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Abstract

Oseltamivir (Tamiflu) is currently the frontline antiviral drug employed to fight the flu virus in infected individuals by
inhibiting neuraminidase, a flu protein responsible for the release of newly synthesized virions. However, oseltamivir
resistance has become a critical problem due to rapid mutation of the flu virus. Unfortunately, how mutations actually
confer drug resistance is not well understood. In this study, we employ molecular dynamics (MD) and steered molecular
dynamics (SMD) simulations, as well as graphics processing unit (GPU)-accelerated electrostatic mapping, to uncover the
mechanism behind point mutation induced oseltamivir-resistance in both H5N1 ‘‘avian’’ and H1N1pdm ‘‘swine’’ flu N1-
subtype neuraminidases. The simulations reveal an electrostatic binding funnel that plays a key role in directing oseltamivir
into and out of its binding site on N1 neuraminidase. The binding pathway for oseltamivir suggests how mutations disrupt
drug binding and how new drugs may circumvent the resistance mechanisms.
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Introduction

Oseltamivir, better known by its commercial name Tamiflu, is

currently the most important antiviral drug employed to combat

the flu virus [1]. Oseltamivir functions by competitively binding,

against a natural substrate on cells called sialic acid (SA), to a flu

protein called neuraminidase N1 subtype, which is responsible for

mediating the release of newly synthesized virion particles from an

infected cell [2]. Of grave concern however, is the emergence of

oseltamivir-resistant strains of N1-subtype influenza (including

H5N1 [3], seasonal H1N1 [4], and H1N1pdm [5–7]). Under-

standing the mechanism behind mutation-induced drug resistance

in neuraminidase N1 subtype is critical for the development of

effective therapies.

The rapid emergence of oseltamivir resistance in H5N1 avian

flu has motivated already numerous studies, both experimental

and theoretical, to uncover how point mutations to neuraminidase

alter drug binding [8–12]. The recent elucidation of crystal

structures for both wildtype and mutant H5N1 neuraminidases

have opened up a door for an investigation of drug resistance

mechanisms and structure-based drug design at the atomic level

[12,13]. From these structures it has been suggested that

oseltamivir resistance due to point mutations arise from a

destabilization of the hydrophobic packing that binds oseltamivir

tightly within the neuraminidase active site [12]. Crystal structures

represent a time frozen snapshot into a possible conformation of

drug-protein interaction. Drug binding, however, is a dynamic

process and computational studies used the crystal structures as

starting points to shed light on exactly how protein flexibility

and point mutations influence drug-protein endpoint interactions

[8–11]. Despite these initial inroads of studies based on molecular

dynamics (MD) simulations, the current understanding of the

mechanism behind drug resistance remains incomplete and some

conclusions are conflicting. For example, in one study [10] it was

reported that the H274Y mutation disrupts E276-R224 salt

bridges that accommodate the hydrophobic pentyl group of

oseltamivir, while in another study [8] the same salt bridges were

observed to be stable. Up to this point, all proposed mechanisms

for oseltamivir resistance have focused mainly on effects of

mutations on the SA binding site and equilibrium drug binding

affinities.

Since neither H274Y nor N294S are active site mutations [14],

studies which only focus on end-point interactions between drug

and protein are unable to elucidate if these mutations impact the

actual drug binding process, i.e., affect binding kinetics. In this

study, we not only employ molecular dynamics (MD) on
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oseltamivir-bound forms of wildtype and known drug resistant

mutants (H274Y, N294S) of avian H5N1 and swine H1N1pdm

neuraminidases, but also steered MD (SMD) simulations on avian

H5N1 to investigate oseltamivir binding/unbinding pathways.

The electrostatic potentials calculated reveal a distinct negatively

charged column of residues, bridging the SA binding site and the

edge of the binding cavity mouth, that apparently functions as a

drug binding/unbinding funnel. Oseltamivir is observed to diffuse,

in our simulations, into and out of the neuraminidase active site

via this funnel. During drug passage, our simulations did not

reveal any specific interactions beyond an obvious electrostatic

attraction between drug and protein, suggesting a binding

pathway governed by an electrostatic funnel. We also suggest a

role that the drug resistant mutations H274Y and N294S play in

disrupting this funnel and in altering the binding process between

oseltamivir and N1-subtype neuraminidase. Given that the drug

binding rates have been found to be significantly diminished for

H5N1 mutants [12], it is possible that the stated mutations

(H274Y, N294S) induce drug resistance by disrupting the drug

binding kinetics as well as by active site endpoint interactions

affecting binding affinity. We suggest that our observations

regarding the oseltamivir binding behavior of H5N1 should apply

for H1N1pdm (associated with the recent pandemic), since the two

proteins have very high sequence identity (91.47%) and share a

conserved drug binding site.

Results

The following results are based on simulations, summarized in

Table 1 (see Methods section), of drug bound N1-subtype

neuraminidases, including avian H5N1 and H1N1pdm, both as

wildtype and as two oseltamivir-resistant mutant systems. The

individual simulations will be referred to by the designations listed

in the ‘‘Name’’ column of Table 1. We first describe interactions

that stabilize oseltamivir in six neuraminidase systems observed

from equilibrium (EQ) simulations (simEQ1–6). Then we present

our observations of electrostatics calculated from these simulations.

Next, we discuss characteristics of drug binding and unbinding

seen in both steered molecular dynamics (SMD) (simSMD1) and

subsequent relaxation simulations (simFEQ1–10). Finally we relate

the results of our simulations to oseltamivir resistance.

Oseltamivir binds to a conserved hydrogen bond
network

Equilibrium simulations of six oseltamivir-neuraminidase com-

plexes were carried out, including avian H5N1 and swine flu

H1N1pdm proteins, for one wildtype (WT) neuraminidase

(simEQ1–2) and two mutants, namely, H274Y (simEQ3–4) and

N294S (simEQ5–6). The root mean square deviations (RMSD) of

the proteins shown in Figure S1 demonstrate the stability of the

simulated models and the RMSDs of oseltamivir in Figure S2 and

Figure S3 show that the drug, over 20 ns, binds stably to the SA

binding pockets for both WT and mutants (figures and text labeled

‘‘S’’ are in Supplementary Materials).

