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1. Introduction

We consider a neural network model in which the single neurons
are chosen to resemble closely known physiological properties.
The neurons are assumed to be linked by synapses which change
their strength according to Hebbian rules [1] on a short time
scale (100ms) [2], Each nerve cell receives input from a
primary set of receptors, which offer learning and test
patterns without changing their own properties. The activity of
the neurons is interpreted as the output of the network (see
Fig.1). The backward bended arrows in Fig.1 indicate the
feed-back due to the effect of the neuron activity on the
synaptic strengths S;. between neuron k and i in the neural
network.,

Figure 1

Input Output Schematic presentation of the
model investigated: Receptors
send spikes to a network of
neurons, The connectivity
> between the receptors j and
neurons i 1is given by the
x matrix Ry;, the connectivity
\ Sult) between the neurons is given
- by Sk (). The resulting
I i activity of the neural network
i i is affected by an activity-de-
Ry ////’///’ pendent alteration of S, (t),
i.e. the network experiences a

Receptors Neurons feed-back as indicated.

Initially the synapses S;x which carry action potentials
from cell k to cell i are chosen at random, i.e. the network is
initially completely uninstructed. The connections between the
receptors and the ‘physiological’ neurons possess no plasticity
and have a local center-surround-organization. Receptors j
which are lying in the neighbourhood of the receptor i are
connected with the neuron i by excitatory synapses, whereas
receptors arranged in the immediate surrounding of this
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excitatory center have an inhibitory effect on neuron i. The
area on the receptor set which affects the neuron i is much
smaller than the size of the network. Therefore, the connec-
tions between the receptors and the neurons constitute a conti-
nuous projection of the input pattern onto the neural net, the
projection being locally convoluted with the center-surround
function,

2. Dynamics of the Cell Potential

The fast dynamics of a neuron involves its cell potential which
changes on the time scale of a few milliseconds. In our model
two important contributions to the dynamics of the potential
are included. A first term describes the relaxation of the cell
potential which takes place on the time scale Te (Ta=2.5ms).
The second term accounts for the change of the cell potential
due to interactions with other neurons. If the cell k which
forms a synapse with neuron i has fired, a postsynaptic
potential difference corresponding to the synaptic strengths
Six appears in cell i. The cell i continuously sums up the
various excitatory and inhibitory postsynaptic potentials. If a
threshold U;=30mV is exceeded the neuron fires an action
potential and excites or inhibits nerve cells connected to it,
Sub-threshold potentials relax against the resting potential.

The dynamics of an action potential is simplified by the
following rules: If the neuron k fires, a monotonously decrea-
sing function

Gg (Atx /T) = eXp(-Ats /1) with Ati =t‘to‘ , (1)

describes the differential change of the postsynaptic potential
in the neuron i. In Eq.(1) te, indicates the time of the latest
firing. The effect of the spike of neuron k on the postsynaptic
cell i decays with the characteristic time T, (Ty=1ms).

The kinetic equation which describes the time evolution of
the cell potential is

—U‘ /TR+(¢) Ur p(G, (Atx /TF)) Ai (t) Ue (Ug(t)(Ur
du, /dt = (2)
Ur else .

The first term in the upper equation describes the relaxation
to the resting potential, the second term the communications of
the i-th neuron with the receptors and with other neurons. The
key parameter which scales the neuronal communication is the
coupling constant w. This constant w can be used to rescale the
network dynamics [3] by the equation

w = {{PSP) T« [1'8XD(‘TE /Tg )]} (3)
where <PSP> estimates the average postsynaptic potential.

The parameter Te, the effective excitation time of the neuron,
determines the time which a neuron requires to reach the
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threshold U, if it has rested in the sensitive state and if the
connected neurons fire with a average spike rate (Te+2T;)-?t.
Equation (3) furnishes a choice of the coupling coefficient w
which assures that the neural network avoids the states of
epileptic hyperactivity or of abnormal quiescence.

