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Reconstructing Potential Energy Functions from Simulated

Force-Induced Unbinding Processes
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Beckman Institute and Department of Physics, University of lilinois, Urbana, lllinois 61801 USA

ABSTRACT One-dimensional stochastic models demonstrate that molecular dynamics simulations of a few nanoseconds
can be used to reconstruct the essential features of the binding potential of macromolecules. This can be accomplished by
inducing the unbinding with the help of external forces applied to the molecules, and discounting the irreversible work
performed on the system by these forces. The fluctuation-dissipation theorem sets a fundamental limit on the precision with
which the binding potential can be reconstructed by this method. The uncertainty in the resulting potential is linearly
proportional to the irreversible component of work performed on the system during the simulation. These results provide an
a priori estimate of the energy barriers observable in molecular dynamics simulations.

INTRODUCTION

Atomic force microscopy (AFM) and similar micromanip-
ulation techniques allow researchers to measure macromo-
lecular adhesion forces that stabilize the multitude of su-
pramolecular structures found in all life forms. In the
simplest case, adhesion forces bind ligands to proteins. The
force necessary to unbind a single ligand-receptor.complex .-
has been determined recently for the streptavidin/avidin-
biotin system (Florin et al., 1994; Moy et al.,, 1994a, b;
Chilcotti and Stayton, 1995; Chilcotti et al., 1995). Natu-
rally, one wishes to relate the observed rupture forces to the
potential energy surfaces that govern the adhesion between
ligands and proteins.

A natural approach to interpret AFM experiments in
terms of potential energy surfaces and to develop insights
into the process of dissociation of macromolecules is fur-
nished by molecular dynamics (MD) simulations (Grubmiil-
ler et al., 1996; Izrailev et al., 1997). Unfortunately, the
mechanisms by which dissociation is induced in AFM ex-
periments and in MD simulations are markedly different: on
the millisecond time scale of AFM experiments, unbinding
is a thermally activated process; molecular dynamics sim-
ulations, on the other hand, can cover only nanosecond time
scales and need to apply large forces, which abolish all
relevant potential energy barriers to induce a sufficiently
rapid dissociation (Izrailev et al., 1997). The force needed to
induce unbinding within time 7 depends sensitively on this
time scale (Evans and Ritchie, 1997; Izrailev et al., 1997).
In the extreme case that 7 is chosen longer than the natural
dissociation time of a molecular complex, no external force
is needed, i.e., a zero rupture force would be measured. In
AFM experiments 7y values are ~1 ms; in the case of the
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avidin-biotin complex, the rupture forces associated with
such 7 measure ~160 piconewtons (pN) (Florin et al.,
1994). In molecular dynamics simulations, by necessity,
one chooses 7y values of ~1 ns or even shorter; the forces
that rupture the same complex are several hundred pN

‘(zrailev et al.,-1997), i.e.,-are-significantly-larger than those

observed in AFM experiments. This increase of the rupture
force can be related in part to the need of abolishing the
potential barriers through superposition of an external po-
tential, while the major contribution stems from the dissi-
pative processes that accompany the unbinding (Izrailev et
al., 1997). The question arises in how far one can discount
the contribution of dissipation and relate the rupture forces
observed in MD simulations to the potential energy surfaces
that govern natural dissociation, as well as dissociation-
induced in AFM experiments.

In this paper we investigate, in the framework of one-
dimensional stochastic models, the feasibility of recon-
structing the potential energy function along the path of
force-induced unbinding in MD simulations, as has been
suggested by Evans (Evans and Ritchie, 1997). The effect of
dissipation is represented by a friction coefficient vy, to be
obtained from MD simulations. Once v is known it can be
used to estimate the amount of irreversible work produced
during forced unbinding. The model introduced below de-
scribes adequately a situation in which the forced unbinding
reaction is much slower than the relaxation of all other
degrees of freedom in the system. This condition is difficult
to satisfy on the time scales achievable in MD simulations.
It is, however, the most favorable case for the reconstruction
of the energy landscape without the assumption of thermo-
dynamic reversibility. The introduction of v, even in this
idealized model, imposes limitations on the accuracy with
which the potential can be reconstructed.

