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An improved version of the “extended Brownian dynamics” algorithm recently proposed by the authors [J.
Chem. Phys. 75, 365 (1981)] is given. This Monte Carlo procedure for solving the one-dimensional

Smoluchowski diffusion equation is statistically exact near a boundary for a constant force and approximately
correct for a linear force. The improved algorithm is both more accurate and simpler than the earlier version.
In addition, the algorithm is extended to include diffusion near a reactive boundary or in a reactive optical
potential. The treatment of diffusion for nonlinear forces is conveniently handled by choosing the time for a
single diffusive jump locally. The algorithm converges as this jump time approaches zero. The appropriate
modifications necessary to treat diffusion between two (possibly reactive) boundaries or diffusion with a
spatially varying diffusion coefficient are also given. Finally, it is shown how multidimensional diffusion in a
spherically symmetric force field may be treated by the one-dimensional algorithm described here. As in the
earlier paper, numerical results are presented and compared with analytical and numerical descriptions of the

. diffusion process to demonstrate the validity of the algorithm.

I. INTRODUCTION

In recent years, several Monte Carlo algorithms for
solving the Smoluchowski diffusion equation (SDE) have
been proposed. '~ The need for such an algorithm is
evident when one realizes that other numerical tech-
niques (chiefly those based on finite-difference
schemes*®) are limited to essentially one-dimensional
problems. Monte Carlo (MC) approaches, on the other
hand, are capable of treating asymmetric three-dimen-
sional diffusion (in the presence of boundaries), and so,
offer a way of investigating certain diffusion-controlled
processes that have previously been untreatable.

The success of a numerical algorithm for solving the
diffusion equation may be judged by its performance in
four categories:

(i) The algorithm should be applicable to the general
three-dimensional diffusion equation, including force
and reaction terms and general boundary conditions.
Although, in principle, finite-difference schemes are
capable of treating the general three-dimensional equa-
tion, the requirement of a convergent step size or the
imposition of certain boundary conditions makes the
approach too time consuming [category (3) below] and/or
computer code too tedious to write [category (4)]. As
for three MC schemes recently proposed, "% all are
capable of handling three-dimensional diffusion, although
only the work of Ermak! has explicitly done so. Fur-
thermore, only the Schulten-Epstein algorithm? (an
extension of the Ermak algorithm) has dealt with re-
active diffusion,

(ii) The second category of interest is that of con-
vevgence. All algorithms should yield results that
converge uniformly to the correct results as some in-
ternal parameter(s) is varied. For finite-difference
schemes, the convergence parameter is the mesh size
of the diffusion space. MC algorithms converge as
the size of the individual jumps taken by the “Brownian
dynamics” particle is decreased and in the limit of
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increasing sample size (total number of trajectories).
The second limit is statistical in nature and is inherent
in all MC procedures, the convergence rate being
proportional to 1/~/—N—, where N is the number of tra-
jectories sampled. The size of the diffusive jumps

is dependent on the duration time chosen for these
jumps. This jump time Af is usually taken to be as
large as possible subject to the assumed constancy or
linearity of the local force. Furthermore restrictions
on the jump time may be required if a boundary or
optical potential is present,

(iii) The above category of the convergence of an al-
gorithm is closely connected with its feasibility. As
mentioned above, finite-difference schemes are, in
principle, applicable to the general three-dimensional
diffusion equation, however, computational space and/
or time limitations make this approach impractical for
all but the simplest problems. Computational require-
ments of MC algorithms limit the statistical accuracy
of the results. Letting T denote the diffusion time simu-
lated by one trajectory, the total computer time for a -
MC program is then proportional to NT/A¢f. With T
fixed by the specific application and A¢ determined by
local force requirements of the particular algorithm .
used, limitations in available computer time set the
statistical accuracy of the results. It is, therefore,
important to use an algorithm that allows Af to be chosen
as large as possible for a given problem. The Ermak
algorithm! requires a local constant force far from any
boundary and no force at a boundary. The “extended
Brownian dynamics” algorithm of Lamm and Schulten®
requires a local linear force in the absence of bound-
aries and is rigorously correct near a boundary only
when no force is present (although the results of that
algorithm indicate that even for a local linear force,
simulation near a boundary is accurate).

(iv) Finally, we must consider the accessibility of
the numerical routine. As the application of any nu-
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merical algorithm necessitates the acquisition of the
computer code implementing the algorithm, either the
code must be readily available, easily convertible to
the machine and problem at hand, and foolproof in use,
or the algorithm must be easily programmed by the
user, As the difficulties involved in the former pro--
cedure are obvious, the second method of acquisition

is preferred. Multidimensional finite-difference
schemes involving general boundary conditions are no-
toriously difficult to program. MC algorithms, on the
other hand, are quickly programmed for the one-dimen-
sional case and obviously and easily extended to higher-
dimensional diffusion problems. Of those MC methods
already mentioned, the Ermak' and Schulten-Epstein?
algorithms are essentially equivalent, only the applica-
tions being different. The “extended” algorithm of
Lamm and Schulten?® is slightly more difficult to program
owing to the method of treatment of the boundary, but
the savings in computer time offered by the local linear
force approximation should be advantageous.

In the following, another MC diffusion algorithm is
presented which was developed specifically with the
above comments in mind. As a first demonstration,
we investigate the one-dimensional diffusion equation,
including nonlinear force and reaction terms and
boundary effects. The extension to three-dimensional
situations will be discussed in a later publication.

To maximize the jump time for diffusive jumps, and to
minimize computational effort, both the analytic solu-
tion for constant force diffusion near a reactive boundary
(due to Smoluchowski, Secs. II and III), and that for lin-
ear diffusion in the absence of boundaries (the Ornstein-
Uhlenbeck process, Sec. IV) will be incorporated. Ana-
Iytic inversion of the cumulative distribution function to
obtain the diffusion jump endpoint provides a fast al-
gorithm, avoiding the need for separately stored in-
version tables (which is impractical for the algorithm
proposed here, see Appendix A). The proposed algo-
rithm is then statistically exact for the above-mentioned
processes and should allow local jump times in realistic
systems (e.g., those involving ionic interactions) that
are significantly longer than with other algorithms. To
treat diffusion in a spatially varying optical potential,

an analytic correction to the local linear distribution is
derived that accounts for the reactivity of the process
and is valid to first order in the jump time (Sec. V).
For nonlinear diffusion or diffusion in a spatially varying
optical potential, the algorithm is not exact and con-
vergence depends on the value chosen for the jump time.
This time is chosen locally according to local force and/
or reaction conditions (Sec. VI). In Sec., VII, numerical
results of the algorithm are presented to illustrate cer-
tain features and applications. For diffusion in the
presence of two boundaries (possibly reactive), a con-
venient solution to the SDE is needed thatcan be treated

by the algorithm. In Sec. VIII, we derive a suitable ap-
proximation to the exact solution that is convergent in
the limit of small jump times. In Sec. IX, the appro-
priate extension of the algorithm to handle diffusion with
a spatially varying diffusion coefficient is given. Final-
ly, in Sec. X we show how the SDE for multidimensional
diffusion in a spherically symmetric force field may be

- stant) diffusion coefficient.

G. Lamm and K. Schulten: Extended Brownian dynamics. I

expressed as a one-dimensional SDE, thus allowing
treatment by the algorithm developed here. Sections
XTI and XII contain final comments and a summary of
the important points of the algorithm. Appendices dis-
cuss the specific random number generator used and
present a brief analysis of the statistical error inherent
in the algorithm.

li. NONREACTIVE, CONSTANT FORCE DIFFUSION

We begin with the one-dimensional Smoluchowski
diffusion equation (SDE) for diffusion in a constant force

9

8y (2, 2
atp(x’ |x0)" 8_'2'+b -3-); P(x,t|xo) ’

" (2.1)

where b=~ force® and £=D - time, D denoting the (con-
The solution to Eq. (2.1),
subject to the initial condition that the particle be at x
=x, at time £=0, i.e.,

plx, £=0]x) = 8(x - xp) , (2.2)
and the reflective boundary condition
5 .
(a+b)p(x,t|x0)=0, atx=0, - (2.3)

was obtained analytically by Smoluchowski.” It may be
written as

plx, tlx)= Do pulx, tlxo), (2.4)
i=0,1,2
where
Dol(%, t|x0) = (4mt)V Pexp[- (x ~xo+ 01)Y/42],  (2.5)

palx, ] %) = (4m8) "/ 2 exp[bxg = (x + %, + bt 2/4t] , (2.8)
Palx, t| %) =2 b exp(- bx) erfc[(x +xo ~ b1)/VEE], (2.7)

where erfc(z) denotes the complementary error func-
tion.® po(x, t|x0) describes the diffusion process ‘in the
absence of the boundary while the remaining two terms '
account for the boundary. Since the above solution is
exact for all values of the force parameter b, a MC
algorithm should af least correctly describe diffusion
in a constant force near a reflective boundary. This is
done as follows:

We first require the area (over x) of the partial dis-
tribution curves (2.5), (2.6), and (2.7). Direct inte-
gration yields '

Ny(t]xg) = f”dx[)‘(x,t|xo) , i=0,1,2, (2.8)
o v
or explicitly,
Ny(t]x9) = % erfc [(-x,+0t)/V4t], (2.9)
Ni(t|x0) =  exp(bx,) erfe[(xo + b1)/VEt] , (2.10)
Nyt |20) =1 = Not|x0) = Ny(t|xo) . (2.11)

We follow the suggestion made in paper I and partition
individual diffusive jumps into one of the three distri-
butions p,(x, #ix,). To reproduce the total distribution
plx, tlxy), we must first insure that the relative number
of jumps assigned to a particular p, is statistically cor-
rect. The probability that a jump will be distributed
according to p, is proportional to N (tlx,), the area
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under the curve, We thus choose a random number »
uniformly distributed on the interval [0, 1) (see Appen-
dix A). Then, if 0=<¥<N,, the jump endpoint is dis-
tributed according to p,. If, however, Ny=<#< Ny+ Ny,
the jump endpoint is chosen from distribution p,, Fi-
nally, if Ny+N, sv<1, the jump endpoint is distributed
according to p,.° : :

The second, and final, step in the procedure is to
distribute the jump endpoint (from x, to x; in time ¢)
according to the above chosen distribution. We now
select another uniformly distributed random number
0=7’<1 and obtain the jump endpoint x,; by inverting
the integral for the cumulative distribution function!®

y = fo " ax by, t]x0) - (2.12)
The lower limit of the integral is O (rather than —© as
in paper I) because the diffusive jump is confined to the
diffusion domain [0, «). For distributions (2.5) and
(2.6), the integral can be inverted analytically to give
either '

x4 =xq — bt +V4t erfe™ [r’ erfc (_—Jf%bt)] ’ (2.13)
from Eq. (2.5), or
%y==xo— bt +VAlerfe! [y' erfc (3“-"7%’15)] (2.14)

from Eq. (2.8). For jumps made according to p,, ana-
lytic inversion of integral (2.12) is not possible.

One alternative is simply to iterate Eq. (2.12) using a
Newton-Raphson scheme. 1t "A slightly less accurate,
but faster, procedure is to approximate p,(x, ¢lx,) by a
function that allows analytic inverson of the cumulative
distribution function. Either an eprnential or Gaussian
approximation to p, will do and we have chosen the form

" palx, t|xo)= aexp(-b*x) . (2.15)

Requiring the exact value of p,(x, ¢lx;) at the boundary
and equal areas for the approximate and exact distribu-
tions gives the constants

' 1 — No(£lxp)
= = - * it} 9
a=py(0, t]x0) =b[1 = Nolt|x)], 5% =6 ==
(2.16)
The jump endpoint is then given by
x,=| Qo' )/b* ]| . (2.17)

We have found representation (2.15) to be accurate for
a wide variety of forces tested and clearly superior to
that used previously in paper I.'? If, however, diffusion
occurs in the presence of a reactive optical potential
near the boundary (Sec. IV), the slight shift in particle
density implied by Eq. (2.15) may noticeably affect the
resulting distribution. A more accurate form for p,
may be obtained by using the erf(z) representation

erf(z)=1-exp[-(0.7221816102%+2z/V7)], 2=0,

(2.18)
accurate to 1% for positive values of z. This form also
allows analytic inversion of Eq. (2.12) and has been
tested. The algorithm is 10%-20% slower than that us-
ing Eq. (2.15) and requires additional partitioning, but
may be necessary if greater accuracy is required.
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The above algorithm for generating jump endpoints
according to p(x, tlx,) of Eq. (2.4) is statistically exact
(except for the insignificant approximation made in using
Eq. (2.15) to represent p,). Typical results are shown
in Fig. 1(a) below and in Figs. 1 and 2 of paper I, where
a brief discussion may be found (see also Appendix C).®
The advantages of the above algorithm over previous
methods are threefold. First, diffusive jumps far from
the boundary are made according to py(x, ¢1x,) since in
this case Ny(tixp)=1. This allows jump times to be
chosen assuming a local constant force and will be ex~
tended to include a local linear force in the following
section. The algorithm correctly biases diffusive drift
motion in the direction of the force.!* Second, diffusion
behavior near a boundary is rigorously correct for a
constant force. Since an attractive force towards a
boundary accumulates particles there, a considerable
savings in computer time should result with this new
algorithm, implying better statistics through an in-
creased number of trajectories sampled. Third, only
as much information as is contained in the SDE is used
and no more. Thus, in contrast to earlier algorithms,
the particles never strike the boundary so artificial de-
terministic boundary conditions are avoided.

