Supplementary Information

Cryo–EM structure of the ribosome–SecYE complex in the membrane environment

Jens Frauenfeld^{1,2}, James Gumbart³, Eli O. van der Sluis^{1,2}, Soledad Funes⁴, Marco Gartmann^{1,2}, Birgitta Beatrix^{1,2}, Thorsten Mielke⁵, Otto Berninghausen^{1,2}, Thomas Becker^{1,2}, Klaus Schulten³ and Roland Beckmann^{1,2, #}

¹ Gene Center, Department for Biochemistry, University of Munich, Feodor–Lynen– Str. 25, 81377 Munich, Germany

² Munich Center For Integrated Protein Science (CIPSM), Department of Chemistry and Biochemistry, Butenandtstr. 5–13, 81377 Munich, Germany

³ Department of Physics, Beckman Institute, University of Illinois at Urbana– Champaign, Urbana, IL, 61801, USA

⁴ Departamento de Genética Molecular, Instituto de Fisiología Celular, Circuito Exterior S/N, Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico, D.F., 04510, Mexico

⁵ Ultrastrukturnetzwerk, Max Planck Institute for Molecular Genetics, Ihnestr. 63–
73, 14195 Berlin, Institut für Medizinische Physik und Biophysik, Charite–
Universitätsmedizin Berlin, Ziegelstrasse 5–9, 10117–Berlin, Germany

[#] Corresponding author

Roland Beckmann: Email: beckmann@lmb.uni-muenchen.de Tel: +49 89 2180 76900 Fax: +49 89 2180 76945

Supplementary Methods

MDFF

MDFF is a method to flexibly fit atomic models into cryo-EM density maps while simultaneously preserving the stereochemical accuracy of model^{1,2}. In MDFF, the atomic model is simulated using molecular dynamics in the presence of the cryo-EM density map, represented through an additional potential in the simulation. From this potential, forces proportional to the gradient of the cryo-EM density are derived that then drive atoms into high-density regions of the map. In addition, restraints are applied to maintain the secondary structure of protein and RNA molecules, which otherwise would distort or break under the forces required for fitting. Fitting of the 70S proceeded in stages using an approach employed previously^{1,3,4}. A total simulation time of 3.5 ns was used to fit the ribosome.

Simulations

All MD simulations, including MDFF, were carried out using NAMD 2.7b1⁵ and the CHARMM27 force field with CMAP corrections⁶⁻⁸. Simulation protocols, including multiple time-stepping and particle mesh Ewald, are identical to those used in Gumbart et al.³. After completion of modeling and MDFF, the resulting ribosome-Nanodisc model was used for further equilibrium simulations. Water and ions were added in an iterative procedure using VMD⁹. To reduce simulation complexity and to focus on the interactions between the ribosome and SecYE and Nanodisc, the ribosome and nascent chain were truncated just downstream of the L4/L22 constriction point. Any ribosomal backbone atoms within 5 Å of the truncation point

were constrained. At the point of closest approach, SecYE was at least 25 Å away from the truncation point. While previous simulations of the ribosome-SecY complex required 2.7 million atoms³, simulation of the truncated ribosome-Nanodisc complex required only 400,000 atoms.

Equilibration of the system occurred in stages. First, only the lipid tails were allowed to move, permitting them to "melt", for 0.25 ns. Next, water and sidechains were released for an additional 2.25 ns. For the next 1.5 ns, only the encircling Apo A-1 proteins of the Nanodisc were constrained; the secondary structure of all proteins and RNA was also enforced during this time, and for a further 2 ns. Finally, after 6 ns of total simulation time, all restraints were released. At all times, a constant temperature of 310 K and a constant pressure of 1 atm were maintained.

Figures

Densities for the large and small ribosomal subunit, the P-site tRNA, the nascent FtsQ-chain, the *E. coli* SecYE and the Nanodisc-Lipid-Bilayer were isolated using the color zone function of Chimera¹⁰. A lower contour level of the ligand densities for surface representation was applied for some figures. This indicates that ligand densities are partially flexible or still under-represented because of incomplete removal of ligand-free ribosomal particles from the final particle subset. Supplemental Fig. 1a shows the entire electron density filtered at different resolutions using only one contour level for all parts.

Supplementary Figure Legends

Supplementary Fig. 1: Raw data, effect of resolution on TM helices

(a) The complete 70S-RNC-Nd-SecYEG density is shown, filtered at different frequencies ranging from 6-10 Å, as indicated.

(b) Close-up of the 50S-Nd-SecYEG density, side view cut perpendicular to the plane of the membrane to show the lateral gate of SecY, filtered from 6-10 Å, as indicated. Two layers of density are visible (upper membrane interface, UMI and lower membrane interface, LMI), separated by a region of lower density (hydrophobic core, HC), containing rod-like features.

(c) Close-ups of the Nanodisc-density, showing different views with the fitted models of SecY (orange), SecE (purple), the signal anchor (green) and the electron density represented in grey mesh.

Supplementary Figure 2: Canonical binding of PCCs to ribosomes

(a) Close-up on the interaction of cytosolic loop L8/9 of the mammalian Sec61 complex (red, PDB: 2WWB¹¹) with the eukaryotic 80S ribosome

(b) Close-up on the interaction of cytosolic loop L8/9 of a mixed model of the archeal SecYE β complex with L6/7 and L8/9 replaced by a model of the corresponding *E.coli* SecY loops (purple, PDB: 3BO0¹²)

(c) Close-up on the interaction of cytosolic loop L8/9 of the *E.coli* SecYEG complex (orange) with the prokaryotic 70S RNC and an inserted signal anchor

(d) Close-up of the map filtered at 6-7 Å showing the interaction of cytosolic loop L8/9 of the *E.coli* SecYEG complex with the fitted models of the *E.coli* SecYEG complex (orange) with the prokaryotic 70S RNC and an inserted signal anchor

(e) as in (d), but rotated around 180°

Supplementary Figure 3: Fitting of SecY structures into the cryo-EM density and comparison with the 2D crystal structure of the *E. coli* SecYEG complex

(a) Close-up of the SecY density, side view cut perpendicular to the plane of the membrane to show SecY TM helices 6, 8, 9 with fitted X-ray structures of SecY *M. janaschii* (blue, left), *T. maritima* (yellow, middle) and our *E. coli* model (orange, right).