According to the fluctuation-dissipation theorem, the
friction coefficient vy is related to the magnitude of random
forces that perturb the ligand. As a consequence, the work
needed to displace the ligand exhibits an inherent random-
ness. The accuracy of the reconstruction of the potential
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energy function is determined by the fluctuations of the
potential energy function estimated from the work done on
the ligand. We will demonstrate that these fluctuations are
proportional to the amount of irreversible work deposited
into the system during enforced unbinding. The error esti-
mate derived is useful for the development of MD simula-
tion protocols to determine energy barriers between differ-
ent states of macromolecular systems. The estimate can also
be used to select simulation conditions adequate to attain a
given accuracy in the reconstruction of a potential energy
profile.

Our approach resembles the conventional free energy
perturbation techniques for the reconstruction of the poten-
tial energy surfaces as furnished by the umbrella sampling
method (McCammon and Harvey, 1987). Unlike the um-
brella sampling technique, however, our approach strives to
explicitly discount dissipation due to fast manipulation.
Relying on the ideal of reversibility of the unbinding pro-
cess, the umbrella sampling requires equilibration at each
step and is computationally demanding. This equilibration
is practically impossible in computer simulations if the
system undergoes major transformations. In addition, ‘it is~
known that breakage of the bonds in biopolymers as well as
in industrial adhesives is accompanied by dissipative work,
which can be much larger than the work due to the under-
lying thermodynamic potentials (Baljon and Robbins,
1996). Many non-covalent bonds and adhesive linkages
(Evans et al., 1995) gain their strength through dissipation.

In the next section the stochastic model describing forced
unbinding is introduced. We illustrate the method by recon-
structing an energy barrier for the case of a one-dimensional
unbinding path. We then discuss the predictions and short-
comings of the model.

THEORY

Let us consider a protein-ligand dissociation reaction in-
duced by external forces. We assume that the dissociation
can be described by a single reaction coordinate. The un-
binding path does not, therefore, change when a force is
applied to the system. This assumption cannot be valid in
general and needs to be reconsidered in a future, more
general, treatment of the problem. As mentioned in the
introduction, we will also assume that the unbinding reac-
tion takes place on a time scale long compared to the
relaxation times of all other degrees of freedom of the
system. We can then consider the effective friction coeffi-
cient -y between the ligand and the protein to be independent
of time, simplifying the model significantly. The model,
even under such idealized assumptions, allows us to inves-
tigate the limitations of the reconstruction method.

In the strong friction limit, when the time scale of un-
binding is much longer than velocity relaxation, i.e., much
longer than 1 ps, the motion of the ligand is governed by the
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Here x is the coordinate of the ligand along the unbinding
path, U(x) is the associated thermodynamic potential, F(x, )
is the force applied along the path, v is the friction coeffi-
cient, N(7) represents a Gaussian white noise of unit ampli-
tude with zero mean, i.e., with correlation function (N(t +
10N(tg)) = 8(r), and o is the amplitude of the fluctuating
forces. According to the fluctuation-dissipation theorem, y
and o are related through temperature as o> = 2kgTy. For
a protein-ligand complex in solution with constant temper-
ature and pressure we can identify U(x) with the Gibbs free
energy of the system.

For the present description we choose for the applied
force the functional form

F(x,t) = K(vt — x), 2

where K is a positive constant. This force corresponds to the
ligand being pulled by a harmonic spring of stiffness K with
its end moving.with.velocity v. In computer simulations this
procedure can be implemented through restraining a mole-
cule harmonically to a point, and moving this point with
velocity v. The position fluctuations associated with the
restraint, according to the well-known Boltzmann distribu-
tion of a harmonically bound particle, are given by

8x ~ (kgT/K)'2, 3

and the fluctuations of the applied force are related to K
through 8F ~ (KkgT)'". A stiff restraint confines the ligand
to fluctuate in a small region of the binding pocket, so that
only local properties of the binding potential are sampled,
while the fluctuations of the force become large. For a soft
restraint, on the other hand, the ligand is able to fluctuate in
a large region of the binding pocket, and the fluctuations of
the force are small.