A; () in Eq.(2) is the activity function which sums up all
spikes converging on the cell i and weights them with the
corresponding synaptic strength S;,.. External contributions of
the receptors presented with an input frequency Ti! are
included in

Ay (t) = 2 Six Gy (AL, /Ty J+Z; Ry 5 GF (AL /Ty) (4)

0(Gy) in Eq.(2) is a function which accounts for the
existence of the total and relative refractory period T;=5Sms.
The factor p is chosen such that the sensitivity of the neuron
i is suppressed or reduced in the total and relative refractory
period, respectively. We choose the following functional form

plGy (At /T ] = 8(At; -T: ) {1—Gi[2(Atx—TF)/TF)]} . (S)

When the threshold potential is reached and the cell fires,
the continuous time evolution of the cell potential i is inter-
rupted and the memory function Gy (At, /Ty ) starts again with the
value 1, In addition the cell potential is set to the refrac-
tory value of Up=-15 mvV:

if Ui (t) 2 U'r then U; (t) 2> Ue and toi =t (6)

3. Learning through Synaptic Plasticity

In our model of learning information is stored nonlocally in
the synaptic connections of the network. The plasticity of the
synapse with the strength s, , leading from the neuron k to i,
evolves on the time scale 2-*=300ms and is governed by the Eq.

ds, , /dt (73

{—ﬁ’(s.. )+0Gx (Bt/Tu)k(Gi ,Gh ) if S.31S,, 1385,
-ASiy ) else
/?(Si K )-‘- [san (t)’siu (O)J/Ts

which holds for excitatory and inhibitory synapses. The first
term AS,,) accounts for the relaxation of the synapses to
their initial values during the time Ts=x1s. The second term in
(7) causes a growth of the synapses. This term is governed by
the function «(G;,G.) which distinguishes four different
activity states of a pair of neurons i and k as presented below

Gg (Atg /Tn) Gk(Atg /Tn) K(GA ,Gu) ngk/dt (8)
> e ! > e +1 >0
< e > et -1 <0
> et < et -1 <0
< e? { e ! 0 =0



276

Figure 2 shows the changes which the strength S;, of an
excitatory synapse experiences if the presynaptic neuron k
fires at t=0 and the postsynaptic cell i answers with a spike
at t=t,. A time delay shorter than At§=Tux1ln(2e+1)/(e+2) results
in an asymptotic aynaptic strength above the initial value,
otherwise below.

Figure 2

Time-dependence of the
synaptic strengths S;,(t) in
case of two spikes in the pre-
and postsynaptic cells for 4
different spike intervals Ar,
For Atr=0 the synapse grows at
a maximum rate, an interval
At=20ms causes a strong
decrease of Sy, (t) (Ty=15ms);
L . 1 ( ) Ar=0msg, (--~-~- 9 At= 1nms,
o. t0. 20. 30. 40. (¢eeee) Ar=5ms, (-~ Ar=20ms,

Synaptic Strength Su(t)

4, Behavior of the Network with Receptor Input

The first simulation has two different stages, In the first
stage the uninstructed network 1learns the presented fiqure
brain (Fig.3a) and changes its synaptic connections., In the
second stage the success in learning is tested by the associ-
ative task to restore the missing letter i in the test figure
bra n.

1. stage 0 - 300 ms : learning of the figure brain
300 - 320 ms relaxation of the cell potentials
2, stage 320 - 360 ms asgociation of the missing i in bra n

The interval of 20ms between stage 1 and 2 in which the network
receives no input spikes from the receptors guarantees that
only the changed synaptic strengths and not the cell potentials
contain information about the learned figure.

The reaction of the network after the presentation of the
figure brain in stage 1 is presented in Fig.3b which shows the
cell potentials after 10 ms. Most of the neurons which receive
input from receptors belonging to the figure (figure nmneurons)
have fired and are resting in the refractory phase or sum up
postsynaptic potentials in the sensitive phase, A few of the
background neurons in the upper half of the network are excited
at the beginning of the learning course because they are
connected to the figure neurons by enough excitatory synapses.