(b) Close-up of the SecY density, side view cut perpendicular to the plane of the membrane to show the lateral gate with SecY TM helices 2, 3, 7, 8, 9 with fitted X-ray structures of SecY *M. janaschii* (blue, left), *T. maritima* (yellow, middle) and our current *E. coli* model (orange, right).

(c) Cytosolic view of the electron density projection map of the 2D crystal structure of the *E. coli* SecYEG complex with the fitted X-ray structure of the SecYE β from *M. jannaschii*¹³. SecY TM helices in red and labelled in green, SecE C-terminal helix in grey (figure adapted from ref#13).

The position of the two additional N-terminal helices of *E. coli* SecE is labelled in purple, Sec β in grey.

(d) Cytosolic view of the electron density map of the cryo-EM structure of the open *E. coli* SecYEG complex. SecY TM helices in orange, SecE TM helices in purple, signal anchor (SA) in green. Note the slightly outward shifted position of the SecE N-terminal density compared to its position in the 2D-crystal map. The position of the SecG TM helices (red) is according to an alignment of the X-ray structure of the SecYEG complex from *T. maritima* on our *E. coli* model.

(e) as in (d), with the aligned X-ray structure of the SecYEG complex from *T*. *maritima* (red) on our *E. coli* model.

Supplementary Figure 4: RMSD values of SecYE and of the signal anchor relative to SecYE.

The root-mean-square deviation (RMSD) over time is presented for (a) the backbone of SecYE and (b) that of the signal anchor. In both cases, RMSD was calculated after first performing a least-squares fit of SecYE over all frames of the simulation trajectory. Data for the initial 2.5 ns of the simulation in which the proteins were restrained are not shown.

Supplementary Figure 5: Formation of H-bonds during simulation.

Hydrogen bonds formed between different components of the simulation over time are shown. (a,b) H-bonds between the ribosome and (a) SecY and (b) SecE. (c,d) Hbonds between SecY and (c) the nascent chain and (d) the signal anchor. The solid black line denotes a running average of the full data in light grey. Only data from the last 10 ns of the simulation, i.e., the completely unrestrained portion, are shown. H- bonds were counted when the distance between the hydrogen donor and the acceptor was within 3.5 Å and the angle formed by the donor, hydrogen, and acceptor was greater than 145°.

Supplementary Figure 6: Surface representation of the all-atom model of a 70S-RNC-Nd-SecYEG complex

(a) Surface representation of the all-atom model of a 70S-RNC-Nd-SecYE complex that was used for the free MD simulation, coloured as in Fig. 1. Phospholipid headgroups are red (oxygen) and blue (nitrogen). Right: close-up of the isolated SecYE complex in the same position within the Nanodisc of the left panel.

(b) as in (a), but rotated 90° around the y-axis.

(c) as in (b), but rotated 90° around the y-axis.

Supplementary Figure 7: Analysis of ribosomal proteins L22, L23, L24

Comparison of X-ray structures and cryo-EM densities of an inactive ribosome (PDB: 2I2V) vs. MDFF-models and cryo-EM densities of an active ribosome.

(a) Conformation of L22. Left, isolated density of L22 in an inactive ribosome with the fitted X-ray structure of L22 of an inactive ribosome (dark grey). Middle-left, isolated density of L22 in active ribosome with the fitted X-ray structure of L22 of an inactive ribosome (dark grey). Middle-right, isolated density of L22 in an active ribosome with a MDFF-model of L22 of an active ribosome (light blue). Right, overlay of the X-ray structure of the inactive L22 with the MDFF-model of L22.

(b) Conformation of L23, side view as in Fig.4b. Left, isolated density of L23 in an inactive ribosome with the fitted X-ray structure of L23 of an inactive ribosome (dark grey). Middle-left, isolated density of L23 in active ribosome with the fitted X-ray structure of L23 of an inactive ribosome (dark grey). Middle-right, isolated density of L23 in an active ribosome with a MDFF-model of L23 of an active ribosome (light blue). Right, overlay of the X-ray structure of the inactive L23 with the MDFF-model of L23.

(c) Conformation of L24, side view as in Fig.4c. Left, isolated density of L24 in an inactive ribosome with the fitted X-ray structure of L24 of an inactive ribosome (dark grey). Middle-left, isolated density of L24 in active ribosome with the fitted X-ray structure of L24 of an inactive ribosome (dark grey). Middle-right, isolated density of L24 in an active ribosome with a MDFF-model of L24 of an active ribosome (light blue). Right, overlay of the X-ray structure of the inactive L24 with the MDFF-model of L24.

Supplementary Figure 8: Comparison of L6/7 conformation within the ribosomal tunnel

Close-up of a section through the ribosomal exit tunnel with fitted models of L6/7 of SecY.

(a) A model for an inactive, monomeric SecY bound to a non-translating ribosome (purple, PDB: 3BO0) was fitted according to the position of ribosomal RNA and superimposed to our model of the translating ribosome with the nascent chain (green). In that position, L6/7 of the inactive SecY would prevent the exit of the nascent chain.

Upper panel: side view, lower panel: view from the inside of the ribosomal tunnel towards the ribosomal exit

(b) as in (a), but with a model for an inactive, monomeric SecY with an alternate L6/7 conformation binding to a non-translating ribosome (ruby, PDB: 3BO1). Also in this position, the exit of the nascent chain is hindered by L6/7 of the inactive SecY.

(c) view as in (a). The model for the translating ribosome bound to an open SecY (orange) within a membrane environment. L6/7 reaches up along the wall of the ribosomal tunnel and contacts both, the nascent chain and L23. The position of L6/7 within the ribosomal exit tunnel of the hybrid complex allows the exit of the nascent chain

(d) view as in (a), but with a model for the mammalian Sec61 complex bound to a translating wheat germ ribosome (red, PDB: 2WWB), fitted according to the position of ribosomal RNA and superimposed to our model of the translating ribosome with the nascent chain (green). The position of L6/7 within the ribosomal exit tunnel of the hybrid complex allows the exit of the nascent chain.

(e) Close-up of the density showing the interaction of L6/7 with the nascent chain in the ribosomal exit tunnel with the fitted models for SecY, 50S subunit and the nascent chain

Supplementary Figure 9: Conformational changes and opening of SecYE.

(a) View of the lateral gate of the PCC. Comparison of the membrane-embedded, open ribosome-bound SecYE (orange, purple) with SecYE from the *T. maritima* SecA-SecYEG complex (grey). Loop movements are indicated with round arrows,

helix movements are indicated with small black arrows. SA in green, the NC has been omitted for better clarity.

