization error is bound to go
to infinity.

For a fixed architecture the limit of storage capacity depends on the
specific sample. Above storage capacity—as the student cannot classify
all training patterns correctly for a given sample—a minimum with finite
generalization error and finite weights becomes favorable. In Figure 3
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we plot the probability r for finding a finite minimum, computed by
averaging over a large number of samples. As we see for t > 2m all
students end up in a finite minimum with probability r = 1. Att ~m
about half of the students are giving perfect classifications (r = 1/2),
and therefore diverging generalization error. So r is not only a good
parameter to detect the limit of the storage capacity of the classifier, but
7 < 1 can be used as an indication for a diverging generalization error.

So for t < 2m, the averaged generalization error should always be
infinity, according to our theoretical considerations. On single samples
we can of course obtain a finite generalization error, if a student cannot
classify all training patterns correctly. In the range of small ¢ an analogy
to the transition found for the committee machine by means of statistical
mechanics in the thermodynamic limit (Barkai ef al. 1992; Schwarze and
Hertz 1993; Seung et al. 1992; Kang et al. 1993; Saad and Solla 1995)
could be the transition from infinite to finite weights, with respect to KL
divergence.

6.1.2 Experimental Results. Plotted in Figure 2a is the Kullback-Leibler
divergence found in the simulation for a 108-parameter network (8-8-4).2
Obviously the generalization error is not diverging. This result is typical
for a practical simulation, which is limited due to finite precision and the
flatness of the error surface.

For t < m the student overfits strongly with outputs tending to take
the extreme values 0 or 1 to imitate the empirical distribution g*(x, Cyy,).
As one student output tends to 1, the others tend to zero. The value for
the extremality parameter—also observed in Figure 3 of the simulation—
in this situation is Ext ~ 0 before the bend of the Kullback-Leibler diver-
gence (near t ~ m) and Ext > 0 after the bend. Taking extreme output
values is possible only if the student weights increase drastically. Al-
though we cannot see the expected diverging weight values, we observe
in Figure 4 that the size of the student weights is very large, until after
the transition point it approaches a magnitude similar to the teacher’s
weights. The measure ratio O shows a nice agreement with the shape
of the generalization error, while ratio H approaches its maximum value
after the transition near t ~ m. As more examples are learned and the
point t = m is passed, we observe a knee in the learning curve and a
decrease of the absolute values of the student weights. For larger net-
works the knee steepens up and the change in weight size becomes more
prominent. The overfitting is a result of the fact that smooth networks
can always fit the data exactly when f < m.

In the region of the bend in the KL divergence at m < t < 4m we
find a change in the scaling behavior toward a faster scaling law. In
this range the outputs start to take nonextreme values and the parameter

For the 8-8-4 network we compute the number of free parameters as m =
(N+1)H+ (H+1)M = 108.
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Figure 2: Plotted are the simulated generalization values over 1/t for an 8-8-4
network. We compare the start from the teacher wr and a random initialization
(a) for the whole learning curve and (b) for the asymptotic area. Note that in
the asymptotic range we find for the random started simulation higher values
for the KL divergence, i.e., the simulation gets stuck earlier in local minima.
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Figure 3: Ext measured on training and test set indicates whether the output
activities take extreme values as a function of 1/t (8-8—4 net). A value of zero
indicates extreme output values, i.e., 0 or 1. Compared to Ext is the probability>
r of wrong classification on the training set, for r = 0 only a diverging KL
divergence is a valid solution, for r = 1 a finite minimum is more favorable. r
is a good parameter to detect the limit of the storage capacity of the classifier.

Ext shows a sharp bend, since more examples are provided to give a
smoother estimate of the a posteriori distribution of the teacher. Also
the probability  of finding a finite solution tends to 1 and for ¢ > 2m
numerical effects do not have to be considered anymore. We determine
that the activities and angles of the teacher and student hidden units
are still uncorrelated, i.e., the student hidden units do not correlate to
specific teacher hidden units.