These connections raise their cell potential but not above the
threshold.

At t=290ms (Fig.3c) the background cells are strongly
inhibited and only the neurons belonging to the figure show a
positive cell potential or are in the refractory state.
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Figure 3

Learning Pattern (a) and Cell Potentials after 10ms (b) and
290ms (c). The values of the cell potentials are divided by the
threshold value Ur and represented by the next integer value if
positive., The symbol * indicates that the cell potential has
reached the threshold. 1If the memory function G; (At,/Ty)
exceeds 1/e the integer is italicized. Negative potentials are
presented by a blank or by a italic -zero & if Gy (AL /Ty)
exceeds 1/e. On the right side the cell potentials are presen-
ted during the restoration of the missing i,

After the relaxation of the cell potentials the network is
excited in stage 2 by the test figure which is identical to the
pattern brain learned in stage 1 except that the letter i is
missing. The time evolution of the cell potentials during the
first few milliseconds of this association task is presented in
the Figs.3d,e,f. The neurons which obtain input spikes from the
receptors react immediately with a raised cell potential, At
t=323.75ms, 3.75 ms after the beginning of the association
test, several of the neurons belonging to the new figure bra n
have fired and the potentials of the remaining neurons exceed
the value 15mV. At t=325.25ms all except one neurons of this
set have fired a spike whereas the potentials of neurons
representing the missing i have reached the threshold or are
just below the threshold. The Figures 3d,e,f reveal also the
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mechanism which underlies the associative properties of the
network. If a subgroup of the figure neurons, e.g. the neurons
of the letters a and n, fires spikes, strong postsynaptic cell
potentials are evoked in the neurons of the missing letter 1i.
These postsynaptic potentials compensate the missing receptor
inputs and stimulate the postsynaptic cells to fire with a
delay of 1-2ms,

In Figure 4 we present both before and after the learning
stage the strengths of the synapses which connect the neuron
(37,4) representing the point of the i in brain with the other
neurons. According to the kinetics laid down in Eqs. (7),(8)
the synapses between two figure neurons k and i are streng-
thened. The synaptic strengths S,y of these synapses are
saturated either at the value S«=99 if the corresponding
synapse is excitatory, or at the value =51 =~1 if the correspon-
ding synapse is inhibitory, Excitatory and inhibitory synapses
connecting the figure neuron (37,4) to background neurons are
saturated at the lower boundary values S, or -S., respectively,
Figure 4 also demonstrates the nonlocal properties of the
storage. Each single neuron contains in its synaptic connecti-
vity a blueprint of the pattern stored in the network.
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Fiqure 4

Synaptic changes during the learning of brain: Th initi

! : e init
synap§1c strengths and the strengths at t=300ms of the synap;g;
sta;t1ng from cell (37,4) are presented. Synapses which end at
a figure neuron are indicated by italic, bold numbers.
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5. Conclusion

network model presented above neural gnlts close}y
églztzd through the dynamics of their cell potential tol th91§
physiological counterparts intergct by few local Eg es gd
synaptic plasticity. These rules induce globallcoopera 1og.l§t
competition and, thereby, endow the network with theb abi 1°¥
for associative storage and recal} of pat;ern§.. Thg aili £
the rules of synaptic plasticity is a discrimination e weel
states of pairwise synchroneous and asynghroneous fneurf‘aw
activity, synchronicity being meagured on a time scalelo a ie
ms. Beyond the investigated behav1or of the‘network, a so1 mﬁet
complex computational propertleg emerge in the negia of "t
discussed, i.e. the ability to filter sizg;ge ng;::erz g8

ttern, to build up a pro

§§§?22t§? sgrying patterns and to store several patterns [3].
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