As a technical note, the time-consuming part of the
algorithm is the evaluation of the erfc(z) and
erfc™(z) functions used to partition and displace
each jump (see Appendix A). As the N;(¢lxy) are known
from the first part of the algorithm involved in parti-
tioning events into the correct p,(x, ¢1x,), the erfc(z)
calls in the endpoint determination in Egs. (2.13) and
(2. 14) need not be made.

ill. CONSTANT FORCE DIFFUSION NEAR A
REACTIVE BOUNDARY

Consider now diffusion in a constant force near a re-
active boundary. The SDE (2.1) is solved subject to
initial condition (2.2) and the reactive boundary condi-
tion

)
(3;+b) Dalx, tlxg) =kpylx, tlxg) , atx=0, (3.1
where the constant % is a measure of the reaction at the
boundary: k=0 implies that no reaction occurs, k-

implies that reaction occurs upon every encounter with
the boundary. The analytic solution for this process is

Dalx, t| %) = i_ozlzz brilx, t]xo) (3.2)
where, as before,

Prole £|30) = (400 2 expl— (x — 5o+ bY/41),  (3.3)

Durlx, t]20)=(4m8y % explbxy — (v +x0+ b1)2/4¢],  (3.4)

Dral®, t| %0) =3 (b = 2F) exp[— bx + k(x +x¢ + (k- b)1)]
xerfe[(x +xo+(2k = b)IWVAL] . (3.5)

This solution is most easily obtained by Laplace trans-
forming Eqgs. (2.1) and (3.1). One method of simulating
the reactive diffusion process is to develop an algorithm
based on Eq. (3.2) by generalizing the results given in
Sec. II."* However, there is a simpler method. The
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FIG. 1, (a) Results for the probability distribution p(x, =0, 001

nm?xy=0, 1 nm) for diffusion in the constant force F(x) =—50
nm™ near a reflective boundary (at x=0). The MC algorithm
of Sec. II averaged over 10* one-jump trajectories (—) is com-
pared with the analytic expression [~ - -, Eq. (2.4)] and the re-
sults from a difference equation approach (+++, see paper I
for details), The arrow indicates the starting position xy=0.1
nm; the numerical solution assumes an artificial reflective
boundary at 0, 2 nm;. all trajectories with endpoints beyond

0,2 nm in the MC algorithm have been collected in the last end-
point bin at x =0, 2 nm. (b) The process of (a) but with a reac-
tive boundary of reactivity k=50 am!; the MC algorithm is de-
scribed in Sec, III, (c) The process of (b) but with 10° MC tra-
jectories.
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survival probability for a jump from x, to x in time ¢
(i.e., the probability that a particle does not react during
the specified time interval) is p,(x, #1x0)/ pr-ol, t1xg).
Since both p, and p,., are known analytically, the surviv-
al probability is easily calculated. The algorithm pro-
ceeds exactly as in the nonreactive case, with individual
diffusive jumps made according to the nonreactive dis-
tribution p,.o(x, ¢1x,). After each jump, a “weight” is
multiplied by the survival probability for that jump.

This weight then measures, in the sense of the Schulten-
Epstein? algorithm, that fraction of particles in an en~
semble which have not yet reacted. For the data dis-
played in Fig. 1(b), the weight assigned to the particle
at the end of its trajectory is accumulated in the ap-
propriate endpoint bin [in Fig. 1(a) this weight was al-
ways unity]. This algorithm is both fast and simple and
requires only a slight modification of that for the nonre-
active case,.

To demonstrate the validity of the algorithm, we fol-
lowed the same procedure as in paper I. The endpoints
of 10* one-jump trajectories were recorded and accumu-
lated in the appropriate endpoint bin. To provide a rea-
sonably accurate solution, the diffusion domain (0,0.2
nm) was subdivided into 100 bins of equal size (0. 002
nm). The number of endpoints in the bins was normal-
ized as described in Appendix C to provide a MC dis-
crete approximation to the probability distribution. As
seen from Fig. 1(a), which shows results for diffusion
in the constant force F(x)=50 nm™ near a reflective
boundary, the statistical fluctuations at the peak are
about +1 nm™!, in agreement with Eq. (C6). Compari-
son of the MC results is made with the analytic Smolu-
chowski distribution (2. 3) and with the numerical solu-
tion to the SDE obtained using a difference equation ap-
proach. The difference approach is essentially exact
and has been presented in paper I.'® A typical run of 10*
trajectories took about 3 s CPU time on a CDC Cyber
installation (single precision Fortran). Additional com-
ments may be found in paper I.

For diffusion near a reactive boundary, we chose a
reactivity of 2=50 nm"!, For this value of %, the bound-
ary condition requires that the slope of the distribution
at the boundary be zero; this is correctly reproduced in
Fig. 1(b) by all three methods. The analytic distribu-
tion corresponds to Eq. (3.2). The influence of the
boundary is slight, as a comparison of Figs. 1(a) and
1(b) shows. As the same sequence of pseudorandom
numbers was used for both processes, the individual
stochastic peaks in the two figures can be matched.
The quantity of main interest is the number of reacting
particles, that is, the reaction yield, in this case just
one minus the area under the curve (Appendix D). For
the three methods, we obtain yields of 0.1053 (MC),
0.106 97 (analytic), and 0,107 04 (difference method).
Identical MC runs with different random number se-
quences will lead to reaction yields that fluctuate about
the analytic value, For runs with a larger number of
trajectories, the MC results will be more accurate, as
Fig. 1(c) demonstrates (yield=0, 1075). The slight dif-
ference between the analytic and difference equation
approaches is due to approximations inherent in the
latter. For more physical reaction descriptions, the
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reactive boundary might be replaced by a reactive opti-
cal potential spreading out the reaction process over

a finite region of space. The modifications of the al-
gorithm necessary to treat this problem are derived in
Sec. V with results presented in Sec. VII.

IV. LINEAR FORCE DIFFUSION NEAR A REACTIVE
BOUNDARY

~To extend the results of the'previOus two sections to
diffusion in a linear force, we consider the solution to
the corresponding SDE in the diffusion domain (=, )
3 | 3? 9
5p(x,t|x0)= a—xg+(b+cx)a—x+c p(x,tlxo) ) (4.1)
subject to initial condition (2.2). The boundary-free

solution (the Ornstein-Uhlenbeck process!”) may be
written as

1/2
polx, t]x0) = [EW—(E—'T’}-)]

- 2
XexP{—Z_(—l':c_BQT [x—x06+%(1— 9)] }, (4.2)

where 8=¢"*, We note that Eq. (4.2) may be obtained
from Eq. (2.5) through the formal substitutions

Ko=xh=x,0, b—=0"=2b/(1+6), t=t'=(1-6%/2c.

’ (4.3)
An approximate solution to Eq. (4.1) subject to the (re-
flective) boundary condition (2. 3) may be found by using
Eqgs. (4.3) in Egs. (2.4)—(2.7). The resulting modified
Ornstein—Uhlenbeck distribution obeys Egs. (2.2), (2.3),
and (4.1) in the limit of small jump times ¢, Further-
more, it is exact far from the boundary (xy > 0) and
yields the correct image solution when b vanishes. We
have not investigated the full range of conditions for
which this approximation adequately represents the
exact solution. The important point here is that an
algorithm based on this approximate solution converges
more rapidly than previously suggested MC algorithms.
Furthermore, as substitutions (4. 3) depend only on the
" jump time #, the N(¢lx,) obtained in Egs. (2.9)-(2.11)
are still valid, provided Egs. (4.3) are used for the
various parameters. Thus, the jump endpoint formulas
(2.13), (2.14), and (2.18) remain unchanged and the
identical algorithm described for the constant force
case may be applied to linear force diffusion.

For diffusion near a reactive boundary, Eq. (4.1) is
solved subject to Eq. (3.1). An approximate solution
may be obtained from the constant force solution (3. 2)
by supplementing substitutions (4.3) with some appro-
priate choice for the reactivity 2~ 4%’. The boundary
condition then satisfied by the approximate solution is

9

o PE t|x) = (R =0 plx, t|xg) , atx=0. (4.9)

This result suggests three choices for %’:
=k, (4.5a)
B =2r/(1+0), (4. 5b)
E=k+d -0, (4.5¢)

The first choice argues for preserving the correct

2717

boundary reactivity in the approximate solution; the
second forces the correct boundary condition when 2=0
while retaining for ¥’ the same time dependence as ¥ ;

the third choice allows the correct boundary condition

to be satisfied for all time and for all 2 and . Un-
fortunately, the third choice leads to an unnormalized
distribution in the unreactive case, since now %' =5’
—-b+#0. This may be amended by obtaining the reactive
analog of Eq. (2.8). We find

N(b, B) = Ny(t|x0) = No (2] 0) + Ny (] x0) + Nyl %0) ,  (4.6)
where N, (¢1x,) and N (¢1x,) are as given in Eqs. (2.9)
and (2.10) and

-b/2
Nyl lxo) =%:‘i){— exp[—(xo — bt)z/‘h']

x0+(2k—b)t> (xo+bt)], 4.7
X |E -E

[ ( vt Vit

where we have defined

E(x)= & erfe(x) .

(4.8)

We can then renormalize the approximate solution by
dividing it by N(b’, b’ - b).

To determine which choice for 2’ to use, we need only
compare the three analytic solutions with the results

-obtained using the difference equation method, since the

MC results will necessarily converge to whichever ana-
lytic distribution we base the algorithm on. Figure

2(a) shows the results for diffusion in the linear force
F(x)=-20-400x near a reflective boundary. It is seen
that choice (4. 5c) is a significant improvement over the
other choices. Unfortunately, this improvement does
not carry over to reactive diffusion, as Fig, 2(b) demon-
strates (¢=20 nm"'), All three choices fail in giving a
reasonable estimate of the number of surviving parti-
cles. What this means, in relation to the MC algorithm,
is that the diffusive jump time of a particle is limited

to times for which our choice for %’ leads to a reason-
ably accurate solution. For unreactive boundaries, we
could use choice (4. 5¢) for ' and choose jump times up
to 5 ps (for the force parameters chosen above). How-
ever, for reactive boundaries Eq. (4.5) with jump times
less than 1 ps would be needed. In view of the simplic-
ity of choice (4.5b), we have used this vesult throughout
the vemainder of the paper. To demonstrate the al-
gorithm, MC results for the reactive boundary process
based on Eq. (4.5b) for 2’ and with a constant jump
time of 0.1 ps are also displayed in Fig. 2(b). Note
that, for this process, the zero slope of the distribution
at the boundary is correctly (and stochastically) re-
produced.