(b) as in (a), but viewed from the cytoplasmic side with the NC in green.

(c) Comparison of SecY structures in different conformations, viewed from the cytoplasmic side. Left, structure of the closed, detergent-solubilised SecY from *M. janaschii* (PDB: 1RHZ). Middle left, structure of the pre-open, detergent-solubilised SecY from *T. maritima*. Middle right, model of the open, membrane-embedded SecY from *E. coli*. Right, model of the open, membrane-embedded SecY from *E. coli* with a SA helix within the lateral gate

(d) as in c, but view of the lateral gate

Supplementary Figure 10: Horizontal sections of Nd-SecYEG and corresponding models

Three consecutive horizontal sections, sliced within the plane of the membrane in the hydrophobic core of the lipid bilayer, as indicated (1, upper; 2, middle; 3, lower).

(a) Sections through the experimental map at 7-8 Å with the fitted model for Nd-SecYEG and the signal anchor. Charged lipid headgroups are visible within the slices. The likely position of the SecG TM helices (marked) in the density is according to the X-ray structure of the SecYEG complex from *T. maritima*.

(b) Sections through a density based on the molecular model for SecYE/SA within the Nanodisc at 7-8 Å. Additional density from charged lipid headgroups are visible, similar to the appearance of the experimental map. Since the model does not include

SecG, the density does not display rod-like features in the position where SecG is expected, in contrast to the experimental map.

(c) Sections through a density based on the molecular model for SecYE/SA without the Nanodisc (no lipids) at 7-8 Å. No additional density from charged lipid headgroups is visible.

(d) Sections through a density based on the X-ray structure of the SecYEG complex from *T. maritima* at 7-8 Å.

Supplementary Figure 11: Plot of ribosome-lipid contact area during simulation.

The surface area of interaction (measured in $Å^2$) vs. time between the membrane and (a) the entire ribosome, (b) L23, and (c) L24 is shown. The blue lines at 2.5 ns and 6 ns denote the different stages of equilibration, noted in part (a) and in the MD Simulations section of the Methods.

Supplementary Figure 12: Comparison of the position of the signal anchor with respect to the ribosome in (i) a SRP bound state and (ii) the PCC-inserted state

(a) Close-up of the ribosomal exit site. A molecular model of SRP bound to a translating ribosome with a signal anchor¹⁴ (PDB: 2j28). Note the orientation of the signal anchor with respect to ribosomal rRNA H59.

(b) Same view as in (a), but now with the molecular model of the PCC-inserted signal anchor. Note the orientation of the signal anchor with respect to H59.

(c) As in (a), rotated 90°

(d) As in (b), rotated 90°

Supplementary Table 1: Cross-correlation coefficients

Cross-correlation coefficients for different structures. An isolated map of the transmembrane region of SecYE and the signal anchor/nascent chain filtered at 7-8 Å was used for all calculations. Simulated maps were generated at a resolution of 7.5 Å. "Initial" and "final" refer to pre- and post-MDFF states, respectively. For the rotated structure, SecY (or SecYE) and nascent chain were rotated about SecY's central axis 180°.

Supplementary Table 2: Ribosome-SecY interactions.

Interactions between residues in the ribosome and in SecY. Specific residue-residue interactions were calculated over 0.5 ns of equilibration in which the backbone of all protein and RNA was restrained; thus, the interactions listed represent the fitted structure only. The criteria for H-bonds is given in Supplementary Figure 10; hydrophobic/hydrophilic interactions were counted when hydrophobic/hydrophilic heavy (non-hydrogen) atoms came within 4.0 Å of each other, respectively. Interactions were only counted when they appeared in at least 10% of frames, i.e., 50 out of the 500 frames taken every ps in the 0.5 ns simulation. If they appeared in between 10% and 20% of frames, they are denoted as weak.

Supplementary Table 3: Ribosome–SecE interactions.

Interactions between the ribosome and SecE. See the caption of Supplementary Table 1 for a description.

Supplementary Table 4: NC-ribosome-SecY interactions.

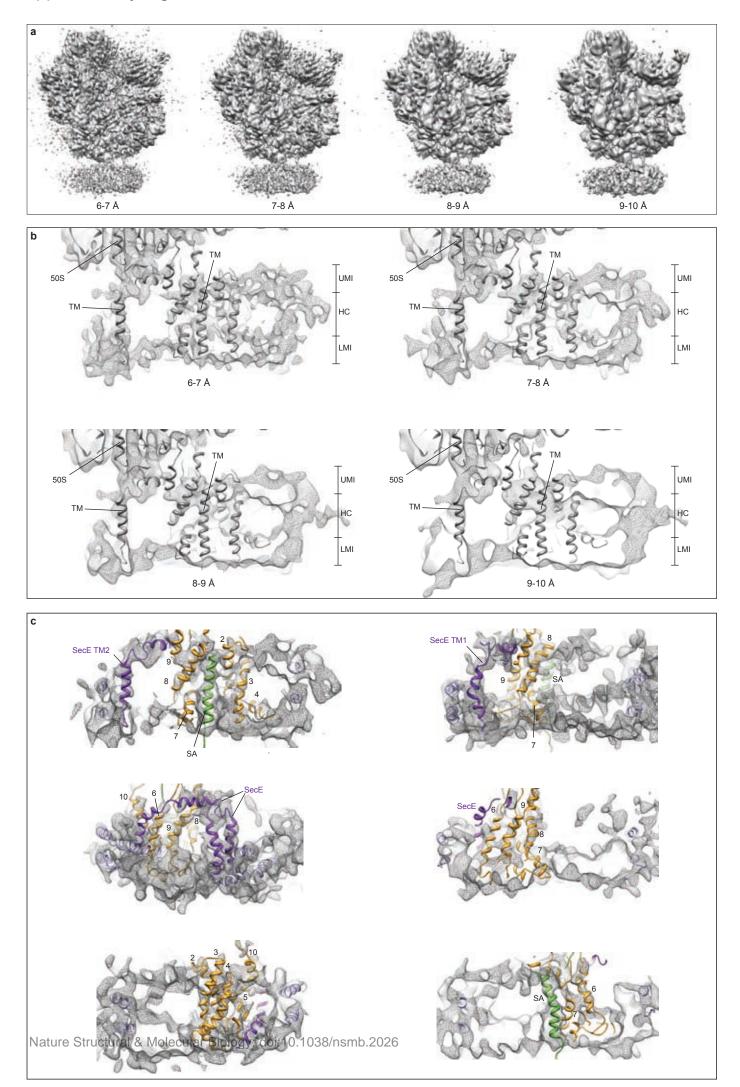
Interactions between the nascent chain and SecY and the ribosome. See the caption of Supplementary Table 1 for a description.