We conclude that overfitting effects dominate the small ¢ region to a
large extent. They can be measured through the order parameters ratio O
and Ext. The region where the average generalization error actually di-
verges theoretically can be estimated by . We would like to emphasize
that below storage capacity numerical effects that act as regularizers de-
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KL vs. ratios
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Figure 4: Ratio of the student and teacher weights of hidden to output units
(ratio O) and input to hidden units (ratio H) versus Kullback-Leibler divergence
as a function of 1/t (8-8—4 net). Note the strong increase of ratio O at the bend
of KL near ¢ ~ m.

pending on implementation details® will typically be observed and are
hard to be circumvented.

6.2 Medium Range: Many Examples. For 4m < t < 30m we find a
scaling law of 1/f2, which is faster than 1/t. Yet, the exponent is slowly

" decreasing toward t~! as t is growing toward the large t regime. The

higher order corrections of equation 5.1 can explain this effect: the far-
ther we are away from the 1/t asymptotics the more prominent are the
correction terms of equation 5.1.

Note that the above mentioned value 4m for the onset of the 1/t
asymptotic region is specific to the example (8-8-4) used frequently in
this paper, since the parameter A from equation 5.1—determining the
onset—is unfortunately strongly model dependent (see Appendix). In

3In our case the linesearch and the bracketing subroutines have tolerance bounds
for the gradients with respect to the log likelihood equation 2.4. These act implicitly as
regularizers.
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Figure 5: Plotted are the simulated generalization values over 1/t for an 8-
8-4 network. For large t an exponent of the scaling law smaller than —1 is
observed. Shown are the simulated values minus m/2t. Above t = 3000 we
find the scaling predicted in equation 1.1, e.g., the points are on the line ¢; = 0.
Below ¢ = 3000 a quadratic interpolation is applied, yielding the necessary
higher order corrections of equation 1.1.

Figure 6 we can see the asymptotic region for a number of different
networks as a function of m/t. Clearly the range of the 1/t regime is
completely different for different network configurations.

To have a better impression of the quality of the t~! and t~2 scaling,
we subtracted 108/2¢ from the data points in Figure 5 and clearly see
¢; = 0 for ¢ > 3000 while for ¢ > 400 a ¢~ fit can be nicely applied.

In the following we will use the term correlation synonymously with
the functional distance or the angle. In the =2 range, quantitatively the
correlations (angle rH) between teacher and student weights show a tran-
sition from a state where the hidden units of the student and the teacher
are initially correlated to a certain extent (rH = 0.63) toward asymptotic
alignment (rH =1; cf. Fig. 7). Furthermore, if we consider the functional
distances Act Hj; in Figure 7, we observe an initial overall similar func-
tional distance between student and teacher hidden units ranging from
0.15 to 0.4. For larger ¢ this distance is decreased to zero for one hidden
unit, while the others maintain a similar magnitude ranging from 0.15 to
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"Figure 6: Kullback-Leibler divergence as a function of m/t for different network
sizes as indicated in the key. Asymptotically all curves coincide. Furthermore,
note the different onset of the 1/t* region for the different network sizes.

0.35 as before. This effect would also be a candidate for the transition
in the committee machine (Barkai ef al. 1992; Schwarze and Hertz 1993;
Seung et al. 1992; Kang et al. 1993; Saad and Solla 1995a,b), although it is
by no means similarily abrupt and has to be observed in several order
parameters (angle, functional distance, and ratio) as proposed above (see
also Section 6.1.1).

Note that practical applications have usually access to a data size
> 5m*, where m* is the number of effective parameters in the network.
So under the conditions pointed out in Section 3 we will observe in most
practical situations a knee in the learning curve and a faster scaling than

- 1/, i.e., the exponent of ¢ is smaller than —1 and higher order correction
terms have to be taken into account to explain this effect.

6.3 Asymptotic Behavior: Extensively Many Examples. As the
asymptotic range is reached slowly, the higher order terms lose their
importance and the law stated in equation 1.1 is approached. All net-
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Figure 7: Angle between student and teacher weights of input to hidden units
(rH) versus £2 functional distance between the activity of student hidden unit 1
and all teacher hidden unit activities versus Kullback-Leibler divergence (KL)
as a function of 1/t (8-8—4 net).

works studied exhibit a m/2t scaling in their asymptotic range. In the
Figure 8a and b we show in particular the 8-8—4 result with an inter-
polated slope of 57 and the 16-10—4 net (212 parameters) with a slope
of 104. Clearly the interpolated region of m/2t is reached at higher ¢
(t > 5000) in the larger system. In even larger networks (e.g., 16-12-4)
the asymptotic region will shrink and will eventually not be reached for
the maximum number of patterns 32,768 considered in our simulation.
In this case one always has to rely on higher order corrections of the
scaling law (equation 5.1). In Figure 6 we plotted the KL divergence as
a function of m/t. For large t all curves coincide with a slope of 1/2.