The position of the ligand at time ¢ can be written as
x(1) = xp(H) + 8x(¢), where x,(r) represents the trajectory in
the limit of zero noise, and &x(¢) is the deviation of the
position relative to x,. Equation 1 can then be written as

dU(x, + 6x)

'Y(Jéo + 8x) = dx
+ F(xy + 8x, 1) + oN(r). ()]

We can solve Eq. 4 by expanding in powers of 8x. To Oth
order we have

. d
Yo = T Ulxo) + K(vt — xg), (3)

while the first-order correction is governed by the stochastic
differential equation

2

vox = — [K + —L-i—g U(xo)]ﬁx + oN(1). (6)
dx,
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For a stiff spring, satisfying K > |d*Uldx?|, the fluctuations
dx are small according to Eq. 3, so that we may neglect
higher-order corrections as well as the dzU(xo)/dxg term in
Eq. 6. The fluctuations 8x(f) obey, then, the Langevin equa-
tion for an overdamped harmonic oscillator

yéx = —K&x + oN(t), 0

the solutions of which are known to relax with a character-
istic time 7 given by, e.g., Gardiner (1985)

7= /K. ®)

We introduce () = U/Atf{*%4r'g(r') to represent a
running time average of g(r). Here At is assumed to be much
smaller than the overall time of unbinding, but much larger
than 7 defined in Eq. 8. The fluctuations &x are small and
average to zero for times longer than . We can then replace
xo(t) in Eq. 5 by the average position of the ligand X(f) and
obtain

X= Yt — 5——— — —x, 9)

For a stiff restraint under the overdamped condition as-
sumed in Eq. | follows x ~ v. The latter allows us to rewrite
Eq. 5 as

ﬁ=——+‘yv,

10
i (10)

where F = K(vt—X).

Equation 10 implies that for a stiff restraint the average
applied force measures the local slope of the binding po-
tential plus a frictional contribution that depends linearly on
the pulling velocity. This dependence was observed in the
MD simulations of the biotin-streptavidin complex by
Grubmiiller and co-workers (1996). For a soft restraint, on
the other hand, the condition ¥ ~ v does not hold and no
linear scaling of the measured force should be observed
with the pulling rate (Izrailev et al., 1997).

In the simulations of Grubmiiller et al., the maximum
averaged force was identified with the rupture force ob-
served in AFM experiments. However, the stiffness of the
cantilever in the actual experiments K = 6 pN/A (Moy et
al., 1994a) is much smaller than the spring constant K =
280 pN/A employed in the computer simulations of these
authors. The spatial fluctuations of the ligand as given by
Eq. 3, in the case of AFM measurements, are ~3 Z\, com-
parable to the size of the binding pocket of ~9 A. Under
these conditions AFM does not sample the local properties
of the binding energy profile and the measured force cannot
be related to the maximum slope of the binding potential.

For a soft restraint and unbinding times (tg ~ 1 ms) of
AFM experiments (Florin et al., 1994), fluctuations aid the
exit of the ligand from the binding pocket, i.e., the unbind-
ing is thermally activated. Therefore, the unbinding time
depends exponentially on the height of the energy barrier
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AU' reduced by the applied force F (Bell, 1978),
_ AU' — FL 1
TR = TaXp T ), (11

where L is the size of the binding pocket and 7, ~ L¥D is
the diffusion time of the ligand in the binding pocket [for
biotin D ~ 1 A%ns and 7, ~ 25 ns (Izrailev et al., 1997)].
Expression 11 can be rewritten as

AUt kBT TR
Fasm == I
T4

a2)
The rupture force measured in AFM experiments is given,
therefore, by the average slope of the energy profile minus
a correction related to the effects of thermal fluctuations.
Equation 12 demonstrates that the rupture force measured in
AFM experiments is linearly proportional to the activation
energy of the system (Chilcotti et al., 1995). A comparison
of Egs. 10 and 12 shows that the unbinding induced in MD
simulations and that induced by AFM differ drastically, and
that the forces measured by both techniques cannot be
readily related. . ‘ o

In order to fully account for the kinetics of binding and
unbinding of biomolecules without applied forces, a knowl-
edge of the binding potential U(x) is necessary. According
to Eq. 10, the average applied force, for a stiff restraint,
samples the slope of the binding potential. We can, there-
fore, reconstruct the potential U(x), integrating Eq. 10 over
X and explicitly discounting frictional contributions to the
applied force.