Supplementary Table 5: NC-SecY interactions.

Interactions between the nascent chain and SecY. See the caption of Supplementary Table 1 for a description.

Supplementary Table 6: SA-SecY interactions.

Interactions between the SecY and the signal anchor. See the caption of Supplementary Table 1 for a description.


Supplementary Table 7: Interactions between H59 and lipids

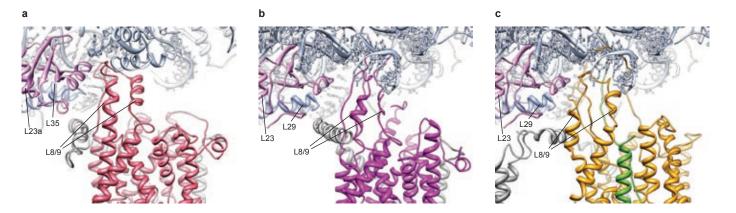
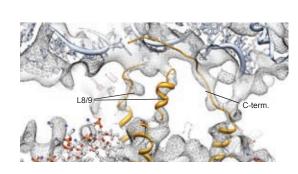
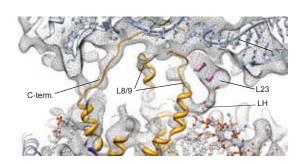

Figure: Interactions between H59 of the ribosome and lipids. (a) Ribosome-SecYnanodisc system. H59 is indicated in red. (b) Direct hydrogen bonding between a backbone phosphate of H59 and a PE lipid molecule. (c) Mg^{2+} -bridged interaction between the phosphates of H59 and a PE lipid molecule. (d) Mg^{2+} -bridged interaction between a phosphate of H59 and the head group of a PG lipid molecule.

Table: Interactions between H59 of the ribosomal 23S RNA and lipids during free equilibration of ribosome-SecYE-nanodisc system (10-ns simulation). Interactions are classified into three types: hydrogen bonds, hydrophilic and ion-bridging. An ion-bridging interaction is counted when a Mg^{2+} ion is less than 5 Å from negatively charged atoms of both an RNA base and a lipid headgroup. The interaction is considered stable when it persists for at least 200 ps. Interactions primarily involved the RNA backbone on one side and the lipid phosphate or the NH⁺³ group of PE on the other side.

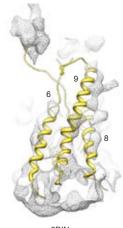
Supplementary References


- ¹ Trabuco, L.G., Villa, E., Mitra, K., Frank, J., & Schulten, K., Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. *Structure* 16 (5), 673-683 (2008).
- ² Trabuco, L.G., Villa, E., Schreiner, E., Harrison, C.B., & Schulten, K., Molecular dynamics flexible fitting: a practical guide to combine cryoelectron microscopy and X-ray crystallography. *Methods* 49 (2), 174-180 (2009).
- ³ Gumbart, J., Trabuco, L.G., Schreiner, E., Villa, E., & Schulten, K., Regulation of the protein-conducting channel by a bound ribosome. *Structure* 17 (11), 1453-1464 (2009).
- ⁴ Villa, E. *et al.*, Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. *Proc Natl Acad Sci U S A* 106 (4), 1063-1068 (2009).
- ⁵ Phillips, J.C. *et al.*, Scalable molecular dynamics with NAMD. *J Comput Chem* 26 (16), 1781-1802 (2005).
- ⁶ MacKerell, A.D. *et al.*, All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins,Ä[†]. *The Journal of Physical Chemistry B* 102 (18), 3586-3616 (1998).
- ⁷ Foloppe, N., Mackerell, A., & Jr, All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. *Journal of Computational Chemistry* 21 (2), 86-104 (2000).
- ⁸ Mackerell, A.D., Jr., Feig, M., & Brooks, C.L., 3rd, Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. *J Comput Chem* 25 (11), 1400-1415 (2004).
- ⁹ Humphrey, W., Dalke, A., & Schulten, K., VMD: visual molecular dynamics. J Mol Graph 14 (1), 33-38, 27-38 (1996).
- ¹⁰ Pettersen, E.F. *et al.*, UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem* 25 (13), 1605-1612. (2004).
- ¹¹ Becker, T. *et al.*, Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome. *Science* (2009).
- ¹² Menetret, J.-F. *et al.*, Ribosome Binding of a Single Copy of the SecY Complex: Implications for Protein Translocation. *Molecular Cell* 28 (6), 1083-1092 (2007).
- ¹³ Collinson, I., The structure of the bacterial protein translocation complex SecYEG. *Biochem Soc Trans* 33 (Pt 6), 1225-1230 (2005).
- ¹⁴ Halic, M. *et al.*, Following the signal sequence from ribosomal tunnel exit to signal recognition particle. *Nature* 444 (7118), 507-511 (2006).