SimEQ1–6 reveal that hydrogen bonds form the bulk of the

interactions which stabilize oseltamivir in the SA binding pocket

(see Text S1 for a discussion of protein stability and Text S2 for

detailed discussion of hydrogen bond networks). In both wildtype

and mutant simulations, hydrogen bonds are well conserved

between oseltamivir and binding site residues E119, D151, R292,

and R371. Specifically, R292 and R371 are observed to hydrogen

bond with oseltamivir’s carboxylate moiety, and E119 and D151

with oseltamivir’s amino group. The H274Y mutation, however, is

seen to disrupt the hydrogen bonding of oseltamivir’s acetyl group

with R152, a stabilizing interaction in the wildtype and N294S

systems. The carboxylate group of oseltamivir exhibits a weak

hydrogen bond with Y347 of the avian H5N1 neuraminidases

(Figure S4), which corresponds to the N347 mutation in the

H1N1pdm proteins (Figure S5). Histograms listing the frequency

of hydrogen bonds between oseltamivir and neuraminidases are

shown in Figure S4A and Figure S5A, with schematic views of the

specific residues involved in the drug-protein hydrogen bond

pairings provided in Figure S4B, Figure S4C, and Figure S4D for

simEQ1, simEQ3, and simEQ5, respectively, and in Figure S5B,

Figure S5C, and Figure S5D for simEQ2, simEQ4, and simEQ6,

respectively. In the case of the H274Y mutant, we observed a loss

of the hydrogen bond between oseltamivir and R152, as well as a

decrease in favorable hydrophobic packing between oseltamivir’s

pentyl group and neuraminidase’s hydrophobic subsite (I222-

R224-A246-E276). Figure S6, illustrating an increase in solvent

accessible surface area (SASA) for the H274Y systems, is discussed

in Text S3, along with further description of oseltamivir’s

hydrogen bonding network observed in our simulations as

compared to previous studies [8,12]. While the H274Y mutant

clearly showed decreased binding stability for oseltamivir’s pentyl

group within the SA binding pocket, disruption to endpoint

interactions alone within simulation timescales may not cover all

possible effects of the two non-active site mutations H274Y and

N294S, on oseltamivir binding. Therefore we turn our attention to

other physical characteristics which may also govern drug binding

kinetics.

The electrostatic potential of neuraminidases suggests a
binding pathway for oseltamivir

The electrostatic potential of neuraminidases serves as an

important driving force both to direct the diffusion of ligands into

the SA active site [15,16] and to stabilize the end point

interactions between ligand and the proteins [17,18]. For example,

computational studies investigating the quantitive free binding

energy associated with neuraminidase inhibitor binding reveal that

the local electrostatic potential of the drug binding pocket

Author Summary

Oseltamivir (Tamiflu) is the main antiviral drug used to
fight viral influenza outbreaks such as the recent swine flu
(H1N1pdm) global pandemic and avian (H5N1) outbreak in
Asia. Oseltamivir inhibits a protein on the surface of flu
viruses called neuraminidase, which is responsible for
releasing newly formed viruses. The rapid emergence of
drug resistance in H5N1 avian flu (and recently the
H1N1pdm strain) has already motivated numerous studies
to understand how mutations render oseltamivir ineffec-
tive, but no focused investigation has yet elucidated the
specific mechanism behind mutation-induced drug resis-
tance. Here, large scale computer simulations are em-
ployed to study both H5N1 and H1N1pdm neuraminidase
to answer the questions: how does N1-subtype neuramin-
idase bind oseltamivir, and how would mutations alter this
process? The key finding revealed in our simulations is the
discovery of oseltamivir binding to neuraminidase by a
charged pathway on the protein surface. We suggest that
point mutations may disrupt drug binding by interfering
with this pathway. Our results explain the fundamental
mechanism behind oseltamivir resistance and pave the
way for the design of drugs that circumvent viral drug
resistance.

Tamiflu Binding Funnel
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significantly impacts the final binding pose and stability of the drug

[18]. In regard to neuraminidase, a previous study [16] using

Brownian dynamics simulations suggested that electrostatic

steering guides SA and neuraminidase inhibitors to enter the

primary SA active site of N1 neuraminidase via a secondary SA

binding site proximal to loop-430 [15]. A second, well known

example in which a cationic substrate is drawn through a short

channel to enter a narrow active site due to electrostatic steering is

seen in the case of acetylcholinesterase [19,20]. Even though a

possible role of the electrostatic potential for drug binding in

neuraminidases had been discussed before, the extensive electro-

static calculations required for fully characterizing the role of

electrostatic steering had not yet been carried out.

In order to address the shortcoming, the electrostatic surface

potentials of the equilibrated systems were calculated and

averaged across every trajectory frame in simEQ1–6 employing

GPU-accelerated multilevel summation [21] (see Methods). The

resulting electrostatic maps are shown in Figure 1A for H5N1 and

in Figure 1B for H1N1pdm. The maps reveal that the binding

pocket possesses a negative potential (colored red), and that it is

surrounded by a positive potential ring (colored blue). The

electrostatic surface potentials of the neuraminidases simulated

show, in particular, a column of negatively charged residues that

form a pathway, *10Å in length, between the primary SA

binding site and the mouth of the binding cavity. Since oseltamivir

itself has a positive electrostatic surface potential, as illustrated in

Figure 1C, the question arises whether the negatively charged

surface column in N1 neuraminidases plays a role in the binding

kinetics of oseltamivir. To answer this question, and following

insight from earlier studies of binding processes [22–25], we

employed simulations (described in Methods) to pull oseltamivir

out of the SA binding site and probed unbinding in order to reveal

actually the properties of the binding pathway.

Studying drug unbinding through SMD simulations to
learn about drug binding

To simulate binding of oseltamivir would be the most natural

approach to identify the drug binding pathway. Unfortunately,

the needed computations are impossible since the duration of

binding is too long. Unbinding enforced through external forces

in so-called steered MD (SMD) simulations requires much less

time such that the calculations are feasible. Fortunately,

unbinding simulations can reveal features characteristic for the

reverse process of binding, as demonstrated many times before,

e.g., in [22–25]. We note, however, that while SMD simulations

may reveal potential entry and exit pathways for drug binding,

they do not provide information regarding the thermodynamic

feasibility of binding (which correlates to drug inhibition power)

except when used with sampling methodologies [25–27] not

applied in the present case.

In simSMD1, a pulling force was applied to rupture all stabilizing

hydrogen bonds between H5N1 and oseltamivir, and draw the

drug away from the SA binding site. The results of simSMD1 show

that the response of oseltamivir to the pulling force evolves in three

distinct stages: 1) from 0 to 8 ns, a buildup of force during which

hydrogen bonds between oseltamivir with E119, D151 and R152

are ruptured; 2) at 8 ns when the remaining stable hydrogen bonds

Table 1. Summary of simulations.