V. REACTIVE, NONLINEAR DIFFUSION

The algorithm developed in the preceding sections
is applicable to diffusion in a linear force near a reac-
tive boundary. The treatment of nonlinear diffusion is
easily handled by limiting the duration of individual dif-
fusive jumps to values such that the local force is ap-
proximately linear. Force and jump time parameters
are then locally determined (Sec. VI) and many indi-
vidual jumps strung together to give an accurate, long-
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FIG. 2. (a) Results for the probability distribution p(x,¢

=0, 005 nm?| x=0, 1 nm) for diffusion in the linear force F(x)
" =—20-400x nm™ near a reflective boundary (at x =0), The
analytical expression (3. 2) with substitutions (4.3) and (4. 5b)
(—) or (4.5¢) (- -) is compared with the difference method
results (-~ ), (b) The process of (a) but with a reactive
boundary of reactivity k =20 nm™, The analytical expression
(3.2) with substitutions (4,3) and (4, 5a) (——), (4.5b) (—. =),
or (4. 5¢) (---) is compared with the results of the difference
method (*++). The MC distribution consisting of 10* 50-jump
trajectories based on the analytic expression using Eq. (4. 5b)
is also given (—). For further details refer to the caption for
Fig. 1(a); the MC algorithm is described in Sec. IV,

time nonlinear diffusion trajectory. Such multijump
trajectories may also be necessary for linear diffusion
near a reactive boundary, as Fig. 2(b) implies.

When an optical potential is used to describe reaction
conditions, the algorithm must be modified to account
for the finite region over which reaction can take place.
Unfortunately, only for an optical potential of uniform
strength and infinite extent is an analytic solution avail-
able. For more realistic potentials, some approxima-
tion must be made. In this section, a suitable correc-
tion to the modified Ornstein—Uhlenbeck distribution of -
Sec. IV is derived that not only accounts for the finite-
ness of the optical potential, but also includes a correc-
tion term describing the nonlinearity of the applied
force. This correction term vanishes in the limit of
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small jump times but could improve the convergence
rate of the algorithm when applied to nonlinear process-
es. The actual utility of this correction will be dis-
cussed in Sec. VII where results for nonlinear, reactive
diffusion are presented.

The algorithm developed so far is based on the exact
analytic solution to the SDE'®

o7 ot tx0) = [ = Foo)] ot o), - (5.1)

where the nonlinear force F(x) has the local linear form
Fo(x) = Flxo) + (x = x0)F'(xp) . (5.2)

The general SDE including a reactive optical potential
we want to solve is

a7t )= o [ - P, thx0) - bypt, o)
(5.3)

where k(x) describes the reaction rate throughout the
diffusion domain. pg(x, tlx,) and p(x, tlxg) are assumed
to obey initial condition (2.2). To simplify discussion,
we assume no boundary is present, although the deriva-
tion does not rely on this. We may obtain a relation

‘between p(x, t1x,) and py(x, £1x,) by substituting

D, | x0) = q(x, £ o) exp [% f : dx’ F(x')] (5.4)
into Eq. (5.3) to get |

Ul [ 2 p-ra)] ot , (5.9
where |

¢(x) =3 [F(x)P+2 F'(x) . (5.6)

The adjoint SDE corresponding to Eq. (5.2) may be
written as®

9 , Tlx, t 8 ®
polxy, Tlx, 8) _ [a+Fo(x)] 3z Pole T|x, 1) .

0T (5.7

Substituting into this equation the analog of Eq. (5.4)

Dol%gs Tlx, t) = qolxy, Tlx, t) exp [% /!fdx'Fo(xl)]
(5.8)
gives
9qq(x,, Tlx, t 2
- b D0 [5;-%@)] ailep, Tl 8, (5.9)
where
bolx) =1 [Fo(x)]2+% Fy(x) .

Finally, multiplying Eq. (5.5) by go(xy, Tlx, ), Eq. (5.9)
by gq(x, tlxy), subtracting the resulting equations, and
integrating over x and ¢ leads to the integral equation®!

(5.10)

B, t]x0) = exp[E(x, 20) ] po(x, £] %0)

- fo'dt' j:dx' exp[&(x, x")]

Xpolx, |2, 1) palx’, x0) plx’, ' |%0) , (5.11)

where
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£(x, xg) =—;— fr dx' [F(x') = Fy(x")] (5.12)
N %o
and
Bulx', x0) = P(x") = Polx") + B(x') . (5.13)

Equation (5.11) may be viewed as the diffusion theory
equivalent to the Lippmann-Schwinger equation in scat-
tering theory.?® Both p(x, ¢1x,) and py(x, t1x,) obey the
same initial and boundary conditions. Equation (5.11)
is exact if p,is exactbutis too difficult to solvefor p unless
¢r(x, xg) is constant everywhere. However, we can ob-
tain a first-order correction by evaluating the time in-
tegral in Eq. (5.11) using the trapezoidal rule, The
resulting integrations reduce to integrals over delta
functions and can be integrated exactly [as in the deriva-
tion of Eq. (5.11)]. We obtain the approximation

ﬁ(x’ tixo) = exp[g(x, tlxo)].i’o(x, tlxo) )

where

(5.14)

£(x,t|xo)=§(X,xo)—t§[4>(x)— o) + k(x) + (x0)] . (5.15)

The first term in Eq. (5.15) corrects p, for the large
spatial jumps that can occur even for short jump times.

To implement the correction factor in Eq. (5.14) in
the algorithm, we first note that &(x, tlxo) is at least
cubic in x and so cannot be combined with p, to modify
the jump endpoint formulas of Sec. II. For a linear

" force but with a spatially varying optical potential %(x),
the correction factor takes the form of a survival prob-
ability as discussed in the previous section. - Indeed,
Egs. (5.14) and (5. 15) lead to the modified, nonlocal
survival probability
P, 21 50) Breo, | 20) =e30] = 5 (o) + KD . (5.16)

For an optical potential of uniform strength % and infi-

nite extent, Eq. (5.16) becomes

Dulxy 2 lxo)\= exp(~ kt) pr-ol, tlxo)

and is the exact solution to Eq. (5.11). Such a solution
agrees with the results of first-order rate theory in
which the number of particles obtained by integrating
Eq. (5.17) over the diffusion domain decreases ex-
ponentially in time. The Schulten—Epstein® algorithm
was based on the purely local approximation to the re-
action rate

Dalx, t] %) = exp[— E(xo)t 1 Dacol, %) «

(5.17)

(5.18)

In fact, Eq. (5.16) might have been suggested as the
logical first-order improvement over the purely local
form of Eq. (5.18), but any such argument based on a
constant velocity diffusive jump is not strictly valid.
Equation (5. 16) has been found to be a significant im-

provement over Eq. (5.18) and for slowly varying optical

potentials is surprisingly accurate (see Sec. VII for a
discussion of results).

For a nonlinear force (with or without reaction) we
use the correction factor in Eq. (5.14) as a “weight”
for each jump, exactly as the survival probability of
Sec. III was used.?® If both a reactive boundary and
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nonlinear force are present, the correction factor in
Eq. (5.14) is multiplied by the survival probability

Do/ Dro Of Sec. III to yield the weight for the individual -
jump. A slight complication arises because distribution
(5.14) is no longer normalized. For nonreactive dif-
fusion, renormalization is easily performed after all
trajectories are run. For reactive diffusion, it is nec-
essary to accumulate the nonlinear correction terms in
Eq. (5.15) separately from the reactive correction terms
during a trajectory simulation. This then allows re-
normalization as in the nonreactive case. In Sec. VII,
we discuss whether the time spent in evaluating the non-

"linear corrections justifies their inclusion in the al-

gorithm,

So far, we have avoided mention of the specific bound-
ary conditions satisfied by p(x, tlxg) and po(x, tlxg). If
polx, tixg) is chosen to satisfy Eq. (4.4) then, from the
discussion of Sec. IV, it is clear that, in general,
plx, t1xg) will not obey Eq. (3.1) with b replaced by
— F{0). The same argument, as presented there, again
leads to three choices for an effective reactivity #’, but
with Eq. (4.5¢c) replaced by

ag(x’ xo)

. 5.19
ox £=0 ( )

k' =k+b +F(0) -
Although this last choice should improve the solution
for a nonreactive boundary in the same manner as the
linear solution was improved, its extension to a reactive
boundary (k#0) will also fail. We have thus used Eq.
(4. 5b) for the effective boundary reactivity in all cases.

The entire algorithm is an importance sampling
scheme? based on the linear distribution py(x, ¢lxp). If
the force is exactly linear, then each path contributes
the same unit weight (for the nonreactive case) and the
algorithm is as efficient as possible. If the force is
nonlinear, each path will have a different final weight
depending on the size of the nonlinear deviations along
it. This weight gives the relative contribution of the
path to the total nonlinear distribution. The formal
solution to Eq. (5.11) may be written in the suggestive
path integral form®

%(¢)
Pl t] o) =explex, x0)] [ dlpal, t]xo)]

*0

t

X exp [— f at'ou([x(')), xo)} ’ (5.20)

. 0 .
where the stochastic measure d{py(x, ¢1x,)] indicates that
paths are chosen from distribution p,. The path-depen-
dent argument of the exponential is evaluated by con-
structing long-time trajectories from many short-time
segments. This is equivalent to repeatedly applying the
Chapman-Kolmorogov equation®
P, tlao)= [ dxt b, 1], 00, ¢ |20 (5.21)
= 1"]:_/‘°° dx ; p(x a1, L | x5, t)p ey, by Ixo) s

114 (5.22)

where (xy, 2;) =(x, ), until all p(x,.q, £;.; 1%, ¢;) may be
accurately approximated by po(%x;.1, £1 1%, 2;) in Eq.
(5.14). The specific time duration of these segments
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is discussed in the following section and results of the
algorithm for nonlinear diffusion are presented in Sec.
VII. ‘

VI. CHOICE OF LOCAL JUMP TIMES FOR
NONLINEAR FORCES

As discussed in the introduction, the convergence rate
of the algorithm depends on the number of trajectories
. sampled N and on the size of the individual particle jump
times. The statistical fluctuation of the results depends
only on N and converges as N/? (see Appendix C). In
the limit of large N these statistical results converge to
results that depend in part on the jump times chosen:
these may not be accurate compared to the exact results.
For a fixed jump time ¢, the particle trajectories sample
the applied force and reaction rate at a discrimination
level of (xz)’/2~2t. To observe fine structure in the
force or reaction rate, one must decrease the jump time
accordingly. When computed results do not change ap-
preciably with a large change in the jump time, the al-
gorithm has converged (for a fixed N). To automatically
insure convergence of the algorithm, either a sufficient-
ly small, constant jump time can be set prior to tra-
jectory calculations, or the jump time can be deter-
mined by local force and reaction rate conditions., The
latter method takes advantage of regions in which the
force is nearly linear and the reaction rate nearly con-
stant and may be necessary for calculations in three
dimensions where the available diffusion space is large.
Inthis section, we relate our choice of local jumptimes to
limitations in the algorithm placed upon it by the use of
exact, analytic solutions. We also present results for
the reaction yield for linear diffusion near a boundary
to demonstrate convergence properties of the algorithm.

Three assumptions based on the use of analytic solu-
tions of the SDE lead to errors in the algorithm: (1) a
local constant force near the boundary; (2) a local lin-
ear force far from the boundary; and (3) a local constant
reaction rate. We choose a local jump time by ex-
pressing the errors involved in the above assumptions
in terms of an “average” jump distance A, which is then
related to the jump time. Actually, fke error in the al-
gorithm will depend on what quantity is being calculated,
so we cannot treat this problem exactly in the mathe-
matical sense. This is, however, not necessary. What
is actually required is some measure of the error that
monotonically decreases to zero as the jump time de-
creases, even if the error itself is unknown. The mea-
sure we have used may not be optimal but it does pro-
vide a convenient way of assessing and controlling the
error made in calculations.

For jumps near the boundary, we can decrease the
error in the algorithm due to assumption (1) by re-
quiring that most particles be distributed (or parti-
tioned) into py(x, #1xp). Thus, for a jump from x, to
xp+ A, we choose an average jump distance A to be

less than the distance to the boundary, that is, we set
A<y, . (6.1)

The specific relation of A to the jump time will be given
below. For assumption (2), a possible choice for the
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measure of the error incurred by the algorithm could
be the quantity
AzF"(-"o)

Fxo) (6.2)

€=

For a preset value of ¢, the maximum allowed jump
distance will be restricted by the local nonlinearity of
the force. If the force is locally linear, no constraint
is placed upon A, Similarly, assumption (3) yields the
restriction

AR!(x9)
‘ I(x0)
for a chosen €, For simplicity we have introduced the
same parameter € in both Eqs. (6.2) and (6.3). ¢ is
used only to determine an appropriate jump distance
and not as a measure of convergence (to be discussed
below). We will set the value € =0, 01 with the under-
standing that smaller nonlinear deviations of the force
are unmeasurable, The desired jump distance can then
be selected to be the minimum value obtained from Egs.
(6.1)-(6.3). We have used the slightly more stringent

(6.3)

result

I""(xo) 1/2

EF(xo)

k' (x)
*| k()

) (6.4)

1.1
a3, "

where A, = x, (see below).