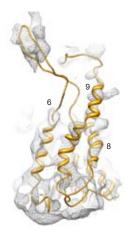


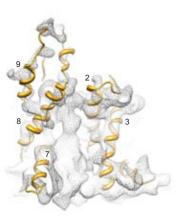
е

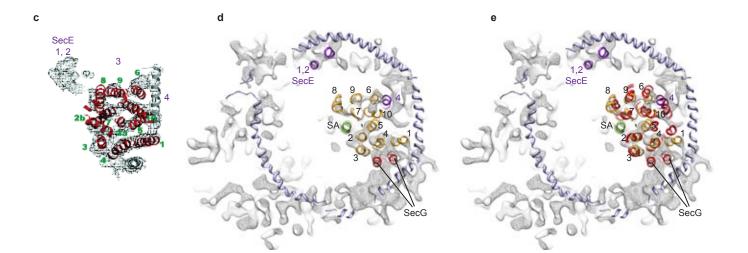
d

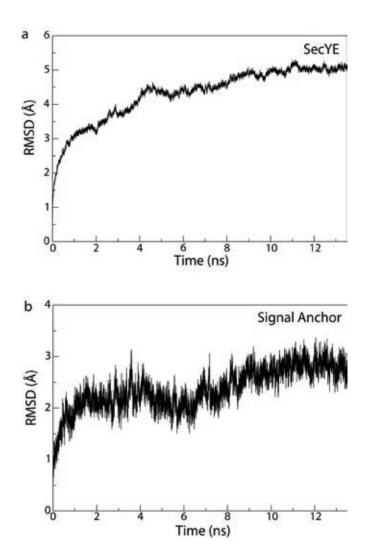

а

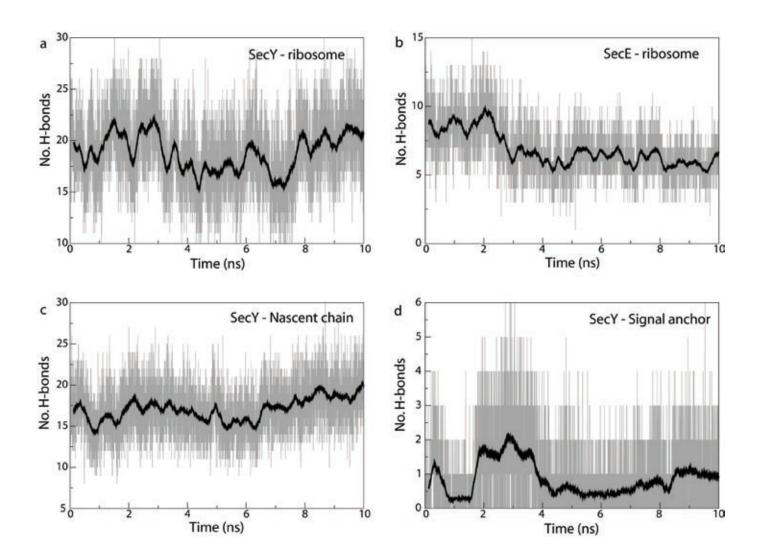
b

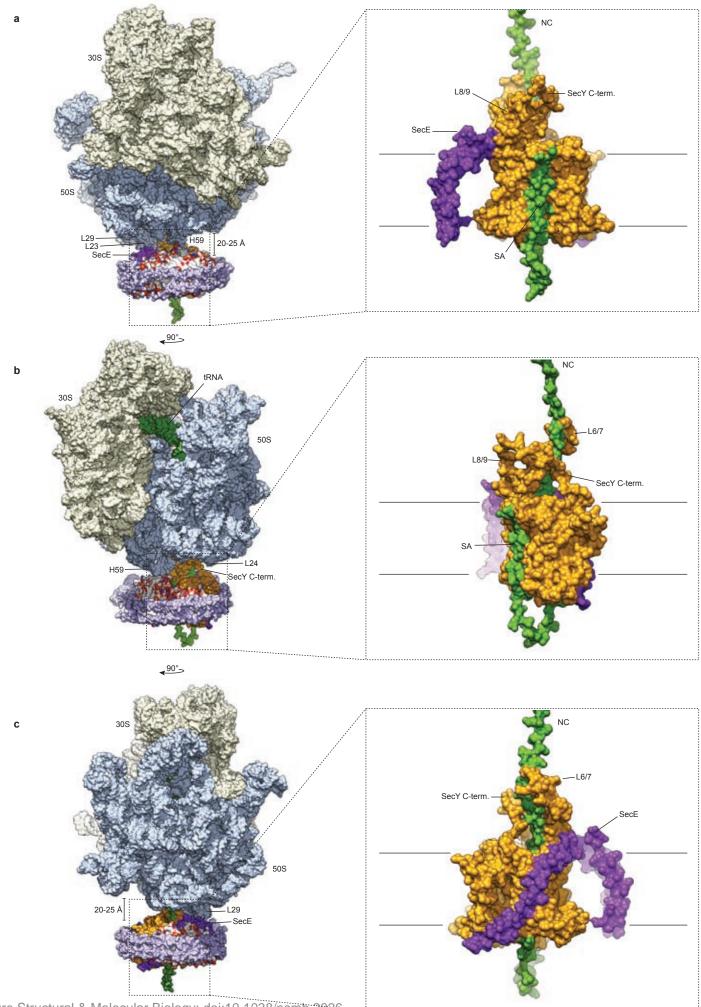

1RHZ Methanocaldococcus jannaschii



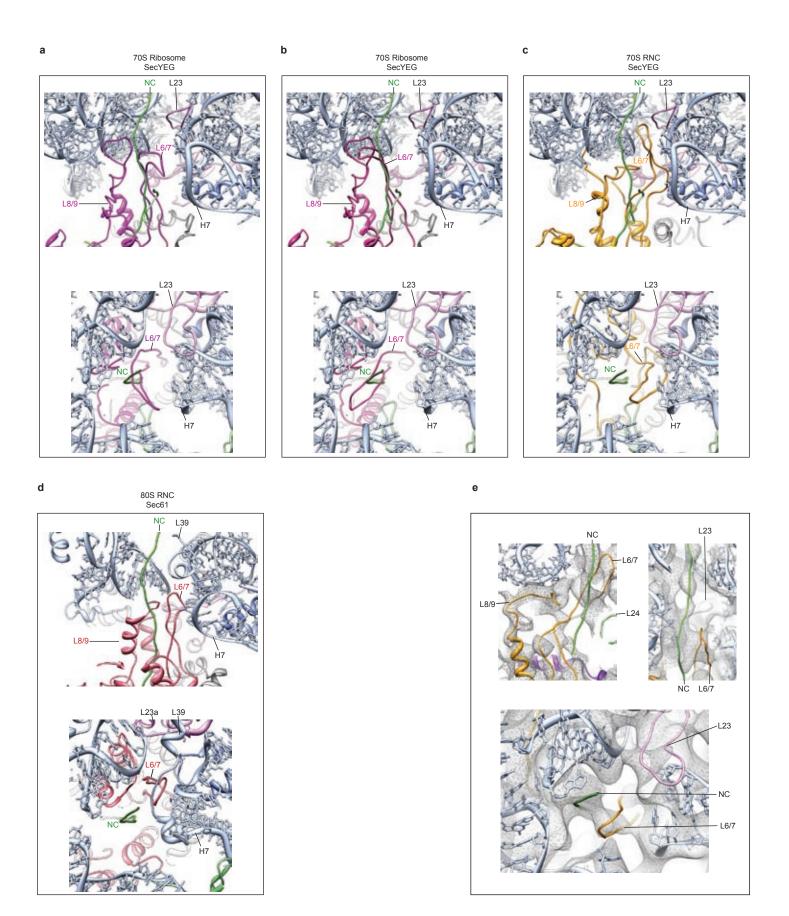

3DIN Thermotoga maritima msb8

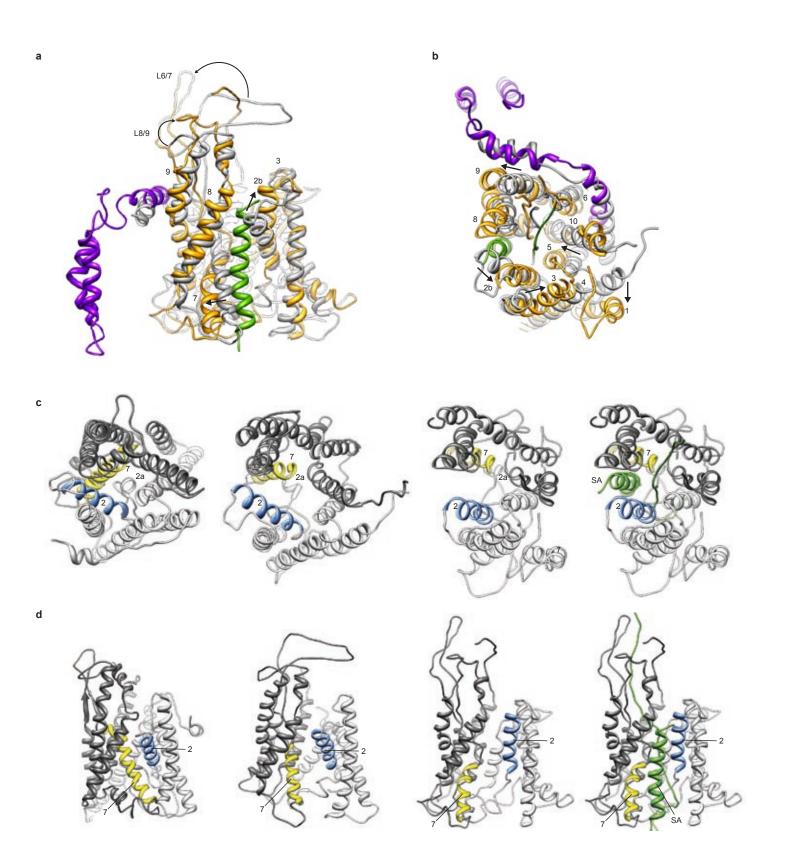


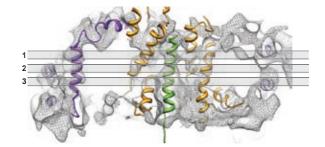


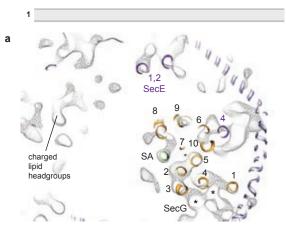

Escherichia coli

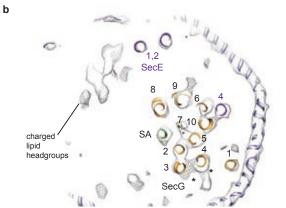


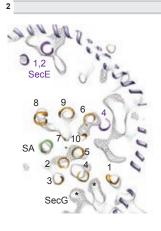


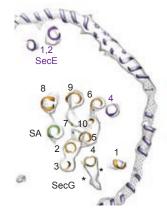




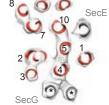