Name Structure Atoms Water Type Ensemble Time (ns)

simEQ1 H5N1+oseltamivir 34860 9670 EQ NpT 40

simEQ2 H1N1pdm+oseltamivir 34707 9604 EQ NpT 40

simEQ3 H274Y-H5N1+oseltamivir 34880 9670 EQ NpT 40

simEQ4 H274Y-H1N1pdm+oseltamivir 34729 9604 EQ NpT 40

simEQ5 H294S-H5N1+oseltamivir 34873 9670 EQ NpT 40

simEQ6 N294S-H1N1pdm+oseltamivir 34727 9604 EQ NpT 40

simSMD1 H5N1+oseltamivir 34860 9670 SCV NV 15

simSMD2 H5N1+oseltamivir 34860 9670 SCV NV 10

simSMD3 H5N1+oseltamivir 34860 9670 SCV NV 5

simFEQ1 H5N1+oseltamivir 34860 9670 EQ NpT 15

simFEQ2 H5N1+oseltamivir 34860 9670 EQ NpT 10

simFEQ3 H5N1+oseltamivir 34860 9670 EQ NpT 15

simFEQ4 H5N1+oseltamivir 34860 9670 EQ NpT 50

simFEQ5 H5N1+oseltamivir 34860 9670 EQ NpT 100

simFEQ6 H5N1+oseltamivir 34860 9670 EQ NpT 10

simFEQ7 H5N1+oseltamivir 34860 9670 EQ NpT 15

simFEQ8 H5N1+oseltamivir 34860 9670 EQ NpT 50

simFEQ9 H5N1+oseltamivir 34860 9670 EQ NpT 50

simFEQ10 H5N1+oseltamivir 34860 9670 EQ NpT 50

The ‘‘Structure’’ column lists the type of neuraminidase, associated mutations, and drug modeled in each system. The ‘‘Atoms’’ and ‘‘Water’’ columns show total number
of atoms, and number of water molecules, respectively. The ‘‘Ensemble’’ column lists the variables held constant during simulations; N, p, T, and V correspond to
number of atoms, pressure, temperature, and volume, respectively. Under ‘‘Type’’, EQ denotes equilibration, and SCV denotes constant velocity SMD simulation with a
velocity of 0.05, 0.10, and 0.25 Å/ps, for simSMD1, simSMD2, and simSMD3, respectively. For simEQ1 to simEQ6, the simulation times involve a 20 ns setup/equilibration
run followed by a 20 ns production run. SimSMD1 is a steered MD simulation with the starting structure from equilibrated simEQ1 (‘‘locked’’ drug position). In simFEQ1
to simFEQ10, the starting structure is a bound, rotated position of oseltamivir from simSMD1 after 7.5ns of simulation, when several of the drug’s stabilizing hydrogen
bonds to the protein are ruptured.
doi:10.1371/journal.pcbi.1000939.t001

Tamiflu Binding Funnel
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with R292 and R371 rupture; 3) after 8 ns when the drug is pulled

out of the binding pocket. Figure 2 shows the force dependent

rupture of hydrogen bonds in simSMD1 presenting both hydrogen

bond length and (in the inset) the force vs. time curve. We carried

out simulations at different pulling velocities (simSMD2–3) that all

exhibited similar unbinding behavior.

Despite application of force straight out of the binding pocket,

oseltamivir surprisingly did not unbind along the direction of the

Figure 1. Electrostatic surface potential of the sialic acid (SA) binding pocket of H1N1pdm and oseltamivir. Shown in A) and B) are
closeup views of the SA binding pocket with drug bound H1N1pdm and avian H5N1 neuraminidase, respectively. The region of the binding pocket,
where the drug binds, exhibits a negative potential (colored red), whereas the opening of the pocket is surrounded by a highly positive potential ring
(colored blue). C) illustrates the electrostatic potential around oseltamivir. Shown are the ‘‘front’’ side facing the annulus of the binding pocket and
the ‘‘back’’ side facing the interior of the binding pocket. Simulations simEQ1 through simEQ6 revealed the presence of a negatively charged funnel at
the mouth of the binding pocket (colored in red) which may play a role in oseltamivir binding and unbinding. The electrostatic surface potentials
were generated using the multilevel summation method (MSM) with color scale bars shown in insets.
doi:10.1371/journal.pcbi.1000939.g001

Figure 2. Distances between hydrogen bond acceptor-donor pairs between oseltamivir and sialic acid (SA) binding pocket amino
acids vs. simulation time in simSMD1. Most hydrogen bonds are quickly broken by the pulling force except for those with R292 and R371, which
fully rupture only after *8 ns, corresponding to the peak of the curve of the applied force vs. simulation time (shown in inset).
doi:10.1371/journal.pcbi.1000939.g002

Tamiflu Binding Funnel
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force, following, instead, a lateral unbinding path. This path is

characterized through strong interaction of the drug with the

negatively charged column of residues identified in the electro-

static potential seen in Figure 1. The path taken by the drug is

shown in Figure 3A–D, and in Video S1 (all videos are provided in

Supplementary Materials). Tracing the relative position of

oseltamivir and all its possible hydrogen bonding pairs with

residues located along this pathway, it was recognized that

nonspecific electrostatic attractions are the predominant interac-

tions between drug and protein. The lateral pathway taken by the

unbinding drug suggests strongly that it functions as a binding

funnel which directs oseltamivir into the SA binding pocket.

A key observation from simSMD1 is that oseltamivir undergoes a

rotation within the SA binding pocket before unbinding. This

rotation, clearly discernible in Video S1, is the result of the rupture

of hydrogen bonds between oseltamivir and residues E119, D151,

and D152, while hydrogen bonds between oseltamivir’s carboxyl

functional group and residues R292 and R371 remain intact. The

rotation, then, appears crucial for orienting oseltamivir into a

position which permits it to more easily dissociate from the SA

binding pocket. Oseltamivir in H5N1 is shown in its bound state

before and after rotation in Figures 4A1–2 and 4B1–2,

respectively. A comparison of the relative orientation of oseltami-

vir between the two states is provided in Figure 4A3 and 4B3, the

latter showing the rotated state.

Verifying the drug passage funnel through equilibrium
simulations

SMD simulations are capable of capturing drug unbinding by

accelerating the event through an applied force. It is desirable to

verify SMD results through simulations without applied force. It

was observed in simSMD1 that following the transition to the

rotated state, a much lower applied force is required to

subsequently draw oseltamivir out of its binding pocket. This

observation suggests that one may be able to probe the unbinding

pathway without applied force, if oseltamivir is already in its

rotated state. We performed, therefore, ten additional equilibrium

simulations (simFEQ1–10) beginning with oseltamivir already in

this state.

From simulations simFEQ1–10, two distinct outcomes were

observed, namely the escape of oseltamivir from the SA binding

pocket through favorable interactions with the charged binding

funnel and a return of oseltamivir, not unexpectedly, to its pre-

rotation bound state. Each simulation was carried out with

sufficient duration to observe either outcome, with the exception

of simFEQ5. In simFEQ5, oseltamivir, after following the binding

funnel to escape the protein, actually rebound to the SA binding

pocket through the same binding funnel, the dramatic return

being captured in Video S6. A summary of observed outcomes

from these simulations is shown in Table 2.

