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ABSTRACT

Recently, we simulated the activity and function of neural networks with neuronal units
modelled after their physiological counterparts!2. Neuronal potentials, single neural spikes and
their eflect on postsynaptic neurons were taken into account. The neural network studied was
endowed with plastic synapses. The synaptic modifications were assumed to follow Hebbian
rules, i.e. the synaptic strengths increase if the pre- and postsynaptic cells fire a spike syn-
chronously and decrease if there exists no synchronicity between pre- and postsynaptic spikes.
The time scale of the synaptic plasticity was that of mental processes, i.e. a tenth of a second
as proposed by v.d. Malsburg®. In this contribution we extend our previous study and include
random fluctuations of the neural potentials as observed in electrophysiological recordings$. We
will demonstrate that random fluctuations of the membrane potentials raise the sensitivity and
performance of the neural network. The fluctuations enable the network to react to weak ex-
ternal stimuli which do not affect networks following deterministic dynamics. We argue that
fluctuations and noise in the membrane potential are of functional importance in that they
trigger the neural firing if a weak receptor input is presented. The noise regulates the level of
arousal. It might be an essential feature of the information processing abilities of neuronal net-
works and not a mere source of disturbance better to be suppressed. We will demonstrate that
the neural network investigated here reproduce the computational abilities of formal associative
networks®6:7, ' )

INTRODUCTION

The neural system investigated is composed of a set of interconnected neurons the mem-
brane potentials of which evolve according to deterministic rules and according to stochastic
fluctuations. The connections to sensory: organs or to other neural networks are taken into
account by a primary set of receptors which send input to the neurons. The receptor-neuron
connections form a local projection of the activity pattern presented by the receptors as mod-
elled by a one-to-one or a center-surround connectivity. The system is schematically presented
in Fig 1.
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DYNAMICS OF THE MEMBRANE POTENTIAL

The dynamics of the membrane potentials involves two processes, the relaxation of the
membrane potential and the neural interaction as determined by the somatic integration rule.
Axonal spikes are generated whenever the membrane potential reaches a threshold value. The

postsynaptic excitation by presynaptic spikes is described by an exponential activity functio
with decay time Ty = 1ms :

At
Gi(Aty/r) = ezp (—-—fi) , with Aty =t — tg;. (

Aty =t — top measures the time that has elapsed since the last spike of neuron k at tg;.
The kinetic equations of the membrane potentials U;(t) which also include the stochasti
fluctuations are given by a system of non-linear coupled Langevin equations

d[:t(t) = —%‘"}(Tt) + plAt) (wo'[Ai(t)]+ \/7—":!%6(‘)) . (

The first term in (2) approximates the relaxation of the membrane potential Uj(t) to its restin
value Up = OmV within a time interval T = 2.5ms. The second term in (2) describes th
communication of the postsynaptic cell ¢ with the connected neurons and receptors and adds
Gaussian white noise £(t) with the strength 1/1/Tr/2. The noise produces a Gaussian distr
bution of the membrane potential U;(t) with mean value Uy = OmV and variance 5 = 10mV
Afferent impinging activities in addition to the noise are integrated to the total postsynapti
excitation A;{t). The activity of the presynaptic neurons k or receptors j are weighted b
the time-dependent synaptic strengths S;;(t) or the static receptor connection strengths R;,
respectively

At) =3 Sul)C(at:/Ty) + 3 RyGR(AR/Ty). (3
k 3

The sigmoidal function o[4;(t)] with a linear behaviour for small 4;(t) and a saturation valu
for strong activity prevents potential changes which are unphysiologically large. The total an.
relative refractory periods are taken into account by the function plAt;] which suppresses th
sensitivity of neuron i to afferent excitation during a total refractory period Tp = 5ms. Th
function also lets the neuron gradually regain its sensitivity to incoming excitation or inhibitio:
during a relative refractory period of 5ms.

The continuous time evolution of the potential in our model is interrupted if the neuro:
reaches the threshold Uy = 30mV and fires a spike. Instantaneously the membrane potential i
set to a value normally distributed around the refractory potential Up = —15mV. In this even
the time of the last spike ty; is updated and the memory function G;(At;/Ty) is set to th
value 1. This behaviour is represented as follows:

to; = t,
Ui(‘)“UFJ (4'

if U;(t)>Ur then {
Gi(At;/r)=1.