Ux) — U(0) = f X dx'(F — ). (13)
0

We wish to estimate the limitations imposed on the accu-
racy of the reconstruction of the potential U(x) due to the
presence of dissipation in the problem. According to Eq. 13,
we can relate the fluctuations in the time averaged potential
8[:J(x) to the fluctuations in the time averaged applied force
oF,

SU(x) = f ' ax' SF{t(x")], (14)

0

where #(x) = x/v. Using Eq. 2, we can express 8F in terms
of the fluctuations of the position, dx,

15

_ 1 t+At
OF (1) = Y J dr'Kéx(t').
t

The fluctuations of the force are, therefore, expressed as an
integral over the trajectory of an overdamped harmonic
oscillator. The error in the estimate of the slope of the
potential is given by the variance in the applied force (Allen
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and Tildesley, 1987)

0 =(GFoP =2kiat(y). A0

where () stands for the ensemble average and At >> 7.
Using Eq. 8, we can finally write

YksT

o) =2 ¥

an

It should be noted that, although the instantaneous fluctua-
tions of the force are proportional to K, the error in the
applied average force does not depend on the stiffness of the
restraint, but only on the averaging time At

To resolve the spatial features of the binding potential,
the variance of the force should be much smaller than the
characteristic slope of the binding potential, 8z << AU/Ax.
This condition determines the averaging time At and, ac-
cording to v << Ax/At, the velocity of pulling. Molecular
dynamics simulations for a system of the size of avidin-

biotin are limited to time seales ef nanosecends:The size-of-

the binding pocket of avidin is L ~ 10 A, which limits the
pulling velocity to v ~ 0.01 A/ps. In order to reconstruct the
slope of the binding potential with a spatial resolution of
Ax ~ 1 A, the averaging time At can then be at most 100 ps.
Using Eq. 17 and assuming a friction coefficient y ~ 4 + 10*
pN ps/A (Izrailev et al., 1997), we estimate the error in the
force to be oz ~ 170 pN. In the near future we can expect
simulations as long as 10 ns. In this case the error in the
force measured will be reduced to 50 pN.

In the limit A¢ >> 7, the time averaged force fluctuations
SF (#) at times ¢ and ¢ + At are statistically independent. We
can use this fact to estimate the error in the measurement of
the energy difference between two points separated by a
distance x. Approximating Eq. 14 by a finite sum

N
U =~ > 8F(t)Ax,

(18)

where i’(ti) is the time averaged force fluctuation at time
t; = iAt, Ax = vAt is the distance traveled during time At,
and the number of terms in the sum is N = x/(vAr). The
variance of the fluctuations 8U of the estimated potential
becomes

o = (SU%) = X 2 (8F(1)SF(t))Ax>.

j=1i=1

19)

Using the fact that 8F has zero mean and is uncorrelated for
times f; # f; we can rewrite the previous expression as

b = D(SF(5)HAL. (20)

i=1
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Using Eq. 16, Ax = vAt and N = x/(vAf) we obtain

02, = 2KksTxvr @1)
and finally, with the help of Eq. 8,
o5(x) = ((BUX))?) = 2UksTyvx, (22)

where we have assumed t >> Ar > 7.

The estimated potential f](x), therefore, strays away from
the actual potential in a diffusive manner as described by a
diffusion constant Dy; = kzTyv. With the introduction of the
work performed by the frictional force W,, = yvx, Eq. 22
can be rewritten as

op = 2kpTW,. (23)

Thus, the uncertainty in the potential U is determined by the
irreversible work done on the system. For the avidin-biotin
system, we replace x in Eq. 22 by the size of the binding
pocket of avidin L ~ 10 A: Simulation periods of 1 ns and
10 ns that correspond to the pulling velocities v of the order
of 107 and 10~ A/ps yield oy, ~ 8 and 3 kcal/mol,
respectively.“We can use the potential reconstructed from an
MD simulation according to Eq. 13 to estimate the force that
would be measured in an AFM experiment, as given by Eq.
12. The uncertainty in the force measured by AFM, F g,
will be given by ospy = oy/L. For 1-ns and 10-ns simu-
lations these uncertainties are 50 pN and 20 pN, respec-
tively. It must be stressed that o, and o,y are the lower
bounds for the errors in AU" and F gy, as estimated from
MD simulations. The presence of other slowly relaxing
degrees of freedom in the system, or the uncertainty in the
value of vy, can only increase the errors in AUT and F,pp,.

