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1. Introduction

Cellular automaton theory has been recognized as a useful tool for the study
and the simulation of wave processes in excitable media (see [2]) and presents
an alternative to the integration of partial differential equations (pde), as
used by Tyson et al. [10]. By incorporating only the most important
characteristics of the dynamical system into the automaton rules, one can
~reproduce the dynamical properties. of a large system of coupled nonlinear
oscillators within a fraction of the computing time that is needed to.
integrate numerically corresponding partial differential equations.

For the purpose of a computer ‘simulation one divides an excitable medium
into a large array of elements. For ease of programming, these elements are
arranged on a regular quadratic lattice. Since such a lattice breaks the
isotropy of the medium, anisotropic and thus "unrealistic" wave geometries can
result. In the framework of pde’s this problem of “"spatial stiffness". is’
overcome by dividing the excitable medium into a sufficiently fine mesh.

- Simulations typically use lattices with a lattice constant of the order of
1/50 of the wavelength of the resulting wave (see e.g. [10]).

The dynamics of excitable media are given by the local properties of the
elements and by the coupling of elements. This coupling, i.e. the response of
one element to the action or state of another element, is usually assumed to
decrease with growing distance between the elements. Different directions with
respect to.the lattice axes will exhibit different neareést neighbour spacings
and, as a result, one excitable element will elicit different responses along
these axes.

The more sensitive the response of excitable elements is to small
variation in the elements’ stimulation, the more a resulting wave pattern will
reflect the anisotropy of the lattice. Near their excitation threshold,
excitable media show such sensitivity, and therefore the wave. fronts resulting
from computer simulations are prone to reflect the geometry of the underlying
lattice. This is in sharp contrast to simulations of diffusion or heat flow, .
* the dynamics of which is not sensitive to small fluctuations of any dynamical
variable.
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In the cellular automaton approach to the simulation of excitable media,
the problem of artificial wave geometries is accentuated by the discrete
dynamics of the excitable elements. For example, if the automaton rules are
such that one automaton can excite a finite set of neighbouring automata and
does not affect other automata, the polygonal outline of the set of
neighbouring automata will be reflected by the excitation wave front.

In simulations based on the integration of pde’s one can alleviate this
problem by using finer lattices of excitable elements and shorter time steps.
Similarly, in automaton simulations, one can go over to models with more
states, with more elaborate rules and with interactions involving larger
neighbourhoods. However, such procedure is in contrast to the original aim of
the cellular automaton approach which is to reduce the complexity of the
system and the computing time. :

The question arises then, how simple modifications of the lattice automata
models can lead to natural, i.e. isotropic, lattice-independent geometries of
the excitation wave front.

2. Random distributions pf excitable elements.

Isotropic wave fronts arise in nature in the case of homogeneous isotropic
excitable media, e.g. in the case of the well-known Belousov-Zhabotinsky
reaction. However, the underlying homogeneous conditions cannot be reproduced
on a digital computer. But there exist in nature also systems with a blatantly
discrete character that give rise to isotropic wave fronts, an example being
colonies of slime mold amoebae. A single amoeba can be considered a discrete
excitable element. In an amoeba colony, isotropic wave fronts are not achieved
because of an underlying homogeneous excitable medium, but are achieved rather

" because of a random distribution of amoebae. Such a system, however, can be
readily reproduced in computer simulations by a lattice with a larger fraction
of empty lattice sites. Figure 1 compares two extreme situations: the left
side shows a regular lattice of excitable elements, that will give rise to
polygonal wave fronts, whereas the random distribution on the right on a large
spatial scale side will yield isotropic wave fronts.

The question is how to implement random distributions best on a computer.
Mackay [4] distributed 1000 excitable elements randomly on a 2D surface to
-simulate successfully the cAMP wave propagation in slime mold colonies. He
distributed the excitable elements without any regard to an underlying
lattice, i.e. the coordinates of elements were chosen continuous insofar as
this was possible on a computer. Another implementation was realized by Markus
& Hess (see their contribution in this book [5]). In their approach, one cell
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Figure 1. Fully occupied lattice of excitable elements (left side) and
random distribution of excitable elements (right side). The
situation on the right side will be interpreted as a partially
occupied lattice.
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was put randomly anywhere in each of the cells of a square lattice. Also in
the approach of these authors, élements are essentially represented by a
continuous position. In comparison to regular lattices, in these approaches
the information about the neighbourhood of an excitable element is totally or
partially lost. The distances between the excitable elements can have any
values; thus the strength of the interaction has to be evaluated for every
pair of excitable elements within a certain neighbourhood.