Nature Structural & Molecular Biology: doi:10.1038/nsmb.2026

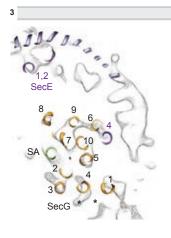


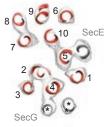


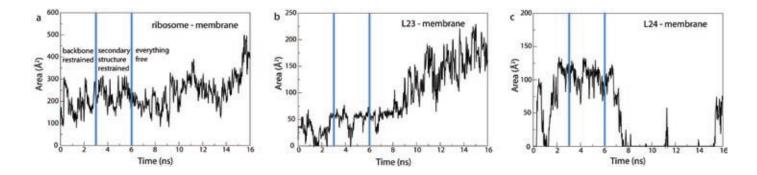

С

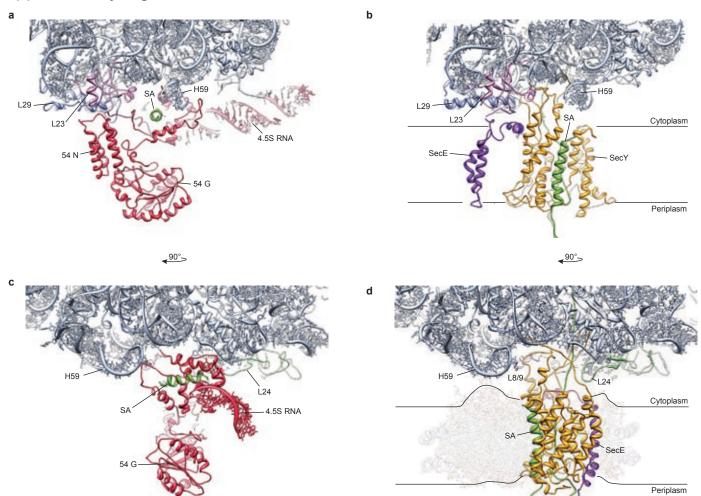
d











Nature Structural & Molecular Biology: doi:10.1038/nsmb.2026

Supplementary Table 1: Cross-correlation coefficients

Structure	Cross-correlation coeff.
SecY/SA (initial)	0.54
SecY/SA (final)	0.65
SecY/SA (rotated 180°)	0.44
1RHZ (SecY only)	0.39
3DIN (SecY only)	0.48

Structure	Cross-correlation coeff.
SecYE/SA (initial)	0.60
SecYE/SA (final)	0.71
SecYE/SA (rotated 180°)	0.41
1RHZ (SecYE only)	0.41
3DIN (SecYE only)	0.47