Oseltamivir freely, i.e., without external force applied, diffused

out of the SA binding pocket by following the electrostatically

charged binding funnel (described above) in five out of ten

simulations (simFEQ1–5). In four cases (simFEQ1–3, 5) oseltamivir

diffused along the full length of the binding funnel before

separating from neuraminidase. Snapshots from a representative

simulation (in this case simFEQ1) illustrating the trajectory that

oseltamivir follows along our proposed binding funnel are shown

in Figure 5A. This trajectory and those from simFEQ2,3, and 5 can

be inspected in Video S2, Video S3, Video S4, and Video S6. In

simFEQ4, oseltamivir was observed to briefly interact with the

binding funnel, but dissociated from neuraminidase through an

alternate path, namely, through interaction with the ‘‘430-cavity’’

identified in earlier computational studies [15,28]. This trajectory

is shown in Video S5. Our simulation revealed that hydrogen

bonds between oseltamivir’s carboxylate group and the guanidino

Figure 3. Forced unbinding of oseltamivir from H5N1 neuraminidase. Shown are timelapsed snapshots of oseltamivir along its exit pathway
on the electrostatic surface of avian H5N1 neuraminidase during simulation simSMD1. At 0 ns (A), oseltamivir is stably bound within the SA binding
pocket, as also seen in simEQ1. Application of force ruptures the stabilizing hydrogen bonds between H5N1 and oseltamivir (see also Figure 2),
drawing the drug away from the SA binding site within 10 ns, as shown in B. Over the next 2.5 ns of pulling, oseltamivir follows the charged binding
funnel (shown in C) until it is completely free of the protein binding pocket after 15 ns, as shown in D. Despite application of force directed straight
out of the SA binding site, the drug follows a lateral unbinding path through the negatively charged funnel shown in Figure 1.
doi:10.1371/journal.pcbi.1000939.g003

Tamiflu Binding Funnel
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group of R430 appear to stabilize the transition of the drug along

this alternate pathway. The 430-cavity is believed to function as a

secondary binding site for SA, and our simulation (namely,

simFEQ4) shows that it may (not surprisingly) also serve as a viable

conduit for the binding/unbinding of oseltamivir. Snapshots from

simFEQ4 illustrating the trajectory of oseltamivir through the 430-

cavity are shown in Figure 5B, with 430-cavity-specific residues

colored in green.

Figure 4. Rotated position of bound oseltamivir (arising at 7.5ns in simSMD1) in comparison with its stable equilibrium position
(from simEQ1), shown with the electrostatic surface potential of the protein. In A1, the stable binding pose of oseltamivir is shown prior to
application of force in simSMD1, with stable hydrogen bonds to E119, D151, R152, R292, and R371 (shown in A2). After 7.5 ns, however, oseltamivir
adopted a new binding pose (shown in B1), where hydrogen bonds with E119, D151, and R152 are ruptured, leaving only stable interactions with
R292 and R371 (shown in B2). The blue arrow in A3 denotes the orientation change during the drug’s rotation in the binding pocket. The rotated
bound oseltamivir shown in B1, B2, and B3 served as the starting point for simulations simFEQ1–10.
doi:10.1371/journal.pcbi.1000939.g004

Table 2. Summary of FEQ1–10 simulations starting from the rotated position of oseltamivir taken from simSMD1 at 7.5 ns.

Name Result Time (ns)

simFEQ1 Drug escape via binding funnel 15

simFEQ2 Drug escape via binding funnel 10

simFEQ3 Drug escape via binding funnel 15

simFEQ4 Drug interaction with binding funnel but escape via 430-cavity 50

simFEQ5 Drug escape and rebinding into SA pocket via binding funnel 100

simFEQ6 Drug returned to unrotated bound position 10

simFEQ7 Drug returned to unrotated bound position 15

simFEQ8 Drug returned to unrotated bound position 50

simFEQ9 Drug returned to unrotated bound position 50

simFEQ10 Drug returned to unrotated bound position 50

In simFEQ1–5, oseltamivir successfully escaped the SA binding site, whereas in simFEQ6–10, oseltamivir returned to its stably bound unrotated state.
doi:10.1371/journal.pcbi.1000939.t002

Tamiflu Binding Funnel
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In simFEQ1–4, once oseltamivir separated from neuraminidase,

the drug diffused into the surrounding solvent environment and

away from the protein. However in simFEQ5, we observed not

only a diffusion of oseltamivir through the charged binding funnel,

but also the reentry of the drug through the same pathway after it

had diffused already away from neuraminidase. Specifically, the

sequence we observed in simFEQ5 was: 1) between 0 to 25 ns,

oseltamivir diffused out of neuraminidase’s SA binding pocket by

following the charged binding funnel, 2) between 25 and 35 ns, the

drug unsuccessfully attempted to rebind from an unsuitable

direction through hydrogen bond interactions with R152 in the

so-called flexible 150-loop [29]; 3) between 35 and 45 ns, the drug

again diffused away from neuraminidase; 4) between 45 and 50 ns,

the drug approached the binding funnel again, drawing itself back

into the funnel and binding at the SA binding pocket for 5) at least

the next 50 ns (100ns total simulation time). Snapshots from these

events are shown in Figure 6. Analysis of interactions of the newly

rebound oseltamivir with binding pocket residues during the 50 to

100 ns interval revealed that the drug was stabilized by hydrogen

bonds with Y406, R292, D151, E119, and R118, even though

oseltamivir’s pentyl group had not yet moved to its requisite

hydrophobic pocket (I222-R224-A246-E276) [30]. The full

simFEQ5 trajectory is provided in Video S6, illustrating the

strongest evidence observed thus far that the electrostatic funnel

serves a crucial role in binding of oseltamivir. We note that while

simSMD1–3 and simFEQ1–10 simulated the H5N1 systems, the

results should also apply for the H1N1pdm systems which share a

highly conserved drug active site and a very high overall sequence

homology.