In this contribution we like to suggest a new approach which 1s reflected
in the partially occupied lattice in Fig. 1. In our approach, automata are
distributed on the lattice points of a fine-grained lattice with.a low number
of lattice points occupied. Each automaton is then represented by a discrete
latticé position. In our appreach, the simple neighbourhood relations typical
of -automaton simulatlons are preserved, with the only extension that some
sites will not response to stimuli by neighbouring sites because they do not
contain an excitable element. As the occupancy, 1l.e. the fraction of lattice
sites occupied by excitable elements, is lowered, the distance over which
automata interact has to be gradually increased such that an automaton remains
to interact with approximately the same number of neighbouring automata.

Our approach not only benefits from having very simple neighbourhcods, but

.also allows the degree of randomness and isotropy to increase continuously by
lowering the occupancy of a lattice. It would be ideal to use in simulations a
lattice occupancy that is low enough to ensure isotropic wave propagation, and
is high enough to limit the additional computational effort caused by the use
of large, sparsely occupied lattices.

We have therefore investigated the properties of the transition from L]
polygonal wave fronts of fully occupied lattices to isotropic wave fronts for
sparsely occupied lattices. Our study has been based on the realization that
the aforementioned transition in partially occupied lattices of excitable
media is closely related to the phehomenon of percolation.

3. Coupling of excitable elements

Chemical media capable of generating spontaneous spatio-temporal order can be
generated by chemical reactions with nonlinear kinetics involving activating
and inhibiting substances [9,7,6]. The coupling between the local nonlinear-
kinetics is realized in most natural systems by diffusion of either the
activating or the inhibiting substance, or of both substances. In fact,
diffusion is itself a nonlinear process. This means that the diffusing
substances reach nearby neighbours not only earlier than more distant ones,
but the nearby neighbours are also reached with a higher velocity. More
distant neighbours will either be reached with a very slow velocity or not be
reached at all. :

For our investigations, we described the propagation of the excitation
from one element to the neighbouring elements by a law that is typical for
diffusive processes, namely a vt-law. In this case the time needed for the
excitation of one element to reach another element at a distance d is
described by the power-law

£~ d%, ‘ (1)

This law might not be realistic for all excitable media, but it yields a good
model to investigate the effect of lowering the occupancy of a lattice of a
éxcitable elements. Equation (1) ensures that only the nearest neighbours of
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an excitable element are réached with maximal veloc¢ity. Furthermore, this
property implies that besides the nearest neighbours, only a few next-nearest
nelghbours contribute to the propagation of the excitation wave, because
distant neighbours take much longer to be reached directly by the cell
originally excited than to be reached by relayed propagation involving nearest
and next-nearest neighbours.

The use of a power-law ensures that as the occupancy of the lattice is
varied, the size of the effective neighbourhood of an automaton, i.e. the
distance over which direct excitation between automata is relevant to the
propagation of the wave front, is automatically adjusted so that it always
contains approximately the same number of cells. The number of cells in.the
neighbourhood is thus independent of the lattice occupancy; however it can be
varied by changing the exponent in the power-law (decreasing the exponent will
increase the size of the effective neighbourhood). Furthermore, the selection
of the exponent in the power law (1) not only simulates diffusive coupling
very well, but also ensures that neighbours are reached only at discrete times
that are multiples of the time necessary to reach the nearest lattice p01nt
This is very convenient for an automaton description.

4. OQOur simulations

For our simulations we used the following automaton rules: if one automaton k
is excited, it will fire immediately. The automata that are at a distanceé of
one lattice' constant from automaton k will be excited in the next time step.
Automata at a distance of n lattice constants from automaton k will be excited

" after n2 time steps. In our investigations, we focused on the geometric
properties of the wave front. We were thus only interested in the time at
which a given cell was reached for the first time by an excitation.and
consequently had fired. After firing, our automata entered the refractory
period and would not fire again ' :

We started with simulations of 104 excitable elements which we distributed
on lattices of varylng sizes,. thus obtaining different lattice occupancies. As
an example, Fig 2 shows a typical result of a simulation of wave fronts at
equally spaced instances for a lattice with 50 per cent of the sites occupied.
The wave fronts presented, except for a scatter due to random occupation of
lattice sites, exhibit clearly isotropic propagation. We consider this a key
result of this contribution. This isotropic propagation has been achieved at’
small computational expense. .