The reaction of a neuron to a receptor input depends on the coupling constant w and th.
connection strength R;z. In the case of strong coupling the excited neuron will always reach th.
threshold whereas weak coupling causes only small postsynaptic potentials which never reacl
the threshold. Figure 2 shows the probability that a neuron which received a receptor spike a
t = Oma will fire within 5ms. This probability is presented as a function of the coupling strengt}
whyy for three different noise levels (n = 0,6, 10mV). Due to the synapse dynamics the mea;

spike probability of the neuron wA;(t) is time-dependent and can be shifted by learning.



1.0 T T Figure 2: The probability to reach the
threshold within Sms after a receptor spike
depends on the coupling between recep-
08 - - .
o tors and neurons. The gain of the curve
= strongly depends on the noise level . In
5 06 —n = 10mV — our computer simulations we have em-
2 L n = 6mV ployed in most cases the value n = 10mV
I .o ==
: 04 - L = Oomv | and wR;; = 45mV.
-
B
@

02 — -

0.0 ] I |

0. 20. 40. 60. 80.

Coupling Constant wRy/mV

SYNAPTIC PLASTICITY IN THE STOCHASTIC NEURAL NETWORK

In our neural network with stochastic firing we introduced a plasticity of the synapses
on a time scale of 0.2 — 0.5s 2. According to the Hebbian rules the synaptic dynamics was
assumed to depend on the synchronicity or asynchronicity of the pre- and postsynaptic spikes.
In addition to the Hebbian rules we require for synaptic modifications in the present study that
the mean spike frequencies 77, ¥ of both neurons exceed considerably the spontaneous spike
rate v, ~ 55”1, If both neurons satisfy this condition in the case of synchronous firing the
synapse can be strengthened. If only the presynaptic neuron fires with a high spike rate the
synapse S;;(t) is weakened after each presynaptic spike. Details are described in Ref. 2.

The plasticity of the synapse with the strength S;;(t) connecting neuron k to neuron 1 is
governed by the equation

Si{t)-S: (0 At
S50 + 2 G (T—"-) k(G;,Gy), i Su2|Su}2 Si;
M

95k _ Ts (5)
dt : 5.1(!)-—5;;(0)
——— else
Ts
with
1, G;>Cr>el A 7>y, A T vy
K(GiGy) = { -1, €G> >C; A Tk, A Tr>ui (5b)
0, else.

Equation (5a) holds both for excitatory and inhibitory synapses: The first term describes a
relaxation process which leads to the gradual loss of stored information. The second term
effects a change of the synaptic strength. The influence of this term decays exponentially
with the presynaptic activity Gk(%‘). The short decay time Tpy = 2.5ms guarantees the
Hebbian synchronicity condition for synaptic changes. The function «(G;, G}) switches between
increase of the synaptic strength {x = 1), decrease (x = —1) and passive relaxation (x = 0) of
the synapses to the initial value S;;(0). The characteristic time 07! determines the time scale
for synaptic modifications. The values assumed for 1=} were in the range 0.2 — 0.5s.

LEARNING AND ASSOCIATION OF A PATTERN

The neural network presented showed remarkable associative properties in spite of the
stochastic fluctuations of the membrane potentials, Starting from a homogeneous structure
of synaptic connections with equal numbers of excitatory and inhibitory neurons the network
learned a pattern presented by the receptors and associatively reconstructed the original pattern
when only incomplete or disturbed patterns were presented.
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The activity function G;(At;/Tps) is shown
for an untrained (left} and an instructed
(right) network. At the beginning of the
learning session (t=181ms,182ms,183ms) 75
percent of the excited neurons fire after a
receptor spike. At the end of the learning
stage (t=981ms,982ms,983ms) nearly all ex-
cited neurons have synchronized their firing
behaviour and reach the threshold.

Figure 4 (left):

Network activity during the association task:
The network associates the missing letter i
by excitatory interaction within 2 millisec-
onds (t=1021ms,1021.5ms,1022ms).