Another consequence of Eq. 22 in the present model is
that the accuracy in the measurement of AU obtained by
averaging the potential in n simulations of time length ¢ is
the same as for a single simulation of length nt. In the case
of averaging over n trajectories the average fluctuation will
be 8U = 1/ns28U,. Because different simulations are un-
correlated, we have 63,(f) = o%/n, where o? is given by Eq.
22. Using v = x/t, one obtains

. 1 X
G = - 29ksT —, (24)
This coincides with the variance as determined from Eq. 22

for a simulation extruding the ligand with velocity v/n and
for a time span nt,

al(nt) = 2kgTx*/(tn). (25)

This equivalence hinges on the fact that 7, the correlation
time in the fluctuations 8x, is small relative to 7, so that
ensemble and time averages are equivalent.

In our model the spatial resolution Ax is limited by vAt
and, ultimately, by the distance traveled, on average, during
one oscillator relaxation time 7. One may be tempted to
increase the stiffness of the spring K to reduce 7 (cf. Eq. 8).
Expression 22, however, assumes that all other degrees of
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freedom in the system relax on a time scale much shorter
than 7. If we assume for those degrees of freedom a finite
relaxation time 7, > 7, the correlation time of the force
fluctuations will be of the order of 7,. If Ar > 7, We can
substitute 7, into Eq. 21 to obtain

Tr
0y = 2kgTK7,vx = 2k Tyvx (;) (26)

As one can see, the magnitude of the fluctuations increases

now as VK. The optimal combination of spatial resolution
and magnitude of the fluctuations is thus obtained when 7 =
/K ~ 7. The best possible spatial resolution achievable for
the potential is given by Ax =~ vr,.

To apply the above method to MD simulations, knowl-
edge of the friction coefficient is required. We can use Eq.
17 to estimate the friction coefficient

¥(x) = (1) At12kyT 27

where the position dependence of 1y is expressed explicitly.
The friction coefficient can also be obtained from the power
spectrum of the force fluctuations under the assumption
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This leads to the equations
dU _ dt At/de
(zx‘) =Fl)—y=5 2 Fjd) - w, 1)
x=vt j=0

t/dt

Ulx = vty = > (F(jdt) — y)vdt, (32)

j=0

where F(f) = F[x(t), 1] is the force applied to the ligand at
time ¢. The resulting forces and potentials are presented in
Figs. 1 and 2 for a stiff restraint and in Fig. 3 for a soft
restraint. In the case of a stiff restraint, the reconstructed
forces and potentials are in agreement with the assumed
potential and the resolution in the reconstructed potential
improves with the length of the simulation as predicted by
Eq. 22. For the soft restraint, on the other hand, the recon-
struction clearly fails as expected.

DISCUSSION

We employed stochastic models to investigate how the

At >> y/K. In this case holds (Allen and Tildesley; T987) = -application of external forces to protein-ligand complexes in

1 At
y(x) = m[ (8F(t)8F(t + s5))ds. (28)
0

An Example

To illustrate the formal description outlined above we con-
sider the reconstruction of the sample potential

wo-sfl AT

for AU = 25 kcal/mol and L = 10 A. For this potential we
simulated a random process governed by the stochastic
differential equation (Eq. 1) with friction coefficient y =
4 X 10* pNps/A, restraint coefficients K = 280 pN/A (stiff),
28 pN/A (soft), and pulling velocities v = 10~2 A/ps, 1073
AJps. The position x(7) of the ligand has been evaluated at
discrete time steps j dt, j = 1, 2, 3. .. according to

dt

au
x(t + di) = x() + (—a—x— + F(x, t))—y—

dr\'? .
+ (2kBT —‘;) R(@), 30)
where R(?#) are normally distributed random numbers deter-
mined as described in Press et al. (1992). We chose df = 1
ps. The ligand was initially located at x(0) = —10 A.

For the averaging procedure we adopted At = L/(10 v) to
resolve the spatial features of U(x) within 1 A. The recon-
struction procedure for the slope dU(x)/dx is based on Eq.
10, while for the reconstruction of U(x) Eq. 13 was used.

MD simulations can be used to reconstruct the potential
energy surfaces governing ligand binding and unbinding.
Our computational approach, inspired by micromanipula-
tion experiments, provides a general tool for the investiga-
tion of the mechanisms of binding and unbinding of biomol-
ecules in MD simulations.