6.4 Initialization. Most of the figures report on the simulation sce-
nario, where we trained the student network starting from the teacher

4E.g., 1644 slope, 47; 16-8-4 slope, 98; 16-10—4 slope, 104; 8-8—4 start from teacher
slope, 57; 8-8-4 start from random initialization slope, 56.
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Figure 8: Plotted are the simulated generalization values in the asymptotic range
for (a) the 8-8—4 network (108 parameters) and (b) for the 16-10—4 network (212
parameters). In both cases a clear scaling as 1/ is seen.
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configuration wy. The idea was that since we consider a local neigh-
borhood of the maximum likelihood estimator in the asymptotic case,
the teacher would be a good starting condition for training. Figure 2a
shows the complete learning curve of an 8-8—4 network comparing this
initialization of the student to a random one. Except for the asymptotic
range both initializations always yieldl very similar results. From this we
conclude that no matter where we start in phase space, the dynamics of
learning is always attracted to a local minimum of similar quality as in
the case of a start from wy. The detailed picture of the asymptotic range
is given in Figure 2b. Clearly, starting from a random initial state makes
the learning converge to a higher local minimum in the generalization
error only in the asymptotic range. Nevertheless, since the asymptotic
theory is valid in any local minima close to the teacher, we observe the
same asymptotic m/2t scaling for the random initialization as for a start
from the teacher (cf. Fig. 2b). Note however, that the learning speed is
increased by 20% using the teacher as initial starting point of learning.

7 Discussion and Outlook

In our numerical study we observed a rich structure in the learning
curves of continuous feedforward networks. For a small number of
patterns we find a phase of strong overfitting, where the outputs take
extreme values in their estimate of g(C; | x, wr) (Fig. 3) and the student
can classify all training patterns correctly. We are below storage capac-
ity of the classifier, so the weights and the generalization ability should
theoretically diverge. This fact is not observed in a typical simulation
due to numerical effects of finite precision (inducing an implicit regular-
ization) and the flatness of the error surface. As the number of patterns
increases beyond storage capacity, the Kullback-Leibler divergence also
theoretically reaches the finite value found in the simulation and the
outputs start estimating smoother probabilities. The size of the student
weights becomes comparable to the teacher weights. The bend of the
learning curve is followed by a region of 1/#* scaling when ¢ is increased.
Asymptotically we confirm the m/2t behavior.

From our results it seems important to reach the 1/t phase as fast as
possible to learn efficiently without overfitting and to obtain a smooth es-
timate of the a posteriori distribution. Furthermore, as a smooth estimate
is obtained, the network is finally free to learn in a collective manner, i.e.,
the activity of one student hidden unit becomes highly correlated to one
specific teacher hidden unit (Fig. 7).

Practical applications usually have access to data sets large enough
to enter the 1/{* range. If maximum likelihood training and no early
stopping method is used—according to our results—typically both, a
knee and a faster scaling in the learning curve should be observed. Yet,
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the range of the asymptotic 1/t scaling seems to be too far from realistic
sizes of data sets available to most practical users of neural nets.

We would like to emphasize that we always find a faster scaling than
1/t between the small t overfitting phase and the asymptotic phase. For
this reason model selection criteria that are usually based on asymptotic
or certain overall assumptions on the smoothness of learning curves are
likely to perform weakly, since they neither capture the transition en-
countered nor the faster scaling observed (see also Kearns et al. 1995).

: Further investigation is focused on the measurement of scaling laws
in a real practical application and on algorithms that use early stopping
to avoid overlearning or overfitting effects (Amari et al. 1995, 1996).°

Append‘ix" _

We now describe the details of the asymptotic theory for the higher order
corrections. The conditions for an asymptotic evaluation of ¢; are t —
large and a realizable teacher machine with parameter wr. The present
framework can be readily extended to unrealizable cases.