The stochasticity of the process prevents us from
assigning a jump time ¢ that will result in a fixed jump
distance A, We can, however, insure that the proba-

“bility that the jump distance will be larger than A is

small. For jumps made according to the boundary-
free distribution py(x, t|x,), we choose ¢ such that for
some fixed € <1,

Xp*A
1-e'=f _ dxpol, t]xo) - (6.5)

xo-
In the absence of forces, Eq. (6.5) gives the desired
jump time

A 2

tO - (ﬁ) ’
where we have defined the convergence pavameter E
=erf™(1-¢'). E thus serves to limit the number of
jumps larger than A and, hence, to limit the error in-
curred in the algorithm and it does so monotonically
(as a function of #). For a constant force F(x)= - b,
the diffusive drift makes the integrand asymmetric
about x, so the time ¢ can only be estimated. A tighter
restriction than Eq. (6.5) leads to

(6.6)

1—€’=erf(—é%tbt-l~>, (6.7)
-which gives the jump time
V1+20-1)\2
tb = to (_——'6_— 3 (6' 8)

where 6§ =A1b1/(2E?%), valid for all b, An expression
for the jump time in a linear force has proved more
difficult to obtain. We have finally settled on

te=]2¢c|™ In(1+ | 2cty|) (6.9)
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TABLE I. Convergence of the MC reaction yield for
reactive linear diffusion using fixed-time diffusive
jumps,?

At (ps) Yield Error®? CPU time (s)
1. 00 0, 7484 -0,0076 120
0. 50 0,7498 - 0,0062 230
0, 20° ©0.7513 —0.0047 560

0, 7531 -0, 0029

0,7523 -0,0037

© 0,7516 -0, 0044

0,10°¢ 0.7517 ~0,0041 1090

0, 7551 - 0,0007

0, 7532 ~0,0028

0.7515 -0,0043

*The process is diffusion in the linear force Fx)
=—20-400x nm™ near a boundary (at x =0) of
reactivity k =20 nm™; each run consists of 10° -
trajectories of total time duration 1 ps; the par-
ticle is initially placed at x,=0,1 nm.

"Relative to the difference method yield of 0, 7558
extrapolated beyond 200 subdivisions of the dif-
fusion domain (0, 0, 2 nm) (see Appendix C of
paper I),
°Four runs with different random number seeds
were performed.

based on Eq. (4.3), where ¢, is given by Eq. (6.8) but
with

6__Alb+cxgl :

. 6.10
2E? ) . ( )

A few comments need to be made concerning the use
of Eq. (6.4) in Eqgs. (6.6)—(6.10). Since Eq. (6.4) is
intended for use in all applications of the algorithm,
with €=0.01 fixed, regions of the diffusion space where
nonlinear deviations of the force are large could lead to
extremely small values for A, This, in turn, would
yield small jump times and the algorithm would stag-
nate, i.e., the trajectory would make repeated short-
time jumps in the same region. To avoid this, one

TABLE II, Convergence of the MC reaction yield
for reactive linear diffusion using variable-time
diffusive jumps with the average jump distance A
fixed,?

A (nm) Yield Error® CPU time (s) °

0, 100 0, 7407 -0, 0151 120

0, 05 0, 7454 —-0.0104 170

0, 02 0, 7481 -0,0077 320

0, 01¢ 0, 7505 -0.0053 560
0.7501 -0, 0057

0, 005° 0, 7531 -0,0027 1030
0. 7523 —-0,0035

*Additional parameters: E =0, 01; see also Table
I, footnote a,
®Relative to the difference method yield of 0. 7558
extrapolated beyond 200 subdivisions of the diffu-
* sion domain (0, 0, 2 nm) (see Appendix C of paper
D.
°Two runs with different random number seeds
were performed,
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TABLE II, Effect of the minimum jump distance
Ap on the accuracy of the MC reaction yield. *

A, {am) Yield® Error® CPU time (s)
0. 01 0.7537 -0,0021 230
©0.7538 -0, 0020
0. 001 0. 7547 -0, 0011 260
_ 0.7550 —0.0008
0, 0001 0.7548 -0,0010 260
0. 7552 -0, 0006

Additional parameters: E =0, 01, A,<A<0,1
nm; see also Table I, footnote a;

PTwo runs with different random number seeds
were performed for each value of A,

“Relative to the difference method yield of 0. 7558,

could decrease the value chosen for E but this must be
done a posteriori, It is more convenient to restrict
values of A;

A, SA=s4,, (6.11)

The fact that this will make the error larger is of little
consequence since the error is to be estimated from
successive runs with different E values. Furthermore,
as A and E are coupled in the determination of the jump
time [see Eqgs. (6.6) and (6.10)], a universal value for
A, can be assigned. The maximum allowable jump dis-
tance A, would normally be assigned the value xp to de-
crease the error near the boundary. It may also be
used to account for the presence of sharp features in
optical potentials (Sec. VII).

In Tables I-V, we present different aspects of the con-
vergence of the algorithm. The process we have chosen
is diffusion in the linear force F(x)=—20-400x nm™!
near a boundary of reactivity =20 nm"!, The distribu-
tion after 5 ps is illustrated in Fig. 2(b), however, we
will focus attention on the reaction yield. As discussed
in Appendix C, the yield is a quantity of direct physical
interest and converges faster stochastically than the
distribution. We compare the MC yield values with
those obtained from the difference equation method. To
obtain sufficiently accurate values for the latter, we

TABLE IV. Effect of the maximum jump distance
Ay on the accuracy of the MC reaction yield.*

Ay (nm) Yield® Error® CPU time (s)
1,00 0, 7546 ~0,0012 260
0, 7549 -0,0009
0.10 0, 7547 -0,0011 260
0, 7550 —0,0008
0.05 0,7542 -0,0016 280
0,7532 - 0,0026
0,01 0,7533 - 0,0025 620
0,7524 ~0,0034

*Additional parameters: E =0,01, 0,001 nm<A
<Ay; see also Table I, footnote a,

®Two runs with different random number seeds were
performed for each value of A,

‘Relative to the difference method yield of 0. 7558,
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TABLE V. MC reaction yield for reactive linear
diffusion as a function of the convergence parameter
E.*

E® Yield Error® CPU time (s)

0. 001 0, 7544 -0,0014 250
0, 7545 -0,0013

0,010 0. 7547 ~0,0011 260
0. 7550 —0,0008

0,100 0.7545 -0,0013 330
0, 7543 -~0,0014

0, 200 0. 7568 0.0010 460
0, 7560 0.0002

0,500 0.7579 0, 0021 1650
0,7560 0.0002

2Additional parameters: 0.001 nm<A<0,1 nm:
see also Table I, footnote a.

bTwo runs with different random number seeds
were performed for each value of E,

®Relative to the difference method yield of 0. 7558
extrapolated beyond 200 subdivisions of the dif-
fusion domain (0, 0, 2 nm) {see Appendix C of

paper I).

have noticed that as the number of subdivisions M of the
diffusive domain (0, 0.2 nm) becomes large, the differ-
ence method yield varies linearly with 1/3/, A least
squares fit for M up to 200 for the above process gives
‘a yield of 0.7558,

In Table I, we show the MC yield obtained with the
algorithm employing fixed time jumps. This would be
equivalent with Ermak’s algorithm® except that, in our
simulation, the diffusion particle never strikes the
boundary. The error in the yield is atiributed to the
approximation made in accounting for the boundary, i.e.,
the analytic linear distribution used to distribute the
jumps is not an adequate solution to the process near
the boundary. We have chosen a strongly reactive pro-
cess to emphasize boundary effects. It is seen from
Table I that by choosing smaller jump steps, the error
decreases [from below, as expected from the discussion
pertaining to Fig. 2(b)] and the CPU time accordingly
increases., For a jump time of 0.1 ps, the convergence
rate is slower because stochastic fluctuations due to the
finite sample size (10° trajectories) are about as large
as the error.

The algorithm employing variable-time diffusive jumps
produces the yield values given in Table II. We have
fixed the average jump distance A and allowed the jump
time to vary. For the force parameters chosen, Egs.
(6.6)~(6.10) become approximately

2a
tps)=t1n (1 *%+0.05 nm>

if E is chosen much less than 1. Setting E =0.01 then
leaves A as the single variable affecting the jump time.
A comparison of Tables I and II shows that the two vari-
ations of the algorithm are roughly equivalent in regards
to accuracy and to speed. This is, of course, to be ex-

(6.12)

pected but this latter (variable-time) algorithm is readi- -

ly extended to allow jump times to be locally deter-
mined.
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In Tables III-V, we present results for the MC yield
using the full variable-time algorithm. The jump dis-
tance A is now locally determined from Eq. (6.4); i.e.,
from :

A=x, . (6.13)

It has been found necessary to further restrict A to a
finite range (A,, A,). For Table IlI, we have kept A
within the range (4,, 0.1 nm). (In Table IV, we will
investigate the effect of imposing an upper bound on A.)
We notice first that as A, is decreased, the error de-
creases and there is a slight increase in the CPU time
required. Beyond A, =0,001 nm, neither the accuracy
nor the speed of the algorithm is affected. For the
process chosen, all jump distances are larger than this
minimum value. It is, however, not necessary to de-
termine an appropriate value for A, for each process
investigated. In setting some finite A, we are, in ef-
fect, smearing out fine structure in the force or reac-
tion field at scales smaller than this. It is clearly in-
appropriate to investigate a diffusion process at a level
smaller than say0.01nm. Of course, if the SDE to be
solved is only mathematically related to a diffusion
process, then some other minimum value for A, may be
appropriate. In the following, we have set A, to 0.001

~ nm because we are investigating the SDE in a pure

mathematical sense.

In Table IV, we have varied the upper limit of the
jump displacements A,, where the jump distance is
restricted to the range (0.001 nm, 4,). The effect of
A, on the algorithm becomes noticeable below 0. 05 nm,
where both the speed and the accuracy of the algorithm
begin to change. For the process considered, there is
no need to impose a restriction on the maximum jump
distance, but in Sec. VII, in connection with reactive
optical potentials, we will see that such a restriction
can be quite useful. ‘

From the results of Tables IIl and IV, limiting the
jump distance A to the range (0.001,0.1 nm) has es-
sentially no effect on either the accuracy or the speed
of the algorithm. With these fixed choices for 4, and
A, the jump distance is entirely locally determined and
is coupled to the jump time determination only through
the choice for the (convergence) parameter E. In Ta-
ble V, we present results of the full MC algorithm as
a function of this parameter. For values of E much less
than unity, the algorithm is roughly independent of E,
as already noted. Near E=0.2, the increase in CPU
time indicates that this parameter now has some effect,
although for the sample size chosen, an increase in ac-
curacy is difficult to detect. Essentially, the algorithm
has converged at the smallest value of £ and an increase
in E merely increases the running time of the algorithm.
For the linear process investigated, the error in the al-
gorithm is satisfactorily accounted for in the jump time
assignment Eq. (6.12), which is independent of E. In
Sec. VII, we will investigate a nonlinear process in
which this is not so and the effect of E on the distribu-
tion will be significant.

Finally, we discuss briefly how the force parameters
b and ¢ are determined for a nonlinear force. Since
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the local force is assumed to have the form b -cx,
one requirement is clearly

F(xg) = - b — %o 6.14)

for a particle jumping from x,. Perhaps the most ob-
vious additional condition is to demand that the approxi-
mation to the force be quadratically correct about x,.
This was implicitly assumed in Sec. V and implies that
we set

bc=—F’(xo) N b=—F(x0)+x0F'(x0) . (6.15)

These are, however, not the only logical choices one
could make. The analytic solution for a constant force
assumes that the value of the force at x, is the same
as that at the boundary. By choosing b locally, we
necessarily obtain a solution that does not, in general,
obey the correct boundary condition, as discussed in
the previous section, (It is, in fact, not even correct
at short times, however, the error is insignificant, as
most particles will be partitioned into the boundary-
free part of the distribution.) Requiring, instead of Eq.
(6.15), b=— F(0) leads to ¢ =[F(x,) — F(0)]/x,, the non-
local difference approximation to Eq. (6.15). Fora
quadratic force, this choice for b and ¢ may actually
improve the distribution of jumps toward the boundary.
For simplicity, and because any error inherent in the
use of Eq. (6.15) is likely to be insignificant, we have
always chosen the force parameters locally.