Discussion

Electrostatic binding funnel and drug resistance
Our study has shed light on the important role of the

electrostatic surface potentials in directing the diffusion of

oseltamivir into the SA binding site of neuraminidase. The

simulations yield strong evidence that the negatively charged

funnel identified in this study serves as an unbinding pathway for

oseltamivir in the H5N1 and, due to sequence and structural

identity, also H1N1pdm wild type systems. The presence of a

binding funnel raises an obvious question: would it be possible for

the drug resistance mutations, in addition to their effects on

destabilizing the hydrophobic packing of oseltamivir, to disrupt or

otherwise alter this binding funnel? The conspicuous location of

residue 294, which maps directly onto this negatively charged

pathway, may play a key role in the N294S mutation for

Figure 5. Escape of oseltamivir from H5N1 neuraminidase in equilibrium simulations from simFEQ1 and simFEQ4. The initial state of the
simulations is the rotated bound state of oseltamivir, illustrated in Figure 4. Shown in A) are snapshots from simFEQ1, showing the interaction of
oseltamivir with H5N1’s electrostatically charged binding funnel as the drug diffuses out of the neuraminidase SA binding pocket. Results were
similar for simFEQ2–3 and simFEQ5 (see text and Table 2 for the specific timescales for the events), demonstrating a key role for this charged funnel in
directing the drug into and out of the SA binding site. In snapshots from simFEQ4, (shown in B), oseltamivir briefly interacts with the binding funnel,
but takes a different path out of the binding pocket, namely one interacting with residues from the so-called ‘‘430-cavity’’, suggested in a prior study
[15] to be a secondary SA binding site.
doi:10.1371/journal.pcbi.1000939.g005

Tamiflu Binding Funnel
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disrupting the proper guidance of the drug into its binding pocket.

The H274Y mutation may also have a similar effect on drug

binding, besides disrupting a hydrogen bond with R152. In all four

simulations of the mutants (simEQ3–6), the positions of residues

274 (shown in Figures 7A and 7C) and 294 (shown in Figures 7B

and 7D) lie directly on the charged binding funnel. An allosteric

contribution due to the flexibility of the channel or that of the drug

cannot be ruled out, i.e., the presence of the drug within the

binding funnel may induce local conformational changes that

bring the mutant residues into play, in which case electrostatic

interactions may also be altered.

While active site interactions, including hydrogen bonds,

hydrophobic packing, and solvent permeation, of oseltamivir

resistance have been thoroughly studied [8,10–12,31] little is

known at the atomic level about the kinetics of drug binding in

mutants. The idea that drug resistant mutants actually disrupt

entry of oseltamivir into the SA binding site of neuraminidase

through disruption of an electrostatic binding funnel is in part

supported by experiments which demonstrated altered drug

binding kinetics in H5N1 H274Y and N294S mutants. Specifi-

cally, the reported association rate constants (kon) of oseltamivir

with H5N1 neuraminidases were 2.52 mM{1s{1 in WT, 0.24

mM{1s{1 in H274Y and 1.1 mM{1s{1 in N294S [12]. Even

though the oseltamivir-resistant mutations were seen located in or

adjacent to the funnel, additional study is still needed for a full

understanding of whether the H274Y and N294S mutations

weaken the binding of the drug. Our observations of an

electrostatically active binding pathway for oseltamivir provides

guidance for further investigations.

Binding funnels on other neuraminidase subtypes
Our simulations were restricted to studying six subtypes of N1

neuraminidase; expanding the scope of investigation to encompass

N2–9 neuraminidases may reveal similar electrostatic funnels as

seen in H5N1 and H1N1pdm neuraminidases. While the N1

subtype neuraminidases are different from other subfamilies (N2–

N9) [13], there is evidence that electrostatic interactions play also a

key role in mediating ligand recognition in N2 [16] and in ligand

binding in N9 [17]. Thus, even if the charge distribution pattern in

the N2–N9 families turns out to differ significantly from that of

N1, an approach similar to our study (or those of previous studies

employing complementary methods to calculate electrostatic

potentials) could shed light on mechanisms of drug binding or

resistance mechanisms in these subtypes.

Role of loop-150 and loop-430 in binding of oseltamivir
Previous studies [17,29] suggest that two flexible loops (termed

‘‘150’’ and ‘‘430’’ due to their residue positions) play a role in

guarding drug access to the SA binding pocket of N1

neuraminidases. A discussion on the positions of these loops

Figure 6. Escape and rebinding of oseltamivir through the electrostatic binding funnel in H5N1 neuraminidase during simFEQ5.
Shown here are snapshots of simFEQ5, in which oseltamivir first diffuses out of the SA binding pocket through interaction with the electrostatic
binding funnel (see Figure 1) similar to that seen in simFEQ1–3 (see Figure 5A) within the first 25 ns of simulation. Between 28 and 35 ns, oseltamivir,
now free from neuraminidase, approaches the periphery of the binding pocket away from the binding funnel, but is prohibited from entering due to
electrostatic repulsion (45 ns). However, between 45 and 50 ns, oseltamivir reapproaches and rebinds with neuraminidase through the same, i.e., the
electrostatic, binding funnel, adopting a stable position within the SA binding pocket through hydrogen bonds with Y406, R292, D151, E119, R118.
doi:10.1371/journal.pcbi.1000939.g006

Tamiflu Binding Funnel
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relative to the binding funnel are provided in Text S4, and

illustrated in Figure S7. Our simulations (simEQ3 and simEQ4)

reveal a loss of hydrogen bonds to loop 150 (namely between

oseltamivir’s acetyl group and R152) in the H274Y mutant

systems. However, the disruption of endpoint interactions between

oseltamivir and loop 150 do not appear to appreciably alter overall

drug binding within the primary SA active site. This observation

does not rule out what role loop 150 (and its associated D151 and

R152 hydrogen bonds to oseltamivir) or loop 430 may play if the

drug is occupying a secondary SA binding site (the ‘‘430 cavity’’)

suggested in [15,16] and seen to play a role in simulation simFEQ4.

Electrostatic maps suggest a drug binding/unbinding pathway

for oseltamivir along the charged binding funnel to the primary SA

binding site, but simFEQ4 suggests also a role of the ‘‘430-cavity’’

(via interaction between oseltamivir’s carboxylate group and

R430’s guanidino group). Since our simulations, from which

electrostatic maps were derived, modeled oseltamivir in its primary

binding site, a secondary charged binding channel exit path may

emerge when the drug occupies this secondary site which should

be investigated further.

Design against drug-resistant N1 influenza strains
The H274Y mutation induces drug-resistance to peramivir (a

phase-III candidate), but neither H274Y nor N294S alter

significantly the binding affinity for another antiviral drug,

zanamivir [12,32] or for sialic acid (SA), neuraminidase’s natural

substrate. The mechanism behind the efficacy of zanamivir against

oseltamivir-resistant neuraminidase is not well understood.

Examination of the crystal structure in mutants suggests that even

in the case of the H274Y mutation, the zanamivir bound system is

capable of maintaining a stabilizing hydrogen bond with residue

276 which is lost in the oseltamivir-bound mutant system [12].

Zanamivir’s potency against oseltamivir-resistant strains also may

be due to the high structural similarity it shares with SA.