Supplementary Table 2: Ribosome-SecY interactions

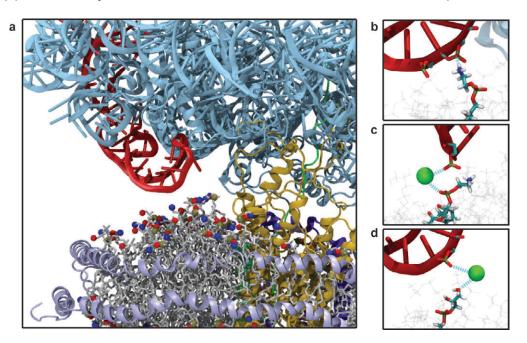
Sec	Y residue	Ribosome residue		Interaction	
Arg243	SecY L6/7	Gln38	(L29)	H-bond	
Arg243	SecY L6/7	Ura62	(23S)	hydrophilic	
Arg243	SecY L6/7	Ade63	(23S)	hydrophilic	
Val245	SecY L6/7	Gua93	(23S)	H-bond	
Val246	SecY L6/7	Ura62	(23S)	H-bond	
Val246	SecY L6/7	Ade63	(23S)	hydrophobic	
Asn247	SecY L6/7	Ade63	(23S)	H-bond	
Tyr248	SecY L6/7	Lys46	(L24)	hydrophobic (weak)	
Tyr248	SecY L6/7	Val48	(L24)	hydrophobic	
Tyr248	SecY L6/7	Ade482	(23S)	hydrophilic (weak)	
Arg251	SecY L6/7	Ade492	(23S)	H-bond	
Arg251	SecY L6/7	Gua493	(23S)	H-bond	
Gln252	SecY L6/7	Ade507	(23S)	H-bond	
Gln253	SecY L6/7	Gua493	(23S)	hydrophilic	
Gln253	SecY L6/7	Ade507	(23S)	H-bond	
Gln253	SecY L6/7	Ade508	(23S)	hydrophilic	
Arg255	SecY L6/7	Cyt1335	(23S)	hydrophilic	
Arg256	SecY L6/7	Gln72	(L23)	H-bond	
Arg256	SecY L6/7	Ade64	(23S)	H-bond	
Tyr258	SecY L6/7	Cyt1335	(23S)	H-bond	
Lys348	SecY L8/9	Gua1317	(23S)	H-bond	
Lys348	SecY L8/9	Ura1318	(23S)	hydrophilic	
Phe352	SecY L8/9	Cyt1335	(23S)	H-bond	
Val353	SecY L8/9	Ade1336	(23S)	H-bond	
lle356	SecY L8/9	Ura1316	(23S)	H-bond	
lle356	SecY L8/9	Gua1337	(23S)	H-bond	
lle356	SecY L8/9	Ade1392	(23S)	hydrophobic	
Arg357	SecY L8/9	Ura1316	(23S)	H-bond	
Arg357	SecY L8/9	Gua1317	(23S)	H-bond	
Arg357	SecY L8/9	Ade1392	(23S)	H-bond	
Glu360	SecY L8/9	Ade1535	(23S)	H-bond	
Tyr365	SecY L8/9	Asp94	(L23)	hydrophilic	
Tyr429	SecY C-term.	Ala50	(L24)	hydrophobic	
Ser431	SecY C-term.	Cyt490	(23S)	hydrophilic	
Lys434	SecY C-term.	Cyt1320	(23S)	H-bond	
Asn437	SecY C-term.	Cyt1319	(23S)	H-bond	
Asn437	SecY C-term.	Cyt1330	(23S)	hydrophilic	
Lys439	SecY C-term.	Gua1317	(23S)	hydrophilic	
Lys439	SecY C-term.	Ura1318	(23S)	H-bond	
Lys439	SecY C-term.	Gua1331	(23S)	H-bond	
Tyr441	SecY C-term.	Gua1317	(23S)	H-bond	
Gly442	SecY C-term.	Ura1316	(23S)	H-bond	
Arg243	SecY L6/7	Gln38	(L29)	H-bond	
Arg243	SecY L6/7	Ura62	(23S)	hydrophilic	
Arg243	SecY L6/7	Ade63	(23S)	hydrophilic	
Val245	SecY L6/7	Gua93	(23S)	H-bond	

Supplementary	Table 3:	Ribosome-Se	cE interactions
---------------	----------	--------------------	-----------------

Sec	residue Ribosome residue		Interaction	
Arg12	SecE N-term.	Glu24	(L29)	H-bond
Leu14	SecE N-term.	Leu37	(L29)	hydrophobic
Glu15	SecE N-term.	Asn27	(L29)	hydrophilic
Glu15	SecE N-term.	Gln31	(L29)	hydrophilic
Gly65	SecE amphi.	Glu100	(L23)	H-bond
Lys66	SecE amphi.	Glu52	(L23)	H-bond
Lys66	SecE amphi.	Glu100	(L23)	H-bond
Arg73	SecE amphi.	Glu89	(L23)	H-bond/hydrophilic
Glu74	SecE amphi.	Gln91	(L23)	H-bond
Arg76	SecE amphi.	Phe95	(L23)	H-bond
Thr77	SecE amphi.	Leu93	(L23)	H-bond
Lys81	SecE amphi.	Gln36	(L29) hydrophilic (weak)	
Lys81	SecE amphi.	Asp94	(L23)	H-bond
Trp84	SecE amphi.	Leu37	(L29)	hydrophobic

Supplementary Table 4: NC-ribosome-SecY interactions

NC	residue	Ribosome/SecY residue		Interaction
Gln104	NC	Arg84	(L22)	H-bond
Arg102	NC	Cyt1323	(23S)	hydrophilic
Arg102	NC	Ade1322	(23S)	hydrophilic
Arg102	NC	Ade508	(23S)	hydrophilic
Gln101	NC	Ade1322	(23S)	H-bond
Gln101	NC	His70	(L23)	Hydrophilic
Glu100	NC	Ade508	(23S)	H-bond
Glu100	NC	Gln253	SecY L6/7	H-bond
lle99	NC	Ade1321	(23S)	hydrophobic
lle99	NC	Ade1321	(23S)	H-bond
Gln98	NC	Ade1321	(23S)	H-bond
Gln98	NC	Ade492	(23S)	hydrophilic
Gln98	NC	Gua491	(23S)	H-bond
Gln96	NC	Ade492	(23S)	H-bond
Gln96	NC	Gua491	(23S)	H-bond
lle95	NC	Ala432	SecY C-term.	hydrophobic
lle94	NC	Tyr258	SecY L6/7	hydrophobic
Val92	NC	Ala432	SecY C-term.	hydrophobic
Val92	NC	Ala50	(L24)	hydrophobic
Asp91	NC	Thr263	SecY L6/7	hydrophilic (weak)
Asp91	NC	Arg242	SecY L6/7	hydrophilic
Asp91	NC	Pro49	(L24)	H-bond
Gln90	NC	Glu430	SecY C-term.	hydrophilic
Met88	NC	Pro339	SecY L8/9	hydrophobic
Met88	NC	Leu265	SecY L6/7 hydrophobic	
Phe87	NC	Val274	SecY TM7 hydrophobic	
Phe87	NC	Asn270	SecY L6/7	H-bond
Phe87	NC	Val234	SecY TM6	hydrophobic
Phe87	NC	Phe233	SecY TM6	hydrophobic