In order to analyse how isotropic propagation arises for a sufficiently
low lattice occupancy we need to consider the convergence of propagation
velocities in the axial and diagonal directions of the lattice. To monitor

Figure 2. Simulation of wave fronts on lattices with 50 per cent
occupancy. The diagrams show the wave front at equally space
instances.
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this convergence we consider mean propagation velocitles in different lattice
directions. Accurate values for these velocities can be obtained by averaging.
For thils purpose we have averaged wave front propagation over 150 runs like
the one represented in Fig. 2. We also averaged over the e€ight equivalent
octants in order to obtain smooth polar plots. The results are presented in
Figs. 3 and 4. We would like to point out that the averaging procedure has
only been adopted for the following mathematical analysis, but is not needed
when our method is used for a simulation of isotropic propagation.

Figure 3 compares some averaged wave fronts obtained by simulations oh
lattices with 100 per cent, 70.7 per cent and 50 per cent occupancy. It can be
observed that by reducing the occupancy of the lattice from 100 per cent to 50
per cent, the initially strong anistropy of the wave fronts virtually
disappears. To detect a small remaining anistropy, Fig. 4 presents the
velocities with which the automata surrounding the centre are reached. Below
occupancies of 25 per cent, even the propagation velocities do not reveal any
significant anisotropy. : v '

For simulations of waves travelling repeatedly through an éxcitable

medium, one would have to introduce a finite refractory period Tref into the

automaton rules. Simultaneously, the time span during which one automaton
affects neighbouring automata would have to. be limited to an even shorter
period than Tref to avoid artificial self-excitation in the trail of the wave

front. -As discussed previously, excitations which involve distant neighbours
and which are slow, do not contribute to-the propagation of wave fronts.
Therefore, the above extensions of the automaton rules would not alter the
propagation of the wave front.

Figure 4 also demonstrates a relationship between the curvature of the
propagation front and propagation velocity. For a lattlice occupancy of 25 per
cent, this relationship can be described by the heuristic formula

n B : ’
vir) = ¢ - e 7 {2)

where ¢ = 0.5, n=3.5and mn = 16.5, and where the radius r, expressed_in
units of the lattice constant, measures the curvature of the wave front. v(r)
is the velocity of the wave front in units of lattice constants per time step.
¢ is the asymptotic wave propagation velocity for planér wave fronts. Equation
2 reproduces qualitatively the relations discussed in [1] for the curvature
dependence of the propagation .velocity of a wave front in an excitable medium.
The constant'm in our formula is needed to account for the discrete nature of
our excitable medium. . ‘

2
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occupancy 100 % . occupancy 70.7-% occupancy 50 %

Figure 3. Simulation of averaged wave fronts on lattices with different
occupancies. The diagrams show the wave fronts at equally space
instances. . ,
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Figure 4. Simulation of averaged wave velocities on lattices with
different occupancies. The contour lines denote positions that
are reached with the same velocity, which is given as a °
percentage of the maximal propagation velocity in a fully
occupied lattice.

5. Analysis of the transition to isotropic wave fronts

Figure 3 shows that wave fronts in an almost completely occupied lattice
propagate fastest along the lattice axes and slowest along the lattice
diagonals. Figure 5 presents and compares the asymptotic wave propagation
velocities fér axial and diagonal propagation as a function of lattice
occupancy. The following properties emerge:
« The velocity of axial wave propagation varies with the square root of
the lattice occupancy. This dependence is expected for two-dimensional
media with random distributions of excitable elements. (This expectation
is based on the fact that the mean velocity for diffusion is inversely
proportional to the average distance between elements and that, for
two-dimensional media, this distance is inversely proportional to the
square-root of the occupancy.)
+ The velocity of diagonal wave propagation assumes a value ofv1/2 lattice
units per time step for lattice occupancies between 100 and 60 per cent.
+ For occupancies below 50 per cent, the difference between the velocities
for propagation along the diagonal and the axial directions is very small,
i.e. one can speak of virtually isotropic wave fronts.

The fact that the velocity of wave propagation along the diagonal remains
constant over a wide range of occupancies plays a key role in the fast
convergence of axial and diagonal propagation'velocities for occupancies below
50 per cent. We want to investigate in the following how this convergence
arises. In particular, we will investigate the behaviour near the occupancy of
60 per cent at which the diagonal propagation velocity starts to decrease. We
will show that this behaviour corresponds to that of a percolation transition

[81.
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Figure §S. Occupancy dependency of asymptotic wave velocities for a
quadratic lattice.