Specifically, zanamivir and SA share a hydrophilic glycerol group

which is replaced by a hydrophobic pentyl group in oseltamivir

and peramivir. Furthermore, there is evidence from prior studies

[15,16] that SA may follow a pathway into the neuraminidase

active site which differs from that of oseltamivir; zanamivir may

follow the same pathway as SA, and, hence, alteration of the

oseltamivir binding funnel may not affect zanamivir, despite

Figure 7. Possible effect of H274Y and N294S drug resistant mutations on the electrostatic binding funnel of H5N1 and H1N1pdm
neuraminidases. Shown in A) and B) is oseltamivir bound to the H5N1 H274Y (simEQ3), and N294S (simEQ5) drug-resistant mutants, respectively.
Shown in C) and D) is oseltamivir bound to H1N1pdm H274Y (simEQ4) and N294S (simEQ6) drug-resistant mutants, respectively. The outer columns
show a close-up view of the binding pocket, highlighted as a subset of the entire protein shown in the central column. The positions of the mutant
residues are shown in green for residue 274 and 294. Simulations simEQ3–6 revealed the presence of a negatively charged funnel at the mouth of the
binding pocket which may play a role in drug binding and mutation-induced resistance. Residues 274 and 294 are close to the residues involved in
the binding funnel.
doi:10.1371/journal.pcbi.1000939.g007
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zanamivir’s increased polarization relative to oseltamivir. In

contrast, peramivir’s ineffectiveness in the case of the H274Y

mutant may be due to a change in hydrophobic packing of its

pentyl group as witnessed in our simulations for oseltamivir.

Recent efforts to derive new drugs that are effective against

neuraminidase have also suggested inhibitors with remarkably

different scaffolds than oseltamivir, zanamivir, and peramivir

[33,34]. Therefore, rational drug design for neuraminidase

inhibitors will certainly benefit from studies that focus on binding

kinetics behind selective drug resistance and also consider

electrostatic steering [15–18].

Conclusion
Our simulations of wild type and mutant H5N1 and H1N1pdm

neuraminidase systems bound to oseltamivir suggest that while the

H274Y and N294S mutations appear to mainly disrupt the

hydrophobic packing of oseltamivir’s pentyl sidegroup, but not

necessarily its conserved hydrogen network, drug-resistance may also

arise from disruption of the binding process, i.e., from altered

kinetics. Our simulations reveal a charged pathway in both H5N1

and H1N1pdm neuraminidase, that functions as a binding conduit

for oseltamivir in which drug passage is controlled primarily by

electrostatic attraction between drug and protein. The insight gained

should assist in the rational design of neuraminidase inhibitors that

exploit this binding pathway, but also avoid drug resistance.

Methods

Molecular model of H1N1pdm neuraminidase
The amino acid sequence of H1N1pdm neuraminidase was

obtained from Genbank Locus ID CY041156, and that of H5N1

neuraminidase from Protein Data Bank entry 2HU4 [13]. A

sequence alignment performed using Multiseq in VMD [35]

showed that H1N1pdm has the highest percent of sequence

identity (91.47%) with H5N1 among all neuraminidases with high

resolution structural data. At the drug binding pocket, the notable

difference between H5N1 and H1N1pdm neuraminidases is the

replacement of Y347 by N347. Therefore, a homology model of

H1N1pdm was built using H5N1 as the starting point and by

mutating corresponding residues to match the wild type

H1N1pdm.

Preparation of starting structures
The coordinates for H5N1 neuraminidase bound with oselta-

mivir (Tamiflu) was taken from a monomer of Protein Data Bank

(PDB) structure 2HU4 (tetramer) [13], while those of mutants

H274Y and N294S were taken from structures 3CL0 (monomer)

and 3CL2 (monomer), respectively [12]. Even though the

tetrameric form of neuraminidase has been employed in previous

simulations [15,17], its monomer contains a functionally complete

active site and has been shown to yield satisfactory results in prior

studies [8,18,31]. Therefore to conserve computational resources,

only single monomers were used in our simulations. The position

for oseltamivir bound to H1N1pdm was adopted from its

corresponding location in H5N1, as the two proteins’ binding

pockets differ only by residue 347, located on a loop at the

periphery of the active site. Oseltamivir-mutant complexes of

H1N1pdm were built by mutating H274Y and N294S of the

H1N1pdm wild type model. An representative simulated system is

illustrated in Figure S8.

Simulated systems
The simulations carried out are listed in Table 1. Six systems

were modeled and simulated, namely oseltamivir bound H5N1,

and H1N1pdm wild type, and H274Y as well as N294S mutants.

The first six simulations involved equilibration of each oseltamivir

bound neuraminidase structure (simEQ1–6). In simSMD1, steered

molecular dynamics (SMD) simulations were used to remove

oseltamivir from its stable binding site in H5N1 neuraminidase. In

simFEQ1–10, equilibration simulations used a starting point

generated from simSMD1 in which oseltamivir had undergone a

rotation which partially displaced the drug from the binding site.

In total, 680 ns of simulation were carried out for a system size of

about 35,000 atoms.

Crystallographically resolved water molecules and a structurally

relevant calcium ion near the native binding site for sialic acid (SA)

were retained and modeled in all systems simulated. The protein

complexes were then solvated in a TIP3P water box [36] and

ionized by NaCl (0.152M) to mimic physiological conditions. The

solvated H1N1pdm system with bound oseltamivir and active site

calcium ion is shown in Figure S7A, a schematic view of the buried

drug in the SA binding site is shown in Figure S7B.

Parameter generation for oseltamivir
Simulation parameters for oseltamivir were developed under

the CHARMM force field parameter scheme, to complement the

CHARMM31 force field for proteins with CMAP correction

[37,38]. Parameters for ligands were prepared using Paratool [39]

in VMD [35]. Structure optimization and frequency calculations

were performed at the HF/6-31G* level of Gaussian03 [40] and

subsequently imported into Paratool. The quantum mechanics

frequency calculation of the optimized geometry produced

Hessian matrices which were transformed into the set of internal

coordinates describing the drug bonded interactions. Atom types

and charges already described in the existing CHARMM force

field were assigned using the existing parameters. The atomic

charges in oseltamivir’s six member ring were newly parameter-

ized by dividing the ring into several small fragments, and

recalculated based on the total charge of each fragment.

Fragments not explicitly defined in the CHARMM force field

were modeled using analogs in the CHARMM force field

extensions which fit closely to the fragment being parameterized.

The dihedral angle potentials, which render the respective torsions

highly rigid due to electron delocalization, were generated from

the Hessian matrices. The drug’s parameter and topology files are

included in Supplemental Materials, as Protocol S1 and Protocol

S2, respectively.