VH. RESULTS FOR REACTIVE, NONLINEAR
DIFFUSION

In this section, we present and discuss results for
linear diffusion in a variety of reactive optical poten-
tials, and for nonreactive diffusion in a quartic (double-
well) potential.

For linear diffusion near a reactive boundary, we
found in Sec. IV that the process at short times may
be analytically described by a modified Ornstein-Uhlen-
beck distribution. The use of a reactive boundary im-
plies that reaction can take place only when a particle
impinges on the boundary. Particles do not have to
reach the boundary explicitly at the end of a jump as the
algorithm accounts for boundary contacts during a dif-
fusion jump. More realistic reaction conditions may
require that reaction extends over a finite region of
space. For this purpose, one introduces an optical po-
tential; the strength of this potential is chosen on the
basis of available experimental data. The specific
shape of the potential, i.e., the extension of the reac-
tion domain, is generally not known but some reason-
able form can be used with the assumption that the re-
action yield is relatively insensitive to the extent of the
reaction domain.?” We can test this assumption by
means of the algorithm prescribed here.

. Consider some function 2(x) for the reaction rate
constant (the optical potential) at each point in the dif-
fusion domain. Kinetic data will normally provide a
value for the “total reaction strength” -

k,=f:dxk(x), (7.1)

where the integral is evaluated over the entire diffusion
domain, We may thus compare the yields obtained us-
ing different functional forms for %(x) by requiring that
each form give the same total strength (7.1). The vari-
ous forms chosen for comparison are:

(i) a delta function

k,, x=0
k(x)={0 , x#0;

(7.2)
(ii) a finite step function

{k,/)\, 0=x=)
Kx) =14 ’

(iii) an exponential function

>N (7.3)

Bx) =22 exp(-x/0) 5 (7.4)

(iv) a Gaussian function
: 2k
k(%) = == exp(— x2/2%) ;
() mexP( x/ ) s
and (v) a finite linear function
,zk' X <y
B(x)=) X (1 ‘x)’ O=x=2a

0, x>x.

(7.5)

(7.6)

Functions (7.3)-(7.6) require the further assignment
of the length parameter A. For &,=20 nm™, Table VI

“lists the values of A used. For the finite step function

(7.3), we have investigated two values for A and for the
exponential and Gaussian functions of Eqs. (7.4) and
(7.5) have chosen A such that 92% of the total reactive
strength lies in the region (0, 0.05 nm). For the under-
lying diffusion process we assume the linear force
F(x)==-20 —400x nm™,

The delta function potential was investigated by the
method described in Sec. IV. To improve the accuracy
of the algorithm near the sharp border of the reaction
domain at x =X for forms (7.3) and (7.6), the maximum
jump distance A, discussed in the preceding section
was set equal to the minimum of x,lx, - Al, and 0.1 nm.
We have not varied the convergence parameter E to ob-
tain convergence in the yield values. We have assigned
E the value 0. 01 in order to.show the improvement ob-
tained by using Eq. (5.16) instead of Eq. (5.18) for the
survival probability. The different forms for the optical
potentials are presented in Fig. 3(a).

In Fig. 3(b), we present the difference method dis-
tributions obtained for the various forms for the optical
potentials. Differences in the distributions are most
noticeable near the boundary where the influence of the
optical potential is most strongly felt. The area under
the distribution curves gives the respective yields for
the processes and these values are compared in Table .

"VI. Comparison of columns 3 and 4 shows the improve-

ment obtained by using the nonlocal expression (5. 16)
for the survival probability over the local form. This
improvement is most significant for the finite step func-
tion potentials, The differing forms for the optical
potentials lead to yields that vary by only 2%-5%. It
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TABLE VI. Results for the MC reaction yield for linear diffusion in various reactive optical po-
tentials. For details refer to the caption for Fig. 3 and to the text,®

Potential parameters MC yield Difference

k, (am™) A (nm) Eq. (5.18)  Eq. (5.16) yield® Error CPU time (s)
20* oo 0. 7586 0.7558 0. 0028 25

20° - 0,02} 0.7012 0.7582 0.7573 0. 0009 40

20° 0. 05¢ 0.7035 0, 7207 0,7154 0, 0053 35

204 0,02 0, 7455 0, 7442 0.7419 0.0023 430

20° ’ 0. 04 0, 7347 0, 7342 0, 7305 0, 0037 420

20f 0, 05? 0, 7316 0, 7532 0, 7473 0, 0059 220

*Reactive boundary,

PFinite step function, Eq. (7.3).

‘Finite step function, Eq. (7.3).

dExponential function, Eq. (7.4).

*Gaussianfunction, Eq. (7.5).

fLinear function, Eq. (7.6).

®Additional parameters; 10% trajectories per run,
E=0,01, 0,001 nm<A<0,1 nm, F{x)=—20-400x cm™..

would thus appear that, unless the total yield is accu-
rately known, it is not necessary to treat the form of
the potential in detail. On the basis of speed, we rec-
ommend that the delta function potential be used to de-
scribe reactive diffusion when this MC algorithm is ap-
plied. More sophisticated forms merely slow down the
algorithm (by requiring shorter jump times for a given
E) without significantly affecting the yield.

To illustrate the application of the algorithm to non-
linear diffusion, we have investigated diffusion in the
quartic potential

: a a
V(x)=-—21(x-0.1)2+7f(x-0.1)‘. (7.7)
This potential has a local maximum at 0.1 nm and two
minima at x=0,1 nm+va,/a,. The force is given by
" F(x)=-V'(x). To sufficiently confine the distribution
within the domain (0, 0.2 nm), we have chosen the pa-
rameter values
a;=2%10° nm
a,=4%x10* nm™ . (7.8)
The particle is initially placed at x4=0.1 nm at #=0.
We would expect to observe a double-peaked distribu-
tion develop in time. In Figs. 4(a)-4(c), we show the
distribution after 1 ps as a function of the convergence
parameter E, Convergence occurs throughout the dif-
fusive domain and for E=0,1 the MC distribution is suf-
ficiently accurate. In Fig. 5, we show the time develop-
ment of the distribution. The nearly Gaussian distribu-
tion at short times broadens as the particles sample
more of the diffusion space and gradually feel the effects
of the nonlinear force. At ¢=0.6 ps the onset of two
peaks occurs and at longer times the particles tend to
remain in one of the two valleys.

We have used this process to test the effectiveness of
the nonlinear correction term in Egs. (5. 14) and (5. 15)
by including the correction term and repeating the above

run with £=0,02 and E=0.05. The corrected algorithm

1000} — = ' ' b
' |
\
\ .
0o b .
- R
o~ )
’ ‘. .
_‘_:5_600:?\ o n
\ R
= AN
x N.
~ 400 _\1;\(.._& = -
‘\\\. I
: | \\'-_\9 :
200~ NN -
! SRS
1\ ™~ ——

"Extrapolated beyond 200 subdivisions

of the diffusion domain (0,0, 2 nm),
!Calculated using the survival proha-
bility discussed in Secs, II and IV,

’The maximum jump distance A, depends
on xy and A as discussed in See, VII,

] |
O o 00z 00 006 008 010
Distance from boundary {(nm)

3

0 o 000
Caan =

Probability density
(3,

0 004 008 012 016 020

Distance from boundary (nm)

FIG, 3. (a) The various optical potentials of Eqs, (7. 3)~(7.6)
using the parameter values of Table VI (b—f). Refer to Table
VI and to the text for further details, (b) Results for the proba-
bility distribution p{x,#=0, 005 nm? }%9=0.1 nm) for diffusfon

in the linear force F(x) =~ 20-400x nm™! in the reactive optical
potentials displayed in (a) (curves b—f) and near a reactive
boundary (curve a), The distributions were obtained using the
difference method approach discussed in paper I.
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is about 10% slower than the uncorrected one with no
noticeable improvement. In view of the added difficul-
ties in programrming the correction factor, its use is,
therefore, not recommended or required in the algo-
rithm,
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FIG. 4. (a) Results for the probability distribution ple,t

=0, 001 nm?|x,=0.10 nm) for diffusion in the bistable potential
(7.7). The MC algorithm with 10° trajectories and convergence
parameter E =0, 02 (—) is compared with the difference equa-
tion approach (+++). (b) Same as (a) except with E =0, 05, (c)
Same as (a) except with E =0, 10,
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FIG. 5, Results for the probability distribution plx,tlxp=0.1
nm) for diffusion in the bistable potential (7.7) at the times t(ps)
=0,2, 0.3, 0.5, 0.6, 1,0, The MC algorithm with 10° trajec-
tories and convergence parameter E =0, 10 (—) is compared
with the difference equation approach (*«+),

We now consider the above process with the particle
initially placed at x=0.09 nm, slightly to the left of the
central maximum. The distribution after 1 ps is shown
in Fig. 6(a). In such a barrier crossing one would be
interested in the total yield (fraction) of particles reach-

-ing the right-hand well. Figure 6(a) demonstrates that

roughly one-third of the particles have crossed the bar-
rier. In other realistic applications, this number may
be very small. Such situations would render the algo-
rithm inefficient as crossing processes are then ex-
tremely rare. A way to improve the algorithm is to
generalize the method introduced in Sec. III (and Appen-
dix B) employing the survival probability. To obtain
distribution p,(x, #x,), we distribute particles according
to distribution p’(x, #lx,) and multiply the (accumulated)
particle weight by the factor p,/p’, i.e.,

Dalx, t]x0) = [Dy(x, tlxo)/p'(x, t| %) ' (x, t [x0),

where the factor in brackets is a “survival probabil -
ity” for the jump and p’(x, ¢1x,) has been used to deter-
mine the jump endpoint. In Sec. II p’(x, t|x,) was taken
to be the nonreactive distribution for the reactive pro-

cess considered there. For Fig. 6(a) one can choose
p'(x, t1x,) as the actual local linear distribution and,
since the process is assumed to be nonreactive, the
survival probability is unity. We could, however,
choose some distribution other than the local linear one
to distribute the jumps. We could, for example, dis-
tribute those jumps initially in the left-hand well (x,
<0.1 nm) according to a distribution that biases jumps
toward the right-hand well; i.e., one derived from the
constant force F(x) =20 nm™. Then, for these jumps,
we must multiply the weight by the above survival prob-
ability. Such a modification of the algorithm leads to
the distribution displayed in Fig. 6(b). As can be seen,
the distribution in the right-hand well (all that we are
interested in) is correctly reproduced. The distribu-
tion to the left of the maximum is not accurate because
particles that would normally have endpoints in this

(7.9)
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FIG 6. (a) Results for the probabxhty distribution p(x,t =0, 001

nm? | %y =0, 09 nm) for diffusion in the bistable potential (7, 7).,

The MC algorithm with 10° trajectories and convergence para-
meter E =0, 10 is compared with the difference equation approach
(¢++). (b) Same as {a) except that the biased MC algorlthm dis~
cussed in Sec. VII was used.

region have been artificially sent across the barrier,
Letting N denote the number of trajectories sampled
and N, the number of particles ending up in the right-
hand well after time ¢, the above two alternative pro-
cedures may be approximately compared as follows.
For Fig. 6(a), we have used an algorithm that gives
N,/N percent of the particles with weight one in the
right-hand well. For Fig. 6(b), the “biased” algo-
rithm gives (roughly) all of the particles with weight
N,/N in the right-hand well. As is seen by comparing
Figs. 6(a) and 6(b), the stochastic fluctuations of the
distributions of the right-hand well are about the same.
In the example chosen, we have not significantly altered
the number of particles crossing the barrier but, in a
more realistic application, one might noticeably improve
the calculated yield. Also important is that, in the
biased algorithm, every particle can be made to cross
the barrier and contribute to the yield and since particle
distribution in the left-hand well is made according to
the simple constant force distribution (without the need
for considering the presence of the boundary at x =0),
the biased algorithm is also faster: 86 CPUs for Fig.