A.1. Asymptotic Distribution of the m.Le. w. Let us normalize the
maximum likelihood estimator (m.l.e.) w as

W= \/Z(W—WT)

Then, the error W is asymptotically normally distributed

plwiser) = (W) +.0 ( )
where

JwTG—lw}

1
wlwiG) = (2m)"(G| eXp{ 2

with mean 0 and variance matrix (¢7), where (V) is the inverse of the
Fisher information matrix G = (gy)

. [8*1logp(Ci,x; wr)
8i=E [ owidw

The higher-order Edgeworth expansion gives

p(W;wr) = o(W;G){1+A(W)}

5Further information on related research can be found at
http:/ /www.first.gmd.de/persons /Mueller.Klaus-Robert.html.
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AwW) = 6\/_(Kh'—kK,, k)
if 1 ijkl 1 ijklmn
+§ C,‘jh + EC,‘jklh 8 UkKImnh
1
+0
(#)

Here, K, hii, Wk, k¥, ... are the tensorial Hermite polynomials with the
metric G = (g;). For example,

W o= o
Wo= @i —gi
Wk = @aiak - (gt + g + ¢
W9 = ikl — 6gik + 3gligh
etc., where parentheses attached to indices denote symmetrization with
respect to the indices inside the parentheses.
The Edgeworth expansion of asymptotic distributions of m.l.e. was
given by many researchers in the eighties, e.g., Akahira and Takeuchi
(1981), Amari (1985), Amari gave its geometric interpretation in the

framework of curved exponential families.
From this, we have the moments of the error in parameter space

W = VHW — wr).
Elw] : E[@]= %K"
Efww"] : E[@'@d]=g¢"+ lA‘/
Efwww] : Eldd/@] = \[A”"
Efwiivw] : E[@/dat] = 3g0g + TAM

where A’s are given explicitly in Akahira and Takeuchi (1981) and Amari
(1985).

A.2. Expansion of the Kullback-Leibler Divergence Let w = wr +
Aw. Then, by Taylor expansion, we have

D(wr,w) = / p(x,wT)log;;((’;’vaT))dx

= Ew,[l(wr) — {(w)]
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where x, implies hereafter the pair (x,C;) and I(w) = logp(x,w). By ex-
pansion, we have :

I(w) = I(wr+ Aw)
= I(wr)+ aa—ul}iAwi + %Z %Awiij
L st +%Z#j}i8wk
D azuau?%alwm

Aw; Aw;Aw

Aw;AwAweAw, + O(|Aw|®)
Hence we arrive at
D(wr,w) = ——%LijAw"Aw’ - %ZLijkAwiijAwk
72l4 3 LinAwAwAwAw; + O Aw]?)

where for example L; is given by

d*log p(Ci, x; wr)]

Lij - EWT [ Gwiawj

~ Therefore the expansion of ¢, is given as
e, = E[D(wr, W) =E [D (wT,wT + %v‘v)]
= f‘% STLiE [—}w’w’]
1 1 ~ i ~ ‘a)k
—g z Li]'kE t—-\ﬁw w
-——1—-ZL-‘ E lw"zv'ﬁm' +o(-L
24 ijkl 2 tZ\/Z
= 27 28 (8’ + ;A])
1 1,0 1 1
—g Lo gAY = 57 3 Ly - 387"
1
0 (7)

— ﬂ+é+o _1_
T2t R 2/t
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where
1 o1 )
A=Y giAl — LA™ — 23 Ling'g"
This gives the higher-order correction to the learning curve,
gg = (—logp(Cix | W)) = EoEixc) [~ 1ogp(Ci, x| W)]

= H, +‘% + % + higher-order terms

The result is also confirmed by Komaki (1994), where he obtained
the Kullback-Leibler divergence with the modification of the predictive
distribution by the normal mixture direction. When the normal correction
is put equal to 0, his result gives

. m A 1
D_(WT, W) = EZ + E +0 (t_2>
where A is explicitly obtained. It includes the curvature terms, bias gra-

dient terms, geometric and fourth cumulant terms, etc., in agreement
with that given by Amari (1985).
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