Molecular dynamics simulations
All simulations were performed using NAMD 2.7b2 [41] and

the CHARMM31 force field with CMAP correction [37,38]. The

ionized systems were minimized for 10,000 integration steps and

equilibrated for 20 ns with 1 fs time stepping. Following this, a

20 ns unconstrained equilibration was performed for subsequent

trajectory analysis, with frames stored each picosecond. Constant

temperature (T = 300 K) was enforced using Langevin dynamics

with a damping coefficient of 1 ps{1. Constant pressure (p = 1

atm) was enforced through the Nosé-Hoover Langevin piston

method with a decay period of 100 fs and a damping time

constant of 50 fs. Van der Waals interaction cutoff distances were

set at 12 Å, (smooth switching function beginning at 10 Å) and

long-range electrostatic forces were computed using the particle-

mesh Ewald (PME) with a grid size of less than 1 Å.

SMD simulations [42–47] fixed the center of mass of

neuraminidase a-carbons and applied a force to the center of

mass of oseltamivir, along a vector connecting the two center of

masses. In simSMD1–3, a constant velocity protocol was employed,

with a pulling velocity of 0.5 Å/ns, 0.10 Å/ns, and 0.25 Å/ns,

Tamiflu Binding Funnel
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respectively. For the SMD spring constant [22,48], we chose

kSMD = 3kBT/Å2 which corresponds to an RMSD value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=kSMD

p
&0.6 Å.

Analysis
Trajectory frames were saved every 1000 integration timesteps

(every picosecond). Analysis included the calculation of an

averaged electrostatic potential field over all frames of a trajectory

using RMSD-aligned structures. Maps of the electrostatic potential

field were calculated on a three-dimensional lattice. The long-

range contributions to the electrostatics were calculated employing

the multilevel summation method (MSM), which uses nested

interpolation of the smoothed pairwise interaction potential, with

computational work that scales linearly with the size of the system

[49]. The calculation was performed using the molecular

visualization program VMD [35] that provides a GPU-accelerated

version of MSM to produce the electrostatic potential map [21].

The GPU acceleration of MSM provided a significant speedup

over conventional electrostatic summation methods such as the

Adaptive Poisson Boltzman Solver (APBS) [50]. In fact, we

achieved a processing time of 0.2 s per frame, versus 180 s per

frame (on a conventional CPU) using APBS for a 35,000 atom

system, which corresponds to a speedup factor of about 900. The

use of GPU acceleration permitted averaging the electrostatic

potential field over all frames of our simulation trajectories.

The root mean square deviation (RMSD) for the position of

atoms within the simulation systems were used to access protein

stability and state of equilibration. The RMSD calculations took

into account a total frame alignment for the a-carbons of either

drug only or protein only, depending on the value reported (Figure

S1 and Figure S2A). In accessing the stability of oseltamivir, we

also aligned our coordinates against active site residues only (117–

119, 133–138, 146–152, 156, 179, 180, 196–200, 223–228, 243–

247, 277, 278, 293, 295, 344–347, 368, 401, 402, and 426–441,

taken from [15]) for an additional drug-only RMSD calculation

(Figure S3). For hydrogen bond analysis, a distance and angle

cutoff of 3.5 Å and 60 degrees were employed, respectively. The

change to the amount of solvent accessible surface area was used

to assess alterations of hydrophobic packing interactions. The

presence of salt bridges was assessed by taking a nitrogen-oxygen

cutoff distance of 3.2 Å between charged residue side chains. Any

close contacts that fell outside of the bound of molecular bonds or

electrostatic (hydrogen bond or salt bridge) interactions were then

examined frame-by-frame to distinguish between nonspecific

surface or charged contacts.

Supporting Information

Figure S1 Root mean squared deviation (RMSD) of WT and

mutant avian H5N1 and swine H1N1pdm neuraminidases across

six 20ns simulations (simEQ1 to simEQ6). The values reflect the

equilibration of each of the neuraminidase systems.

Found at: doi:10.1371/journal.pcbi.1000939.s001 (1.85 MB TIF)

Figure S2 Root mean squared deviation (RMSD) of oseltamivir

within the sialic acid (SA) binding pocket of WT and mutant avian

H5N1 and swine H1N1pdm, respectively, across six 20 ns

simulations (simEQ1 to simEQ6 aligned by drug position). The

values show that the positions of the drug remain fairly constant

with minimal deviation within the binding pocket, thereby

permitting the characterization of the specific drug-protein

interactions responsible for binding oseltamivir to the active site

of neuraminidase N1 subtypes.

Found at: doi:10.1371/journal.pcbi.1000939.s002 (1.77 MB TIF)

Figure S3 Root mean squared deviation (RMSD) of oseltamivir

within the sialic acid (SA) binding pocket of WT and mutant avian

H5N1 and swine H1N1pdm, respectively, across six 40ns

simulations (simEQ1 to simEQ6 aligned by active site residues).

The relative motion of oseltamivir in the mutant systems can be

attributed to a rotation of its pentyl group. However, over the

entire simulation trajectory the drug remained bound to the

neuraminidase active site.

Found at: doi:10.1371/journal.pcbi.1000939.s003 (3.04 MB TIF)

Figure S4 Network and occupancy of hydrogen bonds stabilizing

oseltamivir in the SA binding pocket of wild type and drug-resistant

mutant avian H5N1 neuraminidases, in simEQ1–3. A) Histograms

of hydrogen-bond occupancies for interactions between oseltamivir

and residues E119, D151, R152, R292, Y347, and R371 across

each simulation run. B) through D) Schematic views depicting the

orientation of protein sidechains which form protein-drug hydrogen

bonds. Hydrogen bonds in all three simulations were conserved for

residues E119, D151, R292, and R371. The H274Y mutation was

observed to disrupt hydrogen bonding to R152. Despite the

increased interaction with Y347 in the case of the N294S mutant,

the hydrogen bonds between oseltamivir and Y347 were not stable

in any of the simulated systems.

Found at: doi:10.1371/journal.pcbi.1000939.s004 (1.48 MB TIF)

Figure S5 Network and occupancy of hydrogen bonds stabiliz-

ing oseltamivir in the SA binding pocket of wild type and drug-

resistant mutant avian H1N1pdm neuraminidases, in simEQ4–6.

A) Histograms of hydrogen-bond occupancies for interactions

between oseltamivir and residues E119, D151, R152, R292, N347,

and R371 across each simulation run. B) through D) Schematic

views depicting the orientation of protein sidechains which form

protein-drug hydrogen bonds. Hydrogen bonds in all three

simulations were conserved for residues E119, D151, R292, and

R371. The H274Y mutation was observed to disrupt hydrogen

bonding to R152. Interestingly, residue 347, which distinguishes

the binding pocket of H1N1pdm from H5N1, makes no

contribution to the drug-protein hydrogen-bond network in the

case of H1N1pdm.