G. Lamm and K. Schulten: Extended Brownian dynamics. H

6(a) compared to 72 CPUs for Fig. 6(b). This saving
in computer time will clearly increase as the yield de-
creases. It should be noted that one cannot speed up
the algorithm by basing local jump times on the biased
distribution p’(x, tlx,) since the survival probability
factor in Eq. (7.9) must be accurate. The biased algo-
rithm based on Eq. (7.9) can be obv1ously generalized
to the case of reactive diffusion.

VIil. DIFFUSION IN THE PRESENCE OF TWO
BOUNDARIES

The solution to the SDE for diffusion between two
boundaries is usually expressed in the form of an in-
finite series of image solutions.?® Such a form is clear-
ly unsuitable for treatment by a MC algorithm as de-
veloped here. We have, therefore, used the analytic
solution for diffusion in a constant force near one
boundary to obtain an approximate solution for nonlin-
ear diffusion between two boundaries (either reflecting
or reactive) that can be treated by the algorithm sug-
gested in the preceding sections.

We write the one-boundary solution given by Eq. (2.4)
in the form
P(x,tlxo)=Po(x,tlxo)**Pa(xgt{xo) ) (8-1)

where p,(x, t1xo) denotes the boundary contributions (2.6)
and (2.7) for a boundary located at x,. This solution
satisfies the (nonreactive) boundary condition

o] .
[a—,;—F(x)] (ol t]20) + £, £ 20)] =0, 2t x=x, . (8.2)
In the presence of a second boundary at x,, we gener-
alize Eq. (8.1) to read
p(x’ tlxo)zPO(x’ tlxo) +)‘apa(x: tlxo) +)\be X,y tlxo) H

where coefficients A () and 2, (¢) are assumed indepen-
dent of x. The boundary condition satisfied by p,(x, ¢ I xa)
is

(8.3)

[ % - F(x)] [Po(x, t|x0) +pb(x: tlxo)] =0 ’ at x = xb .

(8.4)
Pos Pay and p, each satisfy the SDE in the diffusion re-
gion between x, and x,. A, and A, are determined by re-
quiring solution equation (8. 3) to satisfy the actual
boundary conditions at x, and x,

o}
[;; —F(x)][.p(x,t[xo)=0 , atx=x,x, .

Combining Eqs. (8.2), (8.4), and (8.5), and introducing
the fluxes

(8.5)

. ) o
jm(xn)Ejm(xm t|x0)=—[8—;(—F(x)] pm(x7t|x0) y XFXp
m=0,a,b, n=a,b, (8.6)

we can derive at the following S1multaneous equations for
Aq and A,

jO(xa)Aa —jb(xa)xb' =ja(xa) s
ja(xb»*a ”J'o(xb»\) =jols) ,

where all quantities depend on the jump time ¢,

(8.7)

The
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solution to Egs. (8.7) is

b (t) =iq(xa)j0(xb) +j0(xb)jb(xa)
¢ jﬂ(xa)jo(xb) _ja(xb)jb(xa) )

Ay is obtained from Eq. (8.8) by interchanging indices
a and b, With these values for 1, ,, distribution (8.3)
must be renormalized. Although this solution could be
used in 2 MC procedure, evaluation of the fluxes after
each jump would be quite time consuming. A better
method would be to express the fluxes in terms of the .
integrals of the distributions, as these must be calcu-
lated to provide the correct partitioning of jumps into

pO; pa, and Pb'

Integrating the SDE for py(x, ¢lxp) from x =x, to in-
finity gives

(8.8)

, d
Foly, 8] 20) =27 Nofx,,t | %0) , (8.9)
where
Ni(3)= Noly, ¢ 20)= [ dx polx, £]xo) . (8.10)
£1]
Repeating this for p,(x, #|x,) gives
- P
]a(xb,tlx()):d_tNa(xb’tlxD) y (8'11)
where
Nix) =Ny tlx0) = [ dxpyi,t]o) - (8.12)
*p

These results simply express the flux at x, due to the
two distributions p, and p, in terms of the rate of change
of the number of particles that lie in these distributions
beyond x,. Note that the boundary condition at x, is not
used. The ratio of fluxes (8.9) and (8.11), after an
integration by parts, can be expressed as

iﬂgk)-:—‘l—-—N(x”)+-——-——1 ftdt'N X U |2
Jo(xs)  No(xp) = Nolxy) o o, ¢'|50)

d [Fa(x, ¢ lxg)

Y 1 Ja\Pbs 0

7| o) (8.13)
The approximation made is to neglect the second term
in Eq. (8.13) either on the grounds that it vanishes for
small time, or that'the ratio of fluxes is nearly con-
stant. The same procedure follows for the flux ratio
at the boundary at x,. We can then write Eq. (8.8) as

No(xg)No(xp) + No(xy )Ny ()
No(xg)No(xp) = Ny(2,)Ny () *

Again, 2, is obtained from Eq. (8.14) by interchanging
aand b. The solution (8.1) will be close to the actual
solution when A, and X, are nearly time independent.
Note also that for all ¢, for these values of 2, ,, dis-
tribution equation.(8.3) is normalized.?® When the over-
lap of p, with the boundary at x, is negligible, and sim-
ilarly for p, at x,, Eqs. (8.8) and (8. 14) reduce to 2,
=2~ 1. In most situations, where either the boundaries
are relatively far apart compared to the range of the
force or when the jump time is small (essentially two
ways of looking at the same thing), this result
simplifies the algorithm slightly. The N, in Eq. (8. 14),

A () = (8.14)

“culate,
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given by Eqs. (8.10) and (8.12), are readily calculated
from Eqs. (2.5)-(2.7) to give

Ny(x,) = E(b, 0, x4, — x,) , (8.15a)
No(xp) = E(~ b, 0, - x9, x3) , (8.15b)
Ny(x,) = E(b, xy = X gy Xp = X gy Xp = X3) » (8.15¢c)
Ny(%5) = E(= by Xy = X gy Xp = Xy Xp = X,) (8.15d)

where we have defined )
E(B, %y, %, x3) =% exp(— Bx,) erfc[(x, + x5 — Bt)/N4t] . (8.16)

For a linear force, the parameters of Eqs. (8.16)
transform as

X = x1=%, xz~x§£x29, xa-k.{,:xs,
B~B'=28/(1+6), t—=t'=(1-6%/2c,

where 6 =exp(- ct). Also, in Egs. (8.15a)—(8.15¢c), &
must be replaced by b - cx, and in Eq. (8.15d) » must
be replaced by b +c(x, ~x,).

(8.17)

The basic procedure of first partitioning jumps ac-
cording to py, A,p,, and A,p, remains as before. De-
fining the areas '

b
No= [ dxputstlze), m=0,a,0, (8.18)
a

one again chooses a uniformly distributed random num-
ber on the interval [0,1). Then for 0=<#<N,, the end-
point is distributed according to pgy; for Ny=»<Ny+ AN,
endpoint distribution is made according to p,; otherwise,
Py is used.® For jump endpoints distributed according
to p, or p,, the two contributions to each distribution
[Eqs. (2.86) and (2.7)] mean that an additional parti-
tioning must be performed, or that one simply partitions
the original p(x, tix,) in Eq. (8.3) into five terms in-
stead of three, Whatever the method, endpoints are
chosen from the inversion of

1 X
e ‘/’;fdxp,,.(x,ﬂxo) . (8.19)

m
If the boundaries are reactive, jump endpoints are still
determined by Eq. (8.19) using the unreactive distribu-
tions, but now a survival probability must be calculated.
To obtain the required reactive distribution p,(x, ¢ 1x;)
corresponding to Eq. (8.3), we could try to repeat the
derivation that led to Eq. (8.14). One would find that
Eq. (8.8) is still valid if the reactive fluxes are used

i) == [ = F) = ] s 30

x=%x,3; m=0,a,b; n=a,b. (8.20)

Unfortunately, the simple result (8.13) is no longer
available for the ratio of the fluxes at the boundaries.
Furthermore, any approximation of this kind would re-
late the A’s to the areas under the reactive distribu-
tions, These are not required in the partitioning phase
of the algorithm and would be time consuming to cal-
As a first approximation to a more accurate
solution, we assume that the \’s may adequately be
given by Eq. (8.14) where the N,(x,) are determined by
the unreactive distributions, that is, as given by Eqs.
(8.15). The p,(x, t|xp), however, are given by their
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FIG 7. Results for the probability distribution p(x, ¢t =0, 0015
nm?*1x,=0.12 nm) for diffusion in the linear force F(x) =— 20+
100x nm™ between a reactive boundary (k=40 nm™, at x=0) and
a reflective boundary (¢=0, at x=0,2 nm). The analytic
expression (8. 21) (---) is compared with the difference equa-
tion approach (s«-),

reactive forms [Eqs. (4.2)-(4.5)]. This approximate
solution is clearly valid for small jump times when p,
accounts for most of the jumps and is perhaps correct
to first order in the reaction rate as the A\’s involve
only the ratio of fluxes,

In summary, the solution to the SDE for diffusion be-
tween two reactive boundaries at x, and x, (x,<x,) is
approximately given by

Paly 8] %0) % P, 8] %0) + Mo palx, £]%0) + 2y py(x, £ 20) , (8.21)

where
Do, t|2%0) = prol, £ 20) (8.22)
Pal, | o) = Pagr(x — %4, ¢ | %0 = x4)
+Dp 2% = %4 t|xg-x,) , (8.23)
y(#, £|x0) = Pryilxy = 2, t|x, = x0)
+Prya(%p — X, t|xy — %) . (8.24)

with the right-hand sides denoting the distributions in
Eqgs. (4.3)-(4.5). The coefficients A, and X, are given
by Egs. (8.14)-(8.17). Endpoints are chosen according
to the unreactive distribution equation (8. 3) and the sur-
vival probability is given by the ratio of distribution
equation (8. 21) to distribution equation (8.3).3! Finally,
if a reactive optical potential is present, the survival
probability is given by Eq. (5. 16).

To test solution (8.21), we need only investigate the
analytic expression as the MC algorithm will converge
to it for short time steps. 'We have placed the bound-
aries at x,=0 and x,=0.2 nm. Diffusion between the
boundaries occurs in the linear force F(x)=-20+100x

! with the boundary at x, having a reactivity of 2, =40
nm™' and that at x, being totally reflective (k,=0). The
particle is initially at x,=0.12 nm and the distribution
was found after =1, 5 ps, In Fig. 7, the analytic dis-
tribution based on Eq. (8.21) is compared with the re-
sults of the difference method. Agreement is excellent

G. Lamm and K. Schulten: Extended Brownian dynamics. 1|

over the entire diffusion domain. The reaction yields
obtained by the two methods are 0. 0286 (analytic) and
0.0293 (difference).

A number of other diffusion processes were also in-
vestigated to see if the error in Eq. (8.21) could be
illustrated. It was found that if one chooses a process
such that, say, X, is large compared to unity, then dis-
tribution p, is exceedingly small and the corresponding
term makes no contribution to Eq. (8.21). This will
probably be the case in most (if not all) applications of
the algorithm. Thus, at any given point in the diffusion
space, one only need consider one (or neither) of the
two boundaries in order to correctly partition the partl-
cle jump.

IX. DIFFUSION WITH A VARIABLE DIFFUSION
COEFFICIENT

In most applications of the diffusion equation, a con-
stant diffusion coefficient is assumed to allow a rea-
sonable, if not highly accurate, solution to be obtained.
In some situations, however, a variable diffusion co-
efficient may be necessary for correct modeling, In
this section, we show how the algorithm may be ex-
tended to account for spatial variations in the diffusion
coefficient.