We showed that the unbinding force measured in AFM
experiments is linearly proportional to the mean slope of the
activation energy barrier and does not provide information

1500 ——+—————————

F, estimated
=== Foxact

1000

FIGURE 1 Reconstruction of the force and the potential for K = 280
pN/A (stiff restraint) and v = 10~2 A/ps. The computed force and potential
fall into the estimated error bounds.
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FIGURE 2 Reconstruction of the force and the potential for K = 280
pN/A (stiff restrainty and v = 1073 AJps. The computed force and potential
fall into the estimated error bounds. The error bounds are smaller than
those for the simulation presented in Fig. 1.

on the local properties of the binding potential. Since AFM
employs soft harmonic restraints and long (1 ms) observa-
tion periods, it allows the ligand to thermally fluctuate in a
wide range of the binding pocket and to surmount potential
barriers spontaneously so that the observed unbinding event
can be considered thermally activated.

1500 T o e s T T

= Festimates

nN b
o O

U (kcal/mol)

z (4)

FIGURE 3 Reconstruction of the force and the potential for K = 28
pN/A (soft restraint) and v = 1072 AJps. For the soft restraint the recon-
struction fails near the top of the potential barrier.
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Unbinding induced in MD simulations on a very short (1
ns) time scale proceeds in a dissipative regime where sig-
nificant irreversible work is being generated. We have
shown that the unbinding forces measured in MD are, in
general, larger than those measured in AFM experiments
and are sensitive to the local distribution of energy barriers.
Under these conditions the irreversible work conceals the
true thermodynamic potentials and has to be discounted in
order to reconstruct the energy landscape of the system.

Our analysis in the framework of one-dimensional sto-
chastic models showed that such reconstruction is possible
in MD simulations if stiff harmonic restraints are employed.
A stiff harmonic restraint confines fluctuations of the ligand
to a small spatial region of the binding pocket of the protein.
Pulling the ligand slowly out of the binding pocket and
measuring the applied force at all instances of time allows
one to sample the local slope of the energy landscape of the
system. The irreversibility, in this case, is represented in the
form of a viscous friction force proportional to the linear
velocity of the ligand. The effect of such irreversibility can
be discounted and the profile of the true binding energy can
be uncovered by integration of the applied force over the -
coordinate of the ligand.

The analysis also furnishes limits on the accuracy with
which the potential can be determined. We showed that, as

a direct consequence of the fluctuation-dissipation theorem,

the variance in the measured energy will be proportional to
the amount of irreversible work performed on the system.
Some important questions still remain open. The value of
the friction coefficient y that appears in our model can be
computed, in principle, by monitoring the force-force or the
position-position correlation function of the ligand as noted
in the previous section. Assuming that the correlation func-

tion depends on a single decay time 7, one can compute y

from MD simulations using Eq. 8. This assumption, how-
ever, is valid only if all other processes in the system relax
faster than the fluctuations related to the motion of the
ligand. In general, this assumption does not hold for pro-
teins that have a relatively soft structure. For example, open
loops at the entrance of the binding pocket often serve as
regulators of ligand binding. The slow relaxation times of
such loops can render the friction coefficient y highly
dispersive. The described reconstruction of the binding po-
tential, using one-dimensional models, will not be valid in
this case and a more complete treatment will be required.
A related question is how to choose the stiffness of the
restraint K. As we already mentioned, the stiffness of the
restraint should be chosen in accordance with K >> |d2U(x)/
dx’|, but the details of the binding potential are not known
a priori. Moreover, the restraint should not be chosen too
stiff, since the ligand will then relax too quickly without
allowing other degrees of freedom to equilibrate properly.
In this case the friction coefficient v will become strongly
dependent on time, which will significantly complicate the
analysis of the data obtained from MD simulations.
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In spite of the above difficulties, steered molecular dy-
namics opens new frontiers in the investigation of non-
covalent interactions of biopolymers that govern, e.g., the
recognition of ligands by receptors, protein-DNA com-
plexes, and protein-protein aggregation. It is desirable to
establish the relationship of steered molecular dynamics to
the umbrella sampling method as used in free energy per-
turbation theory in the framework of weighted histogram
analysis method (WHAM) (Kumar et al., 1992).
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