6. Percolation theory approach

Figures 6 and 7 show the propagation of planar waves in axial and diagonal
lattice directions. Let us first discuss the propagation in the axial
direction, which is schematically illustrated in Fig. 6. On the left side of
this figure, the wave front propagates one lattice step forward for ‘every time
step. The wave front itself propagates in this situation with maximal
velocity. If some of the excitable elements are missing, as on the right side,
some parts of the wave front beyond the unoccupied sites will only be reached
with some delay, because they take more time to be reached by more distant
neighbours or through longer paths. The more empty sites the lattice of
excitable elements has, i.e. the lower the occupancy of the lattice is, the
more.-often such delay will occur, which translates into a decreasing
propagation velocity.

occupancy = 100 % occupancy « 100 %
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(X X X X ] 000 9000 00000
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=0 T Ta “tad delay :
@ 1 timestep
© 2 timesteps
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Figure 6. Schematic representation of the wave propagation in axial
direction for a fully and partially occupied lattice. The left
-diagram shows the wave front at different times t = 0, t = T
and t = T +1, and the direction from where the cells in the in
the column eight will be excited at time T. The right diagram
illustrates how unoccupied sites lead to a gradually increasing
delay of the wave front, the latter being coded by increasigly
lighter shaded cells. .
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The situation is different for the case of wave propagétion along
diagonals, which is represented in Fig. 7. In the case of a fully occupied

lattice, the wave front advances v1/2 lattice constants per time step.
However, along the diagonal -direction, every cell can be reached by three of
its neighbours. When the lattice occupancy is decreased slightly, there will
still be enough connected paths left to each lattice site such that the wave
front can propagate without delay, as shown on the right of Fig. 7. In the
situation presented in Fig. 7, only two cells are reached with delay.

We have seen that along the diagaonal direction three lattice sites can be
reached without delay from every lattice site that is occupied with an
excitable element. In a figurative way one could say that one element is
connected with three other sites by a fast link. If one of these three sites
is occupied, it will again be connected with three further sites by fast
links. In this way, clusters of cells are formed that are all connected by
successive fast links to the original cell.

At low lattice occupancies, only a few cells might be reached by one
specific cell through fast links. In' this case the wave front often has to
propagate directly to the next-nearest neighbours, a propagation mode that
causes a delay of the wave front. At higher occupancies, the average number of
cells that can be reached from one specific cell will steadily increase so
that delays of the wave fronts will become more and more infrequent. This
translates into an increasing mean propagation velocity. As long as a lattice
contains an infinite cluster of cells connected by fast links, the wave front
will propagate with maximal speed. Therefore, a knowledge of the dependence of
the average size of clusters connected by fast links on the lattice occupancy
will provide important clues to the understanding of the dependence of the
wave velocity on the lattiée occupancy: at occupancies for which infinite
clusters exist, the diagonal propagation velocity should be at a maximum, at
occupancies for which clusters are only finite, wave fronts should slow down
in the diagonal direction. : K .

. L. ¥ - .

The theory that deals with the size of clusters in partially connected
lattices is percolation theory [8]. For our purposes, we define a cluster of
cells as the set of all those cells that can be reached through fast:links
from a given set of initial cells’ Percolation theory predicts. that the mean
size cs of a cluster, i.e. its linear dimension in the direction of the wave
" propagation, diverges with a power law behaviour

L&
| cs =-¢onst - (pé'- p) : (3)
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Figure 7. Wave propagation in a diagonal direction for a fully and
' partially occupied lattice. 'The left picture shows the wave
front at different.time steps and the directions, from where
the cells have been excited for the first time. In the right
picture, one can see that a limited amount -of unoccupied space
does not lead to a delay 'of the wave front. :



Propagation of chemical waves \ 497

v

20

-4 | '-3 y -2 . |
log(p-pc)
Figure 8. ‘Strength"st of the infinite cluster as a function of the
lattice occupancy. The data are plotted for three different
assumed percolation thresholds. A threshold,pc = .5957 and

“exponent 7, = .255 reproduces best the power-law (4).
. 2 ‘ .

as the lattice occupancy p approaches a critical value P which is also
called the percolation threshold. 7, is .called a critical exponent. Above the

percolation threshold, there will always be a cluster of infinite size. The
strength st of the infinite cluster, which is defined as a ratio of cells that
belong to the infinite cluster decreases from 1 down to 0 according to the
power-law

‘ | 7, :
st = const1 - (p —«pc) R ) (4)

‘as the occupancy p is loweréﬁ from 1 down to Pe: Laws (3) and (4) can be used

to exirapolate the percolation threshold frém values of the cluster size or
strength near the percolation.threshold by matching a log-log-plot of the
respective quantities to a straight line.

We performed simulations to determine. the strength of the infinite cluster
and mean cluster size for different lattice occupancies. Through resulting
log-log-plots reproduced in Figs. 8 and 9 the percolation threshold and the
critical exponents were determined to .

p, = 0.5957 + 0.0001
¥, = -1.50 £ 0.05 ' (5)
‘72 = 0.255 % 0.015

The value pc = 0.5957 signifies that there will always be an infinite cluster

in lattices with an occupancy higher than 59.57 per cent. For occupancies
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Figure 9. Mean cluster sice cs as a function of the lattice occupancy.
) The data are plotted for three different assumed percolation
thresholds. The threshold P, = .5957 and exponent 7 = -1.50

reproduces best the power-law (3).

higher than this critical value, the propagation velotcity in diagonal lattice
"directions will always assume its maximum value. Put another way, lowering the
occupancy of an inltially fully occupled lattice will only decrease the faster .
axial wave propagation velocity until the percolation threshold P, is reached

(see Section 5 above). At this point, the anlsotropy of the wave fronts has
already been reduced significantly. As the occupancy is lowered further, both
axial as well as diagonal wave propagation velocities will decrease.
Therefore, as the occupancy is loweéred below pc. the anisotropy will decrease

more slowly. From this behaviour one can derive the important practical
conclusion that a lattice occupancy just below. the percolation threshold will
represent the best compromise to minimize anisotropy as well as minimize.
computational effert. d

7. Comparison with the "hexagonal lattice

We have carried out the above investigations also for the hexagonal lattice.
Figure 10 shows the results of a simulation of the asymptotic propagation
velocities in axial (0%, 120° or 240°) and disgonal (60°, 180° or 300°)
directions. For a fully occupied lattice, wave propagation is less anisotropic
in a héxagonal lattice thah in a square lattice, the diagonal propagation -
velocity ‘ ‘

= ¥ 3/1 .

Vdlag, hex Vaxial,hex = 9858+ ' Vayial, hex (6) \
being closer te vaxial,hex than in the case of the square lattice, for which
vdiag,Sq = 0.707... ¢ Vaxial)sq (7) ‘ ’
holds. Furthermore, the two extreme velocitles v and v for a

diag, hex axial, hex
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Figure 10. Simulation of the asymptotic wave velocities for different
lattice occupancies for a hexagonal lattice.

hexagonal lattice converge already below occupancies of 70 per cent. This
advantage of the hexagonal lattice over the quadratic lattice in producing
isotropic propagation comes at the expense of a higher computational effort
needed to code and handle a hexagonal lattice and at the expense of a larger
number of lattice points per area for this lattice. From a computational point
of view there is, therefore, no reason to prefer either one of these lattices.

The mechanism that leads to a rapid convergence of axial and diagonal

_propagation velocities below occupancies of 70 per cent is the same for the
hexagonal lattice as for the quadratic lattice. This convergence can again be
attributed to a percolation transition, i.e. there exists a critical occupancy
above which the diagonal propagation velocity remains constant. For a
hexagonal lattice and for the case of diagonal wave. front propagation, a cell
. can be reached by only two cells through fast links, i.e. there are only two

- neighbouring sites that contribute to the fastest propagation of wave fronts
in the diagonal direction. Therefore, one can expect that the percolation
threshold, 1.e. the occupancy below which an infinite cluster no longer exits,
lies at a higher value than for the case of the quadratic lattice, for which
every cell could be reached by three cells through fast links.

Numerically the percolation threshold and the‘critical exponénts for the
hexagonal lattice have been determined to be

pc,hexa = 0.7055 % 0.0002

.8} -1.377 £ 0.020 (8)

0.250 * 0.007

L3

(The value for p is in agreement with earlier calculations by Kinzel &

c,hexa
Yeomans [3].) In hexagonal lattices, occupancies just below the value of

Pe hexa = 0.7055 thus will be best suited in terms of isotropy and
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computational effort for simulations of 1sotropic wave front propagation in a
hexagonal lattice.

‘8. Conclusion

In this contribution, we have investigated an approach to obtain isetropic
geometries in automata simulations of discrete excitable media. The approach
involves lattices with randomly occupied sites. We have demonstrated that
relatively few unoccupied lattice sites, i.e. around 50 per cent for a square
lattice and around 33 per cent for a hexagonal lattice, suffice tosbbtain
isotropic wave propagation. We have argued that the nature of the ogﬁvergemce
to isotropic behaviour can be attributed to a percolation transltion We
propose that lattices with randomly occupied lattice sites provide a.
computationally effecttve avenue to the study of spatial dynamical systems.
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