The SDE for a variable diffusion coefficient D(x)
=D(x0)B(x) is given by
arps )= i B[ & - F)| pi il 0.1

where ¢ =D(x,) . time. We make the coordinate trans-

formation

dz 1
a}= B(x)’ Z(x)=xo+j;° n;(;r) s

with -
a(z, t|%0) =V B(X) p(x, t|x,) .
This puts Eq. (9.1) in the form

x

(9.2)
(9.3)

(9.4)

9 a8
37 72 | x0) = s [5; F(Z)] alz, t|xo) ,

where the effective force F(z) is

F(z) =V B(x) F(x)+7-=§—-) dgi %)

From Eq. (9.5) it is seen that a variable diffusion co-
efficient leads to a nonlinear effective force. The
boundary condition satisfied by g(z, ¢1x,) is

. (9.5)

x=x{2)

[% —F(z)]q(z,t|x°)=0, at z =2(x(0)) . (9.6)

Equation (9. 4) subject to Eq. (9.6) constitutes the non-
linear force problem described in Sec. V. The force
parameters b and c representing the local force are
chosen according to Eq. (6. 13) From Eq. (9.5), we
find

¢ =~ F'(x5) — 2 B' (%) Fxg) + 5 [B'(x0) [ - 3
b==F(xg) ~ 2 B'(xp) +cxp .

The algorithm is then to choose some initial point x,

B '(xo) »
(9.7)
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and calculate the force parameters from Eqs, (9.7).
A jump is made according to the appropriate par-
titioning and endpoint determination (from x; =2, to z,
in time {) on the basis of local linear diffusion s z
space. If a reaction is present, we use the survival
probability based on gy(z, ¢ 1x;) with k(x) as given in x
space (no change) to decrease the particle weight as
described in Secs. IV and V. The endpoint 2z, must then
be transformed to x, using Eq. (9.2). If B(x) varies
dpproximately linearly with x near %y, Eq. (9.2)
yields the inversion

Xp=2p+ 1 (2 = %0)2 B'(x,) . (9.8)

A new jump is then performed starting from x; and with
parameters b and ¢ redetermined locally. After the
final trajectory jump to some xp, the final weight is

multiplied by [ B(x,)]™/2 to convert q(z, ¢1x,) to Pxp, tlag).

The jump time ¢ can be chosen locally according to Sec.
VI, with the effective force F(z) replacing the actual
force F(x) in the formulas,

X. THREE-DIMENSIONAL, SPHERICALLY
SYMMETRIC DIFFUSION

Although the main reason for developing the one-di-
mensional algorithm is to extend it to treat higher~di-
mensional diffusion processes which cannot be handled
by other numerical techniques, we note that diffusion in
a spherically symmetric force can be described by a
SDE in one variable (the radial coordinate) and should
be treatable by the procedure already outlined. This is
easily done if we start from the general d-dimensional
radial SDE

(1, tlrg) 1 5"’774-* [% - m)] 7, t|m)

8¢
~ kK7r)p(7, t|7o) (10.1)
subject to the initial condition
1
P, Olr) = 8(r = 70) , d=2,3, (10.2)

and the boundary condition

L,%——F(r)] Pyt =Ry plr, tlry), atw=v, . (10.3)

The numerical factor in Eq. (10.2) is unity for the one-
dimensional case. We have included both a reactive
optical potential as well as a reactive boundary for
generality, although only one would normally be as-
sumed in a specific application. Equation (10.1) is
easily transformed into the nonlinear SDE (5, 3) through
the substitution

p00, ) =g alas 7o) (10.4)

where x =y ~#,. This gives the one-dimensional SDE

Mﬁl: i{i_p(x+rl)_d—

1
(i) 2 Jot 1

ox X+7

- klx +7y) qlx, t| 7o) (10.5)

subject to the initial and boundary conditions
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q(x, 0] 7) = 6(x + 7y — 7) (10.6)

and

8 d-1
[5;—H7’1)-—;1—]q(x,t|1’o)=kxq(x,t|7’o) , atx=0.
(10.7)

-Equations (10.5)-(10.7) are readily solved using the

nonlinear algorithm as described in Sec. V. Equation
(10.5) shows that higher-dimensional diffusion pro-
cesses in a spherically symmetric force act like one-
dimensional processes in the presence of an additional
nonlinear force. This force acts to keep the particle
away from the origin and, in higher dimensions, essen-
tially scales the radial coordinate to account for the in-
creased phase space and the smaller chance of finding
the particle near the corigin.

The radial distribution p(r, #l7,) is obtained by ap-
plying the algorithm to Eqs. (10.5)~(10.7) to find
q(x,tl7g). The final trajectory weight is then multiplied
by the numerical factor in Eq. (10.4) to yield values-
for p(r, ¢1vp). In most applications, however, this is
not necessary since contained in g(x, £l7,) is the higher-
dimensional Jacobian factor, that appears in all radial
integrals. A typical quantity of interest is the number
of particles surviving after time #. This is the area
under the radial distribution p(», ¢1%;) and is given by
(see Appendix D).

N(t|rp) =217 f ) ar v 'p(r, t|r,) (10.8)
1
= fwdxq(x,t['ro) ) (10.9)
0

Thus, it is often more expedient to save g(x, £17,) rather
than p(7, t17;). Similar results hold when one is cal-

culating the reaction rate for diffusion in 2 reactive op-
tical potential or near a reactive boundary (Appendix D).

Xi. FINAL COMMENTS ON THE USE OF THE
ALGORITHM

We consider here, three additional modifications of
the algorithm that need to be incorporated for certain
applications. The first concerns our assumption and
use of a delta function initial distribution

plx, t=0]xp) = 5(x — x) . (11.1)

This functional form was éhosen for simplicity but many
applications may require that the SDE be solved subject
to some other normalized initial distribution

b, =0]x0) = flxo)
To treat this case, the procedure of Sec, II need only
be prefaced by a step that chooses a (different) starting
point x; for each trajectory. One selects a uniformly
distributed random number #'’¢[0, 1) and inverts the
cumulative distribution function corresponding to the
initial distribution

y! = [odxf(x)

to obtain x,. Once this initial point is chosen, the al-
gorithm proceeds as before. If Eq. (11.3) cannot be

(11.2)

(11.3)
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inverted analytically, a similar distribution along with
an initial nonunit trajectory weight may be required
(Appendix B).

The second application of the algorithm we discuss
concerns the calculation of time-dependent quantities,
such as the reaction rate or yield in reactive diffusion.
Suppose we want the yield at specified times
1y bgy by o o We modify the local jump time procedure
of Sec. IV by requiring that the jump time Af for a local
jump during trajectory time #, to ¢, + At be such that the
entire jump lies within one of the specified time inter-
vals, e.g., {,=t,<fty+At=t,. When the final time £,
+Af coincides with one of the fixed time values (¢, say),
then the appropriate information is stored just as at
the end of a trajectory. If the local jump times are
generally smaller than the time intervals for which the
yields are required, then the algorithm is not signifi-
cantly slower. However, if the local jump times are
usually longer than the selected time intervals, the
computational time will be proportional to the number
of intervals, i.e., to the amount of information desired.
In any event, the algorithm is as efficient as possible.
This modification has been programmed to obtain reac-
tion rates and yields, as described in Appendix D, and
found to work extremely well,

The final point to be considered is the application of
the algorithm to processes in which either the force (or
diffusion coefficient) or reaction rate is time depen-
dent. The procedure as described assumes that both
are constant in time but as the algorithm follows dif-
fusing particles in time as well as in space, it is a sim-
ple matter to introduce the necessary modifications.
Generalizing the ideas behind the jump distance deter-
mination of Sec. VI [Eq. (6.4)], we need only append a
final step to the jump time procedure by setting

_1_ = l F(xO; tﬂ) 'k(xQ) tD) D(xO’ to) s (11. 4)
At " t, " | €F(xo, tg)|l ~ l€B(xq, tp)|  1ED(xq, t,)

where £, is the jump time as given by Eq. (6.9). This
new jump time Af accounts for time-dependent changes
in either the force or reaction rate when the local tra-
Jectory time #; is considered as a parameter in the force
and reaction rate determination,

Xll. SUMMARY OF THE ALGORITHM AND
CONCLUSIONS

The most effective way to summarize the algorithm
is to present a brief outline of the approach as a pro-
grammer might view it. For completeness, we include
the additional points discussed in Sec. XTI:

(i) Run initialization;

(ii) Trajectory initialization (a) starting point x, de-
termination—Eq. (11. 3); (b) initialize trajectory weight:
Sec. XI, Appendix B; '

(iii) Force parameter assignment—Secs. VI, IX, X,
and XI (a) set b(xq, fy), c(xy, ty)—Eqs. (6.15) and (9.7);
(b) for reaction, set k(xg, Z))—Eqs. (7.2)-=(7.6);

(iv) Local jump time determination—Eqs. (6.9) and
(11.4),
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(v) Pseudoconstant force parameter assignment—Eqs.
(4. 3) and (4. 5b);

(vi) Jump endpoint partitioning and deterrﬁination—
Eqgs. (2.8)-(2.11) and Eqs, (2.13), (2.14), and (2. 17);

(vii) Modify trajectory weight for—(a) nonlinear cor-
rection (if included)—Eqs. (5.14) and (5.15); (b) a biased
local jump—Eq. (7.9), Appendix B; (c) a reaction—Eqs.
(3.2)—(3.5) ff, or Eq. (5.16);

(viii) Store time-dependent quantities (reaction rate
or yield): Sec. XI, Appendix D;

(ix) For another trajectory, return to step (ii);

(x) Otherwise, store final quantities and normalize
data— Appendix D,

We have presented here a rather complete description
of a new Monte Carlo approach to solving the Smolu-
chowski diffusion equation, including time-dependent,
nonlinear force, diffusion coefficient, and reaction
terms, and subject to general initial and boundary con-
ditions. It has been constructed with the advantages
and disadvantages of previous MC and numerical ap-
proaches in mind and with the extension and application
to the full three-dimensional (or higher) SDE in view.
The algorithm is based as much as possible on known
analytical results in diffusion theory and several Monte
Carlo “tricks” have been discussed to further extend
its usefulness.  The major points of the procedure have
been illustrated to show its convergence properties. In
addition to the basic algorithm summarized above, a
number of alternative modifications or procedures have
been discussed that place the entire algorithm in a more
meaningful setting.

The procedure described here is believed to be the
only method available for investigating the SDE in full
generality and that, by this method, a comprehensive
study of many important and interesting diffusion sys-
tems in the biological, chemical, and physical regimes
can now be undertaken.

\
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APPENDIX A: THE RANDOM NUMBER GENERATOR
AND erfc{x) EVALUATION

The success of any MC algorithm depends crucially
on the randomness of the “pseudorandom” numbers
generated. While no given sequence of numbers can be
proven to be random, the sequence can be subjected to
certain statistical tests that measure its nonrandom-
ness.* As we require only a sequence of numbers uni-
formly distributed on the unit interval, it is easiest to
use a method that has already been shown to yield pseu~
dorandom number sequences that meet certain require-
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ments for randomness. We have, therefore, chosen
the multiplicative congruence method defined by the
iterative equation

Xy =Axy(modT) , (Al)

with 4 =7%and T=2-1.% The Fortran implementation
of Eq. (Al) is given below?!;

FUNCTION RANDM (ISEED)
DATA IA, IT, TINV/16807, 2147483647, 0. 4656612873E -09/
ISEED = MOD(IA*ISEED, IT)

RANDM = ISEED*TINV

RETURN

END

ISEED is initially assigned some starting value (7777777)
and is subsequently updated by the subroutine. The -
ISEED values define a pseudorandom integer sequence
on the interval (0, IT) and RANDM defines a pseudoran-
dom real sequence on the interval [0,1). The above
routine has been found to be efficient and results of the
algorithm would indicate that the sequence of numbers
generated is suff1c1ently random for the apphcatlons
intended here, %

The time-consuming part of the algorithm is the large
number of calls that must be made to subroutine evalua-
tions of erfc(x) and erfc’l(x), where®

erfc(x):%r f dz exp(~ z7) (A2)
is the complementary error function. Sufficiently ac-
curate rational approximations to these functions have
been given by Hastings.’® We have found little signifi-
cant difference in either the accuracy or the speed of
the varlous forms available and have used the approx1—
mations®

e erfe(x) =((asy+a) v+ @) y+ @) y+a)y, x=0, (A3)
where
y=(1+ag)™
and
a,=0.254829593 , a,=-1,453152027,
a,=-0.284496736 , ag=1.061405429,
a;=1.421413741, @,=0.3275011,
to evaluate erfc(x) and®’
erfc"(x)=y-(( (659 +b) 9+ by x=0. (A4)

bey +b5) y+by)y+1 "’
where
y=[b-,—1n(1-—|1—x])]”2
and
b,=1.778739 , bs=0.378538,
b;=0.802853 , b,=0.0036996,
b;=0.014606 , b,=In2=0.693147181,
by=2.026268 '

to evaluate erfc™l(x).
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As the slow part of the algorithm is the evaluation of
the erfc(x) and erfc™(x) functions, it might be asked
whether they could in some way be dispensed with., In
the Ermak! algorithm, the required random number se-
quence should be normally distributed and derives from
the strict Gaussian distribution used to distribute the
particle. Muller®® has made an extensive comparison
of several ways of obtaining such sequences and has of -
fered some useful conclusions. However, in the algo-
rithm presented here, the particle never strikes the
boundary and the random sequence is consequently not
derived from a Gaussian function [the lower limit of
integration in Eq. (2.12) is 0 and not ~« yielding a
cutoff Gaussian]. To our knowledge, there exists no
alternative method of obtaining the required random se-
quences other than that given here.