Supplementary Table 5: NC-SecY interactions

NC	residue	SecY residue		Interaction	
Glu83	NC	lle275	SecY TM7	H-bond	
Gly82	NC	lle275	SecY TM7	H-bond	
Gly82	NC	Asn185	SecY TM5	H-bond	
Leu81	NC	lle90	SecY TM2	hydrophobic	
Leu81	NC	lle275	SecY TM7	hydrophobic	
Leu81	NC	Ala277	SecY TM7	H-bond	
Leu81	NC	Pro276	SecY TM7	H-bond (weak)	
Leu81	NC	lle86	SecY TM2	hydrophobic	
Ala80	NC	lle278	SecY TM7	hydrophobic	
Ala80	NC	lle86	SecY TM2	H-bond (weak)	
Ala80	NC	lle86	SecY TM2	hydrophobic (weak)	
Ala80	NC	lle82	SecY TM2	hydrophobic	
Leu79	NC	lle408	SecY TM10	hydrophobic	
Leu79	NC	lle278	SecY TM7	H-bond (weak)	
Leu79	NC	lle195	SecY TM5	hydrophobic	
Leu79	NC	lle191	SecY TM5	hydrophobic	
Leu79	NC	Tyr85	SecY TM2	hydrophobic	
Leu79	NC	Ala79	SecY TM2	hydrophobic	
lle78	NC	lle82	SecY TM2	hydrophobic	
lle78	NC	Gly81	SecY TM2	H-bond	
Ser77	NC	Gly81	SecY TM2	H-bond (weak)	
Ser77	NC	lle77	SecY TM2	H-bond	
Ser77	NC	Ser76	SecY TM2	H-bond	
Ser77	NC	Arg74	SecY TM2	H-bond (weak)	
Gln76	NC	Gly81	SecY TM2	H-bond	
Gln76	NC	Arg74	SecY TM2	hydrophilic	
Gln76	NC	Ser73	SecY TM2	hydrophilic	
Arg75	NC	Arg74	SecY TM2	H-bond (weak)	
lle74	NC	Pro143	SecY TM3	hydrophobic	
lle74	NC	Arg74	SecY TM2	H-bond	
Asp73	NC	Ser76	SecY TM2	H-bond	
Asp73	NC	Lys51	SecY TM1	H-bond	
Asp72	NC	Ser76	SecY TM2	H-bond (weak)	
Asn71	NC	lle77	SecY TM2	H-bond (weak)	
Asn71	NC	GIn56	SecY TM1	H-bond	

Supplementary Table 6: SA-SecY interactions

SA	residue	SecY residue		Interaction	
Thr23	SA	Val98	SecY TM2b	H-bond	
Thr23	SA	Val336	SecY TM8	H-bond	
Leu25	SA	lle275	SecY TM7	hydrophobic	
Ala26	SA	Leu94	SecY TM2b	hydrophobic	
lle28	SA	Phe328	SecY TM8	hydrophobic	
lle28	SA	Tyr332	SecY TM8	hydrophobic	
Leu29	SA	lle90	SecY TM2b	hydrophobic	
Leu29	SA	Gln93	SecY TM2b	H-bond	
Leu29	SA	lle275	SecY TM7	hydrophobic	
Phe30	SA	Met83	SecY TM2b	hydrophobic	
Phe30	SA	lle86	SecY TM2b	hydrophobic	
Phe30	SA	lle90	SecY TM2b	hydrophobic	
Leu32	SA	lle325	SecY TM8	hydrophobic	
Val34	SA	lle86	SecY TM2b	hydrophobic	
Thr36	SA	Ser282	SecY TM7	H-bond	
Thr37	SA	lle82	SecY TM2b	H-bond (weak)	
Leu39	SA	Ser282	SecY TM7	H-bond	
Leu39	SA	Phe286	SecY TM7	hydrophobic	
Val40	SA	Phe64	SecY TM2	hydrophobic	
Val40	SA	Phe67	SecY TM2	hydrophobic	
Trp43	SA	Phe64	SecY TM2	hydrophobic	
Trp43	SA	Phe286	SecY TM7	hydrophobic	
Trp43	SA	Phe286	SecY TM7	H-bond	
Trp43	SA	lle290	SecY TM7	hydrophobic	
Trp43	SA	Phe294	SecY TM7	hydrophobic	
Val44	SA	Phe64	SecY TM2	hydrophobic	
Val44	SA	Gly70	SecY TM2	H-bond	
Val45	SA	Leu72	SecY TM2	hydrophobic (weak)	
Leu46	SA	Phe294	SecY TM7	hydrophobic	
Trp48	SA	Asn65	SecY TM2	H-bond	
Trp48	SA	Ala71	SecY TM2	hydrophobic	
Trp48	SA	Ala71	SecY TM2	H-bond (weak)	
Trp48	SA	Leu72	SecY TM2	hydrophobic	
Met49	SA	lle61	SecY TM2	hydrophobic	

Supplementary Table 7: Interactions between H59 and lipids

H59 residue	Lipid Type	Interaction Type	Stable
Cyt1531	POPE	ion-bridging	no
Ade1532	POPE	ion-bridging	yes
Ade1532	POPE	H-bond	yes
Ade1532	POPG	ion-bridging	yes
Cyt1533	POPE	ion-bridging	yes
Cyt1533	POPE	H-bond	yes
Cyt1533	POPG	ion-bridging	yes
Ura1534	POPE	ion-bridging	yes
Ura1534	POPE	H-bond	yes
Ura1534	POPE	hydrophilic	no
Ura1534	POPG	ion-bridging	no
Ade1535	POPE	ion-bridging	no
Cyt1536	POPE	ion-bridging	no
Ura1539	POPE	ion-bridging	no
Gua1540	POPE	ion-bridging	yes
Gua1540	POPE	H-bond	no
Gua1540	POPG	ion-bridging	no
Cyt1541	POPE	ion-bridging	yes
Cyt1541	POPE	H-bond	yes
Cyt1541	POPG	ion-bridging	no