Found at: doi:10.1371/journal.pcbi.1000939.s005 (1.45 MB TIF)

Figure S6 Solvent accessible surface area of oseltamivir’s pentyl

group (PG-SASA) in H5N1 and H1N1pdm WT and mutant

simulations.

Found at: doi:10.1371/journal.pcbi.1000939.s006 (2.08 MB TIF)

Figure S7 The position of flexible loops 150 and 430 relative to

the charged binding funnel of H5N1 neuraminidase.

Found at: doi:10.1371/journal.pcbi.1000939.s007 (2.31 MB TIF)

Figure S8 Drug bound systems simulated. Shown here is a

representative example of H1N1pdm bound to oseltamivir. In A),

the system is shown in the solvation box and with oseltamivir and

the active site calcium ion. In B), oseltamivir is shown buried in the

SA binding pocket of H1N1pdm, the latter rendered in surface

view.

Found at: doi:10.1371/journal.pcbi.1000939.s008 (1.67 MB TIF)

Protocol S1 CHARMM parameter file for oselvamivir.

Found at: doi:10.1371/journal.pcbi.1000939.s009 (0.01 MB

TXT)

Protocol S2 CHARMM topology file for oseltamivir.

Found at: doi:10.1371/journal.pcbi.1000939.s010 (0.02 MB

TXT)

Text S1 Supplementary material text S1.

Found at: doi:10.1371/journal.pcbi.1000939.s011 (0.02 MB PDF)
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Text S2 Supplementary material text S2.

Found at: doi:10.1371/journal.pcbi.1000939.s012 (0.04 MB PDF)

Text S3 Supplementary material text S3.

Found at: doi:10.1371/journal.pcbi.1000939.s013 (0.03 MB PDF)

Text S4 Supplementary information Text S4.

Found at: doi:10.1371/journal.pcbi.1000939.s014 (0.02 MB PDF)

Video S1 Trajectory from simSMD1, where a force is applied to

oseltamivir perpendicular to the plane of the SA binding pocket.

Despite the direction of force, oseltamivir interacts with and

follows the charged electrostatic pathway identified and discussed

in Figure 1, with snapshots shown in Figure 3. Format: AVI.

Found at: doi:10.1371/journal.pcbi.1000939.s015 (7.30 MB AVI)

Video S2 Trajectory from simSMD1, where a force is applied to

oseltamivir perpendicular to the plane of the SA binding pocket.

Despite the direction of force, oseltamivir interacts with and

follows the charged electrostatic pathway identified and discussed

in Figure 1, with snapshots shown in Figure 3. Format: MOV.

Found at: doi:10.1371/journal.pcbi.1000939.s016 (7.29 MB

MOV)

Video S3 Depicts the trajectory from simFEQ1, showing the

spontaneous diffusion of oseltamivir out of the neuraminidase

binding pocket via interaction with the electrostatic binding funnel

(see Figure 3 for snapshots from simFEQ1). Format: AVI.

Found at: doi:10.1371/journal.pcbi.1000939.s017 (4.16 MB AVI)

Video S4 Depicts the trajectory from simFEQ1, showing the

spontaneous diffusion of oseltamivir out of the neuraminidase

binding pocket via interaction with the electrostatic binding funnel

(see Figure 3 for snapshots from simFEQ1). Format: MOV.

Found at: doi:10.1371/journal.pcbi.1000939.s018 (4.15 MB

MOV)

Video S5 Depicts the trajectory from simFEQ2, showing the

spontaneous diffusion of oseltamivir out of the neuraminidase

binding pocket via interaction with the electrostatic binding funnel

(see Figure 3 for snapshots from simFEQ1). Format: AVI.

Found at: doi:10.1371/journal.pcbi.1000939.s019 (4.17 MB AVI)

Video S6 Depicts the trajectory from simFEQ2, showing the

spontaneous diffusion of oseltamivir out of the neuraminidase

binding pocket via interaction with the electrostatic binding funnel

(see Figure 3 for snapshots from simFEQ1). Format: MOV.

Found at: doi:10.1371/journal.pcbi.1000939.s020 (4.17 MB

MOV)

Video S7 Depicts the trajectory from simFEQ3, showing the

spontaneous diffusion of oseltamivir out of the neuraminidase

binding pocket via interaction with the electrostatic binding funnel

(see Figure 3 for snapshots from simFEQ1). Format: AVI.

Found at: doi:10.1371/journal.pcbi.1000939.s021 (4.14 MB AVI)

Video S8 Depicts the trajectory from simFEQ3, showing the

spontaneous diffusion of oseltamivir out of the neuraminidase

binding pocket via interaction with the electrostatic binding funnel

(see Figure 3 for snapshots from simFEQ1). Format: MOV.

Found at: doi:10.1371/journal.pcbi.1000939.s022 (4.13 MB

MOV)

Video S9 Depicts the trajectory from simFEQ4, where oselta-

mivir briefly interacts with the electrostatic binding funnel before

diffusing out of the neuraminidase binding pocket via an alternate

pathway in the region of the ‘‘430-loop’’ shown in green in

Figure 5. Format: AVI.

Found at: doi:10.1371/journal.pcbi.1000939.s023 (4.09 MB AVI)

Video S10 Depicts the trajectory from simFEQ4, where

oseltamivir briefly interacts with the electrostatic binding funnel

before diffusing out of the neuraminidase binding pocket via an

alternate pathway in the region of the ‘‘430-loop’’ shown in green

in Figure 5. Format: MOV.

Found at: doi:10.1371/journal.pcbi.1000939.s024 (4.09 MB

MOV)

Video S11 Depicts the trajectory from simFEQ5, where

oseltamivir diffuses out of the neuraminidase active site via

interaction with the electrostatic binding funnel, fails to enter the

active site at a different location on the periphery of the binding

pocket due to electrostatic repulsion, then rebinds stably to

neuramindase through the electrostatic binding funnel. See

Figure 6 for snapshots. Format: AVI.

Found at: doi:10.1371/journal.pcbi.1000939.s025 (8.47 MB AVI)

Video S12 Depicts the trajectory from simFEQ5, where

oseltamivir diffuses out of the neuraminidase active site via

interaction with the electrostatic binding funnel, fails to enter the

active site at a different location on the periphery of the binding

pocket due to electrostatic repulsion, then rebinds stably to

neuramindase through the electrostatic binding funnel. See

Figure 6 for snapshots. Format: MOV.

Found at: doi:10.1371/journal.pcbi.1000939.s026 (7.74 MB

MOV)
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