APPENDIX B: SAMPLING FROM A
NONRECTANGULAR DISTRIBUTION

This MC algorithm is based on sampling from a given
normalized distribution f{x) defined on the domain [0, »).
To do this we obtain a random number # uniformly dis-
tributed on the unit interval [0, 1) (see Appendix A) and
invert the cumulative distribution function for f(x), !

r= j:dxf(x) . (B1)
If f(x) consists of a sum of terms, e.g.,
Sx) = f1(x) + folx) , (B2)

then it is neceésary to determine which term is to be
used for the inversion. This is done by first deter-
mining the areas (which may be negative)

N,= f dx'f(x), i=1,2. (B3)
Then, given a second random number #' ¢[0, 1), if 0= v
< IN,I the inversion
3
= [ av e (B4)
0

provides the appropriate value for x. If IN;I=#' < IN,|
+|N,1, then inversion based on f,(x) is used. If both
distributions are positive, then IN;| +|N,| =1 for nor-
malized f{x). This procedure is easily generalized to
any number of terms,

Several methods are available for inverting a given
distribution. If f(x) in Eq. (B1) [or fi(x) in Eq. (B4)] is
either exponential or Gaussian, then the inversion may
be carried out analytically. Certain other forms for
f{x) also allow analytic inversion. If f{x) does not allow
analytic inversion, then other methods such as stored
tables of values, rejection techniques, or numerical
procedures may be required. One “trick” for obtaining
x analytically is to introduce into the inversion integral
another distribution g(x) whose shape is-usually similar

to f(x),

[ fis].

Inversion is then performed based on

(B5)
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x

= [ ax glx") (B6)

0
and the sample (value of x) is assigned the weight f(x)/
g(x), which presumably can be evaluated analytically.
This nonunit weighting corrects for the bias in selecting
x values from g(x) instead of f(x). In the text, when f(x)
denotes a reactive distribution and g{(x) denotes the cor-
responding unreactive distribution, this weight is termed
the survival probability (for the jump).

If f(x) can be used for inversion, then most of the
samples will be chosen near where f(x) has a maximum,
and convergence of quantities related to f{x) will be
most rapid. This is termed importance sampling, 4
If some other function g(x) is required for inversion,
convergence will be slower. There are instances, how-
ever, when it is actually better to sample from some
approximate distribution rather than from the actual
one, even when the latter can be analytically inverted
(see Sec. Vv1I).

APPENDIX C: STATISTICAL EVALUATIONS OF
THE ALGORITHM

Here, we present a brief discussion of the statistical
fluctuations inherent in all MC algorithms.

The results shown in Fig. 1(a) for the probability
distribution were obtained by selecting a trajectory
endpomt x from the distribution p(x, ¢1x,) as described
in Sec. II. [It is assumed below that p(x, £ix,) corre-
sponds to the correct distribution, ] The x axis was
partitioned into bins of equal size A and the final end-
point was accumulated into the corresponding endpoint
bin. This procedure provides a discrete approximation
to p(x, tlx,). If the mth bin accumulates #,, endpoints
(of weight unity), then

Dy ] %0) 2 22 (c1)
m AN
is the approximate distribution at the bin center (x,,)
for N trajectories. From standard probability theory,
the probability that »,, endpoints will be found in the mth
bin is®*
N!

=TTV =1 B (L= )" (c2)

prob(n,,)

where p,, is the probability that an endpoint will be put
into the mth bin. This probability is
XmtA /2
Pz [ dxplr, t]x) . (c3)
xm-A/Z

From Eq. (CZ), we easily obtain the average values

<nm> =Npm’ Om = <nfn> - '<nm>2 =Np‘m(1 —pm) . (C4)
Thus, the discrete distribution (C1) becomes
1
Dy ] 20)= 15 () £ 03/ %) (C5)
Pn, 1 [bn(l-pp)
~—A&'¢A N (C6)

Equation (C8) shows that the error decreases as N1/2
as expected. It also shows that this error is largest
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where p(x,, tlx;) is largest, as is evident from Fig.
1(a). Alternative forms for Eq. (C6) show that the rela-
tive error decreases as [p(x,, £ x,)]™"/? and is propor-
tional to ;2. Thus, to obtain a more accurate dis-
crete representation of the distribution function by de-
creasing the bin size, one must also increase the tra-
jectory number to keep the relative error constant (AN
= constant).

Similar results hold for other calculated quantities.
If, e.g., we require

bl = [ dxoplx, tx0) fioxy) )

for a givén normalized starting distribution f{x,), Eq.
(C6) is replaced with

X mtA /2
b= [, @ fmonts Hxosteo) (c8)
For quantities such as
G(t|x0) = [ dxgl) px, t]xo) , (co)

the error will in general be much smaller than that for
D%, tlxg). For the special case g(x)=1, we have

G(t lxg) = N(#1x,), the number of particles surviving at
time /., Since the algorithm was constructed to repro-
duce this number exactly (except for the error involved
in approximating the reactive optical potential, which
vanishes with decreasing jump time), G(¢lx,) will con-
verge extremely rapidly.

APPENDIX D: CALCULATION OF THE REACTION
YIELD AND THE REACTION RATE FOR REACTIVE
DIFFUSION

In diffusion processes, one rarely requires all the
information that is available from the distribution. It
is usually sufficient to obtain just a few quantities re-
lated to the moments of the distribution. One such is
the total particle number

N(t]xo)é j(; dx plx, t|xo) , (D1)
i.e., the area under the distribution curve. As dis-
cussed in Appendix C, such integral quantities converge
faster stochastically than the distribution and, for a
fixed number of trajectories sampled, are thus more
accurate. Moreover, the large amount of computer core
needed to obtain accurate, discretized MC distributions
may pose a serious problem, especially when one is
working in higher dimensions, It often becomes neces-
sary to judiciously select those quantities which do not
require a lot of computer memory, such as N(¢1x,).

In reactive diffusion processes, a quantity of interest
is the reaction yield related to N(¢lx,) by

¢(tlxo) =1- N(tle) .

This quantity thus has the same computational advan-
tages as N(¢lx,): it canbe conveniently and accurately
computed. The yield is obtained by accumulating the
final trajectory endpoint weight, represented by

p(x, tlxg) in Eq. (D1) and discussed in Sec. III, and nor-

(D2)
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malizing the accumulated result after all trajectories
are run. Another quantity of interest is the reaction
rate —dN(t|xp)/dt. This quantity could be calculated
by employing a difference approximation to Eq. (D2),

dN(tlxo) o(t— Atlxg) - qS(tlxo)
dt At

(D3)

but this method is inaccurate unless the yield is fairly
constant during the time step.* It would clearly be ad-
vantageous to express the rate as an integral over the
distribution just as the yield in Eq. (D2) is expressed.
This may be done as follows:

Consider the SDE for diffusion in a reactive optical
potential %(x),

2ol - 212 p)] ptr, o) - o) e, £l (D)

subject to the reflective boundary condition

[—;;—F(x)] plx, t|x0)=0, atx=0. (DS5)

Integrating Eq. (D4) over the diffusion domain gives

- [ ) pl, ) (D6)
where Eqs. (D1) and (D5) have been used. This result
is analogous to that obtained for the yield and is com-
puted similarly. The final trajectory endpoint weight
is multiplied by the reactive potential value %(x) cor-
responding to the trajectory endpoint and the result is
accumulated and normalized after all trajectories are
run., This procedure is an MC evaluation of integral
equation (D6). Note that the jump biasing technique of
Sec. VII may be useful if the integrand of Eq. (D6) is
small,

For diffusion near a reactive boundary, the procedure
is slightly different. We can either repeat the above
derivation using, instead, the nonreactive SDE supple-
mented by the reactive boundary condition, or we can
simply insert the expression k(x) = k0(x) into Eq. (D6).
Both yield the rate

(D7)
As it stands, this result is not useful as we do not have
an accurate value for p(0,¢1x,). However, if weiterate
the right-hand side of Eq. (D7) once using the Chapman-
Kolomorogov equation (5.21), we find

_ON(tlxg) _ (bB)

Y k j:dx'p(o,ilx', yp(x', ]xo) .

To evaluate this expression, we multiply the weight
corresponding to the jump endpoint before the last,
represented by p(x’, ¢ 1x,), by the quantity kp(0, £ |x',#').
This latter factor is known analytically, since the jump
time determination of Sec. VI assumes that during an
individual diffusive jump, specifically from #’ to ¢, the
locally determined linear distribution p(0, ¢1x’,¢') is
suitably accurate. Loosely speaking, p(0,¢1x’,¢') is the
“probability” that the particle will jump to the reactive
boundary during the last diffusive jump and react (wheth-
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er it actually does so or not).

Equations (D6) and (D8) allow determination of reac-
tion rates for reactive diffusion in a way that is rapidly
convergent and computationally convement simple, and
fast,

APPENDIX E: ERRATA FOR PAPER ! [J. CHEM.
PHYS. 75, 365 (1981)]

Equation ('7) should read

palx, t]x0) = (4mt) ™V 2 exp[bxy — (x + %0 + 1)/ 48] . (7
Equation (13) should read

(1 | x0) = [xBt/(477*) ]/ % exp[ =~ (x5~ br)zt/érz] . (13)
Equation (19) should read
polx, ] x0) = [c/2n0TH/2

x exp{~ c[x +b/c = (xo + b/ c) exp(~ ct) [}/ 26} . (19)

In Figs. 3-6, the coefficient of the linear component of
the force should be doubled, e.g., Fig. 4 should read
. BF(x)=(-20-400x) nm™,,."”.

Finally, we mention that the MC results were slightly
inaccurately plotted. The endpoints accumulated in the
bins were plotted at the x coordinate of the left-hand
side of the bin, and not in the center where they should have
been plotted. Thus, the distribution at the boundary

. shown in Figs. 2(b) and 5(b) is more accurate than ap-

pears from the graph. This has been corrected for the
present paper.
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105 M, Hammersley and D, C. Handscomb, Monte Carlo
Methods (Wiley, New York, 1964), p. 36. This is the stan-
dard reference in Monte Carlo work; for a more recent sum-
mary see Ref. 35 below.

ywe have programmed this algorithm and the results agree in
all details with those presented here, Although it is slightly
easier to program and more accurate (though not noticeably
so0), the algorithm is about 30% slower than the procedure
described below,

26 have not observed any error near the boundary, even for
extremely large b, as was the case with the algorithm in
paper 1. ‘It is also possible to correct for the approximation
by assigning a weight p,(x,¢1x¢)/la exp(—~b*x)] to the jump
(see Appendix B), but the error is so small that this is un-
necessary,

BNote the corrections to the figure of paper I given in Appendix
E of the present paper.

14 An application of the algorithm in which it is advantageous
not to bias motion in the direction of the force is given in
Sec, VII,

15We have also programmed this algorithm and have obtained
results identical to those shown here, We regard this pro-
cedure as unsatisfactory, since for k>b/2 distribution Eq.
(3. 5) becomes negative and the modifications given in Ref. 9
above become nesessary. When k is relatively large, p;
must be accurately described in order to avoid negative dis-
tribution values for large x owing to the stochastic nature of
the algorithm. In such cases, we have found Eq. (2.15) in-
adequate 'and have had to use Eq. (2, 18) to represent the er-
ror function, This, in turn, requires additional partitioning
with the result that the algorithm is about 30% slower and
more difficult to program than that described here. An al-
ternative procedure is to include the weighting factor men-
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