The simulations of the network were carried out in three different stages. During a first
stage which lasted 0.3 — 1.5s the neural network had to learn the pattern brain synchronously
presented by the receptors with a frequency of 50s~1. A homogeneous background noise with
a spike rate of 10s™! was superimposed on the pattern. The coupling constant wR;; was set
to 45mV which effected the firing of about 75 percent of excited neurons. In a second stage
lasting 50ms the receptors rested quiescent and the electrical activity of the network relaxed to
the spontaneous spike rate. During a third stage the receptors presented the test pattern bran
which differed from the originally learned pattern by the letter i being left out.

Figure 3a shows the activity of the network at the beginning of the learning phase. At
t = 180ms the receptors corresponding to the pattern brain had just fired. Within 3ms,
75 percent of the excited neurons reach the threshold and fire. The other neurons are only
gradually excited and fail to fire. The network reaction to a receptor input at the end of the
learning stage is shown in Fig 3b. Due to the acquired excitatory synaptic connections between
neurons receiving input directly from the pattern brain (pattern neurons) the assembly reacts
more synchronously and the fault level, given by the number of pattern neurons which fail to
fire, nearly vanishes. ‘

The success of the learning session is documented in Fig 4. The incomplete test pattern
bra n is associatively restored by the network. The neurons representing the missing letter i
react with a delay time of 1 — 3mes, i.e. they fire nearly synchronously with the neurons excited
by the test pattern.

The synchronization of the neural activity and the associative abilities of the network can
be understood on account of the synaptic structure acquired during the learning session. Figures
5a,b show the afferent synapses of neuron (37,4) (presented by a star) after the training. All
the neurons representing the pattern brain have developed saturated excitatory or inhibitory
synapses to the reference neuron. During the association task the excitatory synapses saturated
at a strength value S, support the firing of the reference cell, whereas the inhibitory synapses
saturated at —S; do not prevent the reference cell from firing. Afferent synapses of the reference
cell (37,4) coming from a background neuron rest at the initial synaptic strength.
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Due to fluctuations of the membrane potential which raise the sensitivity of the neurons
the network can also learn a pattern which at any given time is only partially presented by the
receptors. At each time interval the invisible fraction of the pattern {50 percent of the receptors)
is chosen randomly. The uninstructed network has to learn the total pattern from the detected
spike coincidences. The evolution of the synapses is demonstrated for the case of the afferent
synapses of neuron (37,4) which represents the dot on the letter i. During the learning stage
which lasts 3.7s the network has build up a synaptic structure which contains the information of
the whole pattern (Fig 6). This simulation demonstrates that the synchronization of all pattern
receptors at any given time is not a necessary condition for learning.
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Figure 6: Evolution of the afferent synapses of neuron (37,4) for the times ¢ = 1s (left) and
t = 3.6s (right) during the learning stage. 50 percent of the pattern brain is invisible.

CONCLUSION

We have presented a model neural network with a high level of endogeneous noise acting
on the cellular potentials. This noise which is inherent in all biological neurons does not destroy
the abilities of the network to Jearn and associatively reconstruct patterns. On the contrary, the
noise controls the level of arousal and makes the network capable to react to a weak receptor
input otherwise neglected. We argue that noise has a functional importance in neural systems.
The explicit simulation of single spikes allows to test the influence of single neural events which
are averaged over by mean spike rate models®. In addition the nonspecific influence of large
neural nets (neural activity bath) on small neural assemblies can also be studied by the stochastic
dynamics.

On the basis of the Hebbian rules which detect synchronicities between pre- and post-
synaptic spikes a second condition for synaptic changes is introduced to protect the synaptic
structure against destruction by spontaneous activity. The mean spike rates ¥ of the pre- and
postsynaptic neurons have to exceed considerably the spontaneous spike rate v, for an increase
of the synaptic strengths. For a decrease of the synaptic strengths the postsynaptic spike rate
must be considerably below v,. With this modified rules the network can also learn highly noisy
patterns and patterns which are presented by a partially asynchronous receptor activity.
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