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This paper demonstrates that the influence of noise and of external perturbations on a nonlinear oscillator can vary
strongly along the limit cycle and upon transition from limit cycle to stationary point behaviour. For this purpose we
consider the role of noise on the Bonhoeffer—van der Pol model in a range of control parameters where the model exhibits a
limit cycle, but the parameters are close to values corresponding to a stable stationary point. Our analysis is based on the
van Kampen approximation for solutions of the Fokker—Planck equation in the limit of weak noise. We investigate first
separately the effect of noise on motion tangential and normal to the limit cycle. The .key result is that noise induces
diffusion-like spread along the limit cycle, but quasistationary behaviour normal to the limit cycle. We then describe the
coupled motion and show that noise acting in the normal direction can strongly enhance diffusion along the limit cycle. We
finally argue that the variability of the system’s response to noise can be exploited in populations of nonlinear oscillators in
that weak coupling can induce synchronization as long as the single oscillators operate in a regime close to the transition

between oscillatory and excitatory modes.

1. Introduction: Nonlinear dynamical systems
in biology

Many life processes depend on nonlinear con-
trols. Examples are biochemical kinetics [1],
biomolecular evolution [2], morphogenesis [3, 4],
the circadian clock [5], and neural systems, e.g. a
-single nerve cell [6]. In some cases, the underlying
nonlinear dynamical systems are well understood,
for example in biochemical kinetics, in other cases
attempts are being made to show that unknown
control mechanisms can be modelled by rather
simple nonlinear dynamics. In this paper we want
to focus on biological systems and on correspond-
ing models that exhibit excitable or oscillatory
behaviour, mainly on the dynamics of a single
neuron.

In groundbreaking work, Hodgkin and Huxley
[6] proposed a set of four nonlinear differential

equations (HH equations) to reproduce the ac-
tion potential of a squid neuron. FitzHugh [7]
proposed a transformation to reduce the four-
dimensional HH equations to a two-dimensional
set of equations. The -equations arrived at are the
so-called Bonhoeffer—van der Pol equations (BvP
equations) based on earlier work by van der Pol
[8] and Bonhoeffer {9]. The deterministic models
(HH and BvP) were successful in reproducing the
two states of a neuron, firing at a constant rate
and silence. However, additional stochastic pro-
cesses [10-14] need to be added to the BvP
dynamics to account for a variable rate of firing
that can vary continuously between silence, i.e.
firing at a rate of 0 kHz, and firing at a rate of
about 1 kHz.

In the following a description of stochastic
dynamic systems suggested by van Kampen [15]
will be applied to analyze the BvP model in the
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proximity of a neuron’s limit cycle. We will
demonstrate that local properties of the ‘dynamics
near the limit cycle have a great impact on the
way that the corresponding systems can be influ-
enced by random noise or by interactions with
other oscillating systems.

In section 2 the Fokker—Planck equation for a
neuron subject to stochastic forces and the van
Kampen solution in the limit of small fluctuations
are introduced. In section 3 the van Kampen
solution is analyzed. In section 4 implications of
our results for large systems of interacting nonlin-
ear oscillators, e.g. neurons in neural networks,
are discussed.

2. Mathematical framework

2.1. Deterministic systems

Our investigations will be based on.a system

described by the nonlinear differential equations
(BvP equations) Lo

X =F(x,x,)
=c(x; = x}/3+x,+2),
X, =F2(x1,x2)

— (a=x,~br;) Jc )

introduced by FitzHugh [7]. In this. model x,
represents essentially the voltage of a neuron and
X, can be identified with the conductivity of the
. potassium channels of the neural membrane. z is
an essential control parameter of the system and
in the range —0.6 <z < 2.0 represents physiologi-
cally possible excitation of the systeni due to
transmembrane currents [7, 14]. The BvP equa-
tions provide a prototype for two-dimensional
nonlinear. dynamical systems that show excitable
and oscillatory behaviour. We assume the param-
eters a =0.7, b =0.8, ¢ =3.0, which are widely
‘used in the literature [7, 14]. Phase plane analysis
[7, 14] of the stationary point of eq..(1) shows that
in the range —0.6 <z < —0.3465 the system has

an unstable stationary point and exhibits limit
cycle behaviour; in the range —0.3465 <z <2.0
the system has a stable stationary point. In the
following, we will use a value of z= —04, for
which the stationary point is unstable such that
all trajectories eventually lead into a limit cycle.

2.2. Stochastic systems

In order to show that the limit cycle of the BvP
model exhibits different stability characteristics
along different sections one can apply various
perturbations during a revolution of the system
around the limit cycle and monitor the response.
A more systematic approach for such investiga-
tion is to apply noise to the system and to investi-
gate the dynamics of a large ensemble of BvP

. oscillators. For the sake of simplicity we apply

isotropic Gaussian white noise 7(¢), character-
ized by

(n(t)) =0,
(n(t)n(t,)) =B718(t; —1,). (2)

Such noise added to the BvP equations yields the
stochastic differential equations

A =Fi(xy, %) +m(2),

Xy =Fy(xy,x3) +mp(2). (3
An ensemble of systems governed by egs. (3) is

described by the density p(x,t) which gives the

probability to find a system at position x=

(x;,x,)T at time ¢. The evolution of p(x,t) is
governed by the Fokker—Planck equation [16]

3, p(x,1)

=L;qmn+w*;¥pun- (4)

We want to consider the solution of eq. (4) for
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the initial condition *'
p(x,t=0)=08(x—xg). ' (5

Van Kampen [15] analyzed solutions of (4), (5)
in the limit of weak noise. In this limit, p(x,¢)
should be peaked around the deterministic solu-
tion x4, of egs. (1). Van Kampen [15] proposed
to expand the Fokker-Planck equation’ in terms
of deviations from the deterministic solution,
scaled by the square root of the noise amplitude
B defined in eq. (2)

y(8) =B [x = x4e(1)]- (6)

The scaling factor 872 in eq. (6) allows to elimi-
nate the explicit occurrence of B in the
Fokker-Planck equation. Replacing the force
field F(x) by

F(x) = F(xo) + (55 ), 677 ™

and, thus, omitting terms of higher order in 8~ '/2,
eq. (4) can be written in terms of the new coordi-
nates y(¢) as

op(y,t)=— ZAij(t)aiinjP(y’t)

i,}
1 92
+5 lXjBuwp(y,t), (8)
‘where
, 3F, ,
Ai(2) =55 ) (9)
) Y xdet(t) )

The amplitude B of the noise does no longer

. “Throughout this paper, we use the value of x,=(x, x,)
= (1.11, — 0.32), which lies on the limit cycle in the proximity
of the stationary point, as starting point for any numerical
calculations.

appear in eq. (8) since it has been eliminated by
the substitution described in eq. (6). In fact, noise
will be represented by a constant term (eq. (10))
independent of the actual amplitude of the noise.

The solution of the Fokker-Planck equation
(8) according to ref. [15] is given by a Gaussian
probability distribution,

1 LT, -1 '
1) = —=—=exp(—3yT-E"+y), (11
PO = fperg TP ET ) (D)

with 5;(¢) = (y(t) y(¢)). The matrix E(¢) de-
scribes  the second moments of the Gaussian
probability distribution, i.c., size and orientation
of the distribution in phase space. The overall
width of the distribution p(y, ) is

o=THE) . (12)

E(t), together with the position of the determin-
istic. solution 1,4,(¢) governed by eq. (1), provides
a complete description of the probability distribu-
tion under the approximation made in eq. (7).
E(¢t) is determined by the equation of motion [15]

E=A(t)E+EA"(¢) +B | - (13)

and by the initial conditions Z;(t=0)=0 for
i,j=1,2, which follows from eq. (5). The ele-
ments of A(t), defined in eq. (9), take on positive
as well as negative values and describe the expan-
sion, contraction and rotation of the probability
distribution. The elements of B, defined in. eq.
(10), are constant and positive and describe a
diffusive broadening of the distribution.

The description outlined is valid as long as the
linearization introduced in eq. (7) holds; i.e, as
long as the distribution extends over a small
range. In the long time limit, this approximation
does no longer apply. The distribution eventually
will reach a stationary.state in which it is smeared
out over the whole limit cycle [17].
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3. Van Kampen analysis of the effect of noise on
the BvP limit cycle

In this section we will investigate the effect of
noise on the limit cycle of a BvP system. For this
purpose we will assume first that the motion
along the limit cycle and normal to the limit cycle
are uncoupled, and that noise affects these mo-
tions separately. The effect of noise is easier to
understand since the corresponding one-dimen-
sional stochastic dynamical systems can be ana-
lyzed without resorting to numerical solutions.
We will then present the solution of eq. (13) for
coupled tangential and normal motion along the
limit cycle. ’

3.1. Effect of noise in direction along the limit cycle

For the analysis presented in sections 3.1, 3.2
we transform from y,(#), y,(¢) coordinates to
coordinates y(t) tangential and y,(¢) normal to
the limit cycle at the position x,.(¢) of the deter-
ministic motion. In such a coordinate representa-
tion eq. (13) reads

i(fu fln)=(au a!n)(§11 fln)

de gnl fnn an % fnl §nn

én fm\(% Gn b 0

gnl gnn)(aln anﬂ) * (0 b). (14)

- Here we have defined &) =¢,, &,,=§&,, etc.
and A, =ay, A, = a,,, etc. These equations ne-
glect terms due to the time dependence of the
transformation. Since the equations will serve
only for a qualitative analysis of the behaviour of
the diagonal elements of E(t) the neglect of
‘Coriolis-type’ terms is not essential. The value
of b is 1, if the system is subjected to noise, and 0
in the absence of noise.

First, we want to consider separately the dy-
namics in the two directions normal and tangen-
tial to the limit cycle. In the direction tangential

+
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Fig. 1. Derivative a;; of the longitudinal force F, in the
direction tangential to the limit cycle during one revolution
along the limit cycle. The time axis is labeled in units of the
limit cycle period 7.

to the limit cycle, eq. (14) reduces to

En=2ayé, +0, (15)

which describes the expansion and contraction of
the longitudinal distribution during its motion
along the limit cycle. The solution of (15) yields
the width o, of the distribution when motion is
confined to the limit cycle

o= B (16)

The solution is determined through the values of
a, = 9F,/dy, evaluated at points x4,(¢) along the
limit cycle. The index | refers to the direction
tangential to the limit cycle. ¢ € [0, T[ denotes the
time which serves here as a parameter to define
the locations on the limit cycle, T being the
period of the limit cycle. We will also allow ¢
values larger than T which correspond then to
more than one revolution around the limit cycle.

Fig. 1 presents the values of g;, for one revolu-
tion around the limit cycle. The variation of aj
demonstrates clearly that the dynamics along the
limit cycle is not uniform. One can discern re-
gions with positive a;, (expansion of width ¢}) and
with negative a;, (contraction of width o). The
question arises which of the contributions of a,
i.e. the positive or the negative ones, are more
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prevailing. To answer this question we consider
motion around the limit cycle first in case of a
system without noise, i.e. for the case b=10 in
(15). Integration of (15) yields

u(t+T)

=£&u(?) CXD(zf;HTau(t') dt')- (17)

To evaluate the integral in the exponent we will
introduce the path element ds along the limit
cycle which is related to d¢ by d¢ = F;" ! ds. With
the identities

ay(t)de= (dFl/ds)(l/F,) ds = d(log F))

one obtains

exp(Zsza”(t’) dt’) = (%)2 (18)

For t, =t, + T this expression is unity and, hence,
&,(t + T) = £,(¢). In the noise-free case this cyclic
property of £,(¢), of course, is to be expected.
The derivation shows that the contribution of ay,
in eq. (15) ‘along a complete revolution around
the limit cycle balances contracting and expand-
ing contributions. This implies, however, that for
"a system subjected to noise over one or over
~several revolutions around the limit cycle the
noise term will dominate £,(¢) and will induce a
diffusion-type broadening.
To study such broadening we consider now the
integration of (15) for nonvanishing b. Integra-
tion of (15) yields . )

Eltotn)

R ST t
§ulto) ‘f"bj;o ' dt’exp(—th dt”a"(t”))]
0 [}

Xexp(Z["ﬂdt'a"(t’)). (19)
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Fig. 2. Longitudinal and normal widths o; (—) and o, (- * *)
of the probability distribution during one limit cycle period.
The time axis is labeled in units of the limit cycle period 7. o,
has been multiplied by a factor 10 to be visible on the same
scale. :

The resulting width o, over one revolution around
the limit cycle is presented in fig. 2. One can
recognize two segments along the limit cycle dur-
ing which the width increases and decreases. The
beginning of these two segments coincide with
those parts of the limit cycle for which a, as-
sumes positive values. One also discerns in fig. 2
that the presence of noise leads to a small, but
significant residual width after the revolution
around the limit cycle is completed. To demon-
strate how this residual width develops over a
longer time period we present in fig. 3 the width
o, over 20 revolutions around the limit cycle. The
results show an increase of ¢, proportional to V.
This diffusion-like behaviour can be derived from
the solution (19) taken for ¢ = NT. By means of

125
100}
75|
50|

25

o 1 1
4 8 12 16 20
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Fig. 3. Longitudinal width o = §11!/ 2 of the probability distri-
bution during 20 limit cycle periods.
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(18) we obtain

En(to+NT)

m+0+DTdt(FKto+iT))2

N-1
=fll(t)+b Z f Fl(t)

j=0 "toHiT

(20)

Since F(t) is cyclic, i.e. F(t+ T)=F(¢), the
contributions in the sum are all identical and the
final expression for &,(t,+ NT) is

Eu(to+ NT) = &y(t) + NTbF2(to) ( FT2(t)) -
(21)

In this expression { F;"%(¢))r denotes a time aver-
age which is equal to the space average
(L/TXF;3(s)), where L is the length of the
limit cycle. From eq. (21) follows

o(tp+NT) = \/0'12(%) + NTbF?(t,) (Flvz(t»r
(22)

which clearly exhibits the V7 dependence (¢t = NT)
seen in fig. 3.

3.2. Effect of noise in direction normal to the
limit cycle

In the direction normal to the limit cycle, eq.
(14) reduces to

gl’ll’l = 2ann§nn + b- (23)

Solution of this equation yields the width of the
distribution normal to the limit cycle defined as
o, = ‘/E . Fig. 4 presents the values of a,, dur-
ing one revolution around the limit cycle. a,, is
found to be negative over most, but not all parts
of the limit cycle. Negative values of a,, corre-
spond to contraction of the normal distribution,
i.e. trajectories near segments of the limit cycle
with a,, <0 are attracted to the limit cycle. The
dominance of negative a,, values implies that the
average T~ Yf/*Tdt' a,(t") is negative and that

25
8 0-0 ==

-2.5¢

-5.0L
-7.5}

-10.0 1 1 1 -
02 04 06 08 1.0
time

Fig. 4. Derivative a_, of the normal force F, in the direction
orthogonal to the limit cycle during one revolution along. the
limit cycle. The time axis is labeled in units of the limit cycle
period T. )

the limit cycle is stable against perturbations in
the normal direction. This stability, in fact, is so
strong, that contraction due to a,, and diffusive
broadening due to b induces the distribution to
follow (approximately) adiabatically the equilib-
rium width

b
an(t) ” \/ _2ann(xdet(t)) (24)

along those segments of the limit cycle where.a,,
is negative. This behaviour is clearly reflected in
the long-time behaviour of o,(¢) presented in fig.
5; the width o,(¢), after a brief transient be-
haviour during the first limit cycle period, shows a -
cyclic behaviour at later times, i.e. o,(¢) averaged
over consecutive limit cycles remains constant.

time

Fig. 5. Normal width o, = ¢/2 of the probability distribution
during 20 limit cycle periods.
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The increase and decrease of o,(t) according to
eq. (24) reflects the change of the local a,, values
along the limit cycle. During the two short seg-
ments where a,, is positive, the width briefly
expands exponentially, to be contracted again
along segments with a_, <0.

The variable behav1our of oy and o, along a
limit cycle revolution demonstrates strikingly that
the stability of the limit cycle against noise and
other perturbations varies along its path. The
occurrence of exponential growth and peaks in
the width o, of the distribution at certain points
of the limit cycle implies that the Brownian tra-
jectories at these points will show great variability
in their deviation from the limit cycle to either
side. Small disturbances at the beginning of an
exponential growth period (a,, > 0) have a large
effect on the trajectories. The strong variation of
o, along the limit cycle and its diffusive behaviour
on a time scale of many limit cycle periods im-
plies that the phase of the system along the limit
cycle can be affected through noise, and that the
effect of noise depends much on the position on
the limit cycle where it acts on the system.

We want to demonstrate in the next subsection
that the effects of noise in the direction tangen-
tial and normal to the limit cycle are actually
strongly coupled such that the behaviour of both
o, and o, is most relevant for judging how noise
or external perturbations will influence an oscil-
lating BvP system.

3.3. Effect of noise on coupled tangential and
normal motion along the limit cycle

Up to now we treated the two directions of
diffusion normal and tangential to the limit cycle
separately. We now want to focus on effects that
arise from the coupling of normal and tangential
diffusion. in eq. (13). This coupling is effected
through the nondiagonal elements of the A ma-
trix in eq. (13), which had neither been consid-
ered in eq. (15) nor in eq. (23). We will deal with
eq. (23) in the y,, y, representation, i.e. the error

500(
(112)

(rE) 400|
300/
200|

0 :
4 8 12 16 20
time
Fig. 6. Overall width (Tr E)!/? of the probability distribution
during 20 limit cycle periods without coupling between longi-

tudinal and normal diffusion, i.e. egs. (15) ;md (23) were used
to evaluate the diagonal elements of = separately.

from the time dependence of the y,, y, =y, ¥,
transformation does not arise.

It is intuitively clear that if the phase point is
disturbed in a direction normal to the limit cycle,
a trajectory results that eventually reaches the
limit cycle again, but its phase point, in general, is
not found at exactly the same position as another
phase point that started at the same position on
the limit cycle but was not disturbed. Because of
this difference of positions between the two phase
points, fluctuating forces normal to the limit cycle
contribute to diffusive broadening in the longitu-
dinal direction of the limit cycle and, as will be
shown shortly, can enhance significantly the effect
of noise on the phase along the limit cycle.

Figs. 6 and 7 compare the evolution of the
overall width o of the distribution defined in eq.
(12) during propagation over 20 limit cycle peri-
ods with and without coupling of longitudinal and
normal motion. The results presented in fig. 6
have been obtained by integrating -separately
eq. (15) and eq. (23) and then evaluating
o(t) = /€, + &,, . The results presented in fig. 7
have been obtained by integration of the matrix
differential equation (13) and evaluation of o(¢)
according to the definition (12). Comparison of
figs. 6 and 7 shows that the coupling of longitudi-
nal and normal motion increases the overall width
vTr Z by a factor of approximately four over the
width o(¢) = /¢, + £,, of the uncoupled motion.
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Fig. 7. Overall width (Tr E)!/? of the probability distribution
during 20 limit cycle periods with coupling between longitudi-
nal and normal diffusion, i.e. eq. (13) was integrated to obtain
the matrix =.

Further analysis of the results showed that this
increase is mainly due to an increase of the
tangential component of =(¢). The results in figs.
6 and 7 demonstrate that noise acting on the
motion normal to the limit cycle contributes
strongly to phase diffusion.

4. Concluding remarks and outlook

We have demonstrated above that the influ-
ence of noise and, hence, of any other external
perturbation on a nonlinear oscillator described
by the BvP equations varies strongly along the
limit cycle. For this purpose we have employed
the van Kampen approximation to describe the
width of a distribution circling the limit.cycle.
The van Kampen approximation characterizes the
_ stability of nonlinear oscillators against phase
diffusion and deviations from the limit cycle. Al-
though the approximation becomes exact only in
the limit of weak noise, it should often also yield
information about responses which are character-
ized by large deviations from the unperturbed
oscillator motion. This situation is similar to the
case of the celebrated linear stability analysis for
nonlinear dynamical systems which applies strictly
only in a small neighborhood of a fixpoint but
nevertheless often allows conclusions about global
dynamics patterns.

The properties of single nonlinear oscillators
subject to external perturbations are significant in
view of the interesting behaviour of systems of
coupled nonlinear oscillators. Such systems can
be characterized often as attractor networks, in
that sets of initial conditions can be considered
basins of attraction which lead the network to a
small number of final states, the most prominent
among them the state in which the oscillators are
all synchronized. The results of our paper should
be pertinent to neural networks viewed as cou-
pled nonlinear oscillators. We like to argue that
in such systems one has to take account of the
structure of the limit cycle of neurons. The latter
operate often in a regime of control parameters
near the transition between oscillatory and sta-
tionary behaviour: in the oscillator regime neu-
rons are sufficiently and continuously excited that
they exhibit a constant rate of firing, in the stable
stationary state regime neurons behave as thresh-
old units which fire only once after a sufficient
deviation from the stationary point.

We like to explain now to what extent a limit
cycle of a BvP neuron becomes more structurally
unstable as the control parameter z approaches
the critical value z_= —0.3465 at which the tran-
sition to a stable stationary point behaviour takes
place. Structural instability of the system for z =
z¢, z <z, implies that a neuron reacts sensitively
to small perturbations by shifting its firing phase
considerably. This sensitivity, observed both for
fluctuations tapgential and fluctuations normal to
the limit cycle, can be readily explained. As z
approaches z_, the stationary point moves closer
and closer to the limit cycle. The motion of the
phase point on the limit cycle near the stationary
point will slow down, whereas the motion in
regions of the limit cycle further away from the
stationary point is affected only insignificantly.
The phase point, therefore, spends more and
more of the limit cycle period in a relatively small
segment of the limit cycle, i.e. in proximity to the
stationary point. By perturbing the phase point in
that region of the limit cycle, one can shift its
phase by a large amount.
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Fig. 8. Limit cycle (—) and stationary point (®) in the phase
plane of the BvP model for z = —0.4. On the limit cycle, the
regions most sensitive to tangential (+ - - ) and normal (- - -)
perturbation have been encircled.

In the direction normal to the limit cycle, per-
turbations also have an increasing impact on the
phase of the limit cycle. The reason is that a,, =
oF, /0ox,, which, as shown earlier, is.a measure of
the local stability of the limit cycle, generally
increases in the proximity of the stationary point
as the stationary point approaches the limit cycle.
Even small perturbations normal to the limit cy-
cle can then lead to large deviations of the trajec-
tories of the phase point away from the limit
cycle and eventually translate into a large phase
shift. (For an extension of the definition of phase
to regions in the proximity of the limit cycle, see
e.g. ref. [18].)

Fig. 8 illustrates the sensitive areas on the limit
cycle. It shows areas, characterized by a local
minimum of g, that are sensitive to longitudinal
perturbations, and areas, characterized by posi-
tive a,,, that are sensitive to normal perturba-
tions.

We like to propose that structural instability
plays an important role in the synchronization of
nonlinear oscillators. Many experimental studies
suggested that fast synchronization of neurons in
the visual [19, 20} and olfactory [21] cortex is a
key element in the process of feature detection.
Most former theoretical investigations into the
self-synchronization of nonlinear oscillators [18,
22-24] assumed structurally stable limit cycles as
components of a large ensemble; such oscillators,

however, allow only gradual synchronization. Fur-
thermore these investigations focused on the
question to what extent the degree of synchro-
nization of a population of oscillators can be
controlled through the strength of the inter-oscil-
lator coupling. The investigations would imply
that neural systems achieve synchronization
through variation of synaptic interactions. How-
ever, experimental evidence for short time varia-
tion of the synaptic strength of neurons is scarce
and disputed. We like to suggest that the transi-
tion to a synchronized state of neurons is not
mediated by varying the strength of synaptic con-
nections, but rather by changing the susceptibility
to synchronization of the cells by effectively alter-
ing the z value, which in the BvP model repre-
sents the “excitation” of the neuron, nearer to its
critical value. Such change can be achieved
through systematic input of neurons, e.g. through
input from the retina to a subset of neurons in
the optical cortex. If neurons representing a par-
ticular feature, e.g. optical flow into a certain
direction and of a particular magnitude, are ex-
cited in an area of the image corresponding to an
object, they may receive sufficient excitation to be
sensitized such that lateral interactions specific
for the subpopulation of neurons coding the re-
spective feature suffice to synchronize firing. Such
linking of neurons may, for example, explain fill-
ing-in capabilities or figure—ground separation.

The importance of the above outlined struc-
tural instability for the fast synchronization of
neurons is supported by the observation that neu-
rons in the olfactory and visual cortex alternate
between excitable and self-oscillatory behaviour
and, thus, seem to operate in the dynamical
regime where the z value in the BvP model is
close to its critical value.
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Note added in proof

Since the submission of this article various

groups have reported investigations on the capac- -

ity for figure ground separation through synchro-
nized firing, see for example ref. [25].

References

[1] L. Michaelis and L.M. Menten, Biochem. Z. 49 (1913) 79.

[2] M. Eigen and P. Schuster, Naturwissenschaften 64 (1977)
541. ’

[3]1 A. Gierer and H. Meinhardt, Kybernetik 12 (1972) 30.

[4] H. Meinhardt, Models of Biological Pattern Formation
(Academic Press, London, 1982). °

[5] A.T. Winfree, The Geometry of Time (Springer, Berlin,
1980).

[6] A.L. Hodgkin and A.F. Huxley, J. Physiol. London 117
(1952) 500.

[7] R. FitzHugh, Biophys. J. 1 (1961) 445.

[8] B. van der Pol, Philos. Mag. 2 (1926) 978.

[9] K.F. Bonhoeffer, Naturwissenschaften 40 (1953) 301.

[10] H. Lecar and R. Nossal, Biophys. J. 11 (1971) 1048.

[11] H. Lecar and R. Nossal, Biophys. J. 11 (1971) 1064.

[12] A.V. Holden, Models of Stochastic Activity of Neurons,
Lecture Notes in Biomathematics, Vol. 12 (Springer,
Berlin, 1976).

[13] L.M. Ricciardi, in: Competition and Cooperation in Neu-
ral Nets, ed. S. Levin (Springer, Berlin, 1982).

[14] H. Treutlein and K. Schulten, Ber. Bunsenges. Phys.
Chem. 89 (1985) 710-718.

[15] N.G. van Kampen, Stochastic Processes in Physics and
Chemistry (North-Holland, Amsterdam, 1981).

[16] H. Risken, The Fokker-Planck Equatlon (Springer,
Berlin, 1984).

[17] H. Treutlein and K. Schulten, Eur. Blophys J. 13 (1986)
355-365.

[18] Y. Kuramoto, Physica A 106 (1981) 128-143.

[19] R. Eckhorn, H.J. Reitboeck, M. Arndt and P. Dicke, in:
Proceedings of the IJCNN, Washington, D.C., Vol. 1
(June 1989) pp. 723-730; IEEE Catalog No. 89CH2765-6.

[20] C.M. Gray, P. Konig, A.K. Engel and W. Singer, Nature
338 (1989) 334-337.

[21] C.S. Skarda and W.J. Freeman, Behav Brain Sci. 10
(1987) 161-195.

[22] Y. Kuramoto and 1. Nishikawa, J. Stat. Phys. 49 (1987)
569.

[23] L.L. Bonilla, J.M. Casado and M. Morillo, J. Stat. Phys.
48 (1987) 571.

[24] S.H. Strogatz and R.E. Mirollo, Physica D 31 (1988)
143-168.

[25] H. Sompolinsky, D. Golomb, and D. Kleinfeld, PNAS 87
(1990) 7200-7204;

Ch. Kurrer, B. Nieswand and K. Schulten, in: Self-
Organization, Emergent Properties and Learning, ed. A.
Babloyantz (Plenum Press, New